
 1

CMOS VLSI Design
Lab 3: Controller Design and Verification

The controller for your MIPS processor is responsible for generating the signals to the
datapath to fetch and execute each instruction. It lacks the regular structure of the
datapath. In the first section of the lab, you will design the ALU decoder control logic by
hand. You will discover how this becomes tedious and error-prone even for small
designs. For larger blocks, especially designs that might require bug fixes late in the
design process, hand place and route becomes exceedingly onerous. Therefore, you will
use Synopsys’s Design Compiler to synthesize the combinational logic for the control
FSM and Cadence’s SOC Encounter to automatically place and route the controller.

I. ALUDec Logic

The aludec logic is responsible for decoding a 2-bit ALUOp signal and a 6-bit funct field
of the instruction to produce three multiplexer control lines for the ALU. Two of the
signals select which type of ALU operation is performed and the third determines if input
B is inverted.

The function of the aludec logic is defined in Chapter 1 of CMOS VLSI Design. The
Verilog code in Figure 1 is an equivalent description of the logic. Note that the main
controller will never produce an aluop of 11, so that case need not be considered. The
processor only handles the five R-type instructions listed, so you can treat the result of
other funct codes as don’t cares and optimize your logic accordingly.

typedef enum logic [5:0] {ADD = 6'b100000,
 SUB = 6'b100010,
 AND = 6'b100100,
 OR = 6'b100101,
 SLT = 6'b101010} functcode;

module aludec(input logic [1:0] aluop,
 input logic [5:0] funct,
 output logic [2:0] alucontrol);

 always_comb
 case (aluop)
 2'b00: alucontrol = 3'b010; // add for lb/sb/addi
 2'b01: alucontrol = 3'b110; // subtract (for beq)
 default: case(funct) // R-Type instructions
 ADD: alucontrol = 3'b010;
 SUB: alucontrol = 3'b110;
 AND: alucontrol = 3'b000;
 OR: alucontrol = 3'b001;
 SLT: alucontrol = 3'b111;
 default: alucontrol = 3'b101; // should never happen
 endcase
 endcase
endmodule

Figure 1: System Verilog code for ALUDec module

 2

Create a new library named controller_xx. Create an aludec schematic in your
controller_xx library. Using the logic gates from muddlib10, design a
combinational circuit to compute the alucontrol[2:0] signals from aluop[1:0] and
funct[5:0]. Limit yourself to the inv, nand2, nand3, nor2, and nor3 gates so that you
gain experience designing with inverting gates. As funct[5:4] are always 10 for any
instruction under consideration, you may omit them as don’t cares. Try to minimize the
number of gates required because that will save you time and space in the layout.
Remember to name your busses with angle brackets (e.g. aluop<1:0>).

You will need to connect individual bits to your input and output busses. Draw the
busses with a wide wire and connect a pin with the appropriate name. Then draw narrow
wires from the bus to individual logic gates. Add a label for each of these wires with its
name (e.g. aluop<0>).

Make a symbol for your aludec.

Next, create an aludec layout. Remember to use metal2 vertically and metal3
horizontally. When you are done, provide pins for vdd!, gnd!, the eight inputs and the
three outputs.

Run DRC and LVS and fix any problems you might find.

II. Controller Verilog

The MIPS controller is responsible for decoding the instruction and generating mux
select and register enable signals for the datapath. In our multicycle MIPS design, it is
implemented as a finite state machine, as shown in Figure 3.1 The Verilog code
describing this FSM is the statelogic and outputlogic modules in the RTL mips.sv
that you worked with in Lab 2.

Look through the Verilog and identify the major portions. The top level module is called
controller. It calls the aludec, which you just designed, and a controller_synth module
that you are about to synthesize. The controller_synth module, in turn, has separate
modules for the next state logic and the output logic of the FSM. The next state logic
describes the state transitions of the FSM. The output logic determines which outputs
will be asserted in each state. Note that the Verilog also contains the AND/OR gates
required to compute pcen, the write enable to the program counter.

1 This FSM is identical to that of the multicycle processors in Patterson & Hennessy Computer
Organization and Design and in Harris and Harris Digital Design and Computer Architecture, save that LW
and SW have been replaced by LB and SB and instruction fetch now requires four cycles to load instructions
through a byte-wide interface.

 3

PCWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0
MemWrite
IorD = 1IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst=0
RegWrite

MemtoReg=1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite

Instruction fetch

Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LB') or (Op = 'SB ') (Op = R-type)

(O
p = 'BE

Q')

(O
p

=
'J'

)

(Op = 'SB')

(O
p

=
'L

B
')

7

0

4

121195

1086

Reset

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite

1

ALUSrcA = 0
IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite

2

ALUSrcA = 0
IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite

3

PCSrc = 00 PCSrc = 00 PCSrc = 00 PCSrc = 00

PCSrc = 01
PCSrc = 10Branch = 1

Figure 3: Controller FSM

III. Controller Synthesis

In this section, you will use Synopsys Design Compiler to synthesize the
controller_synth module into a gate-level netlist. Design Compiler is the industry-
standard logic synthesis tool.

Create a new directory named synth in your IC_CAD directory. Design Compiler
requires a configuration file in the directory where you will run. Copy it over using

cp /courses/e158/10/lab3/.synopsys_dc.setup ~/IC_CAD/synth

Look over the file to see how it defines some configuration for the Design Compiler.

Design Compiler can be driven at the command line, but it is easier to place all of the
commands in a script. Copy a generic synthesis script from the class directory

 4

cp /courses/e158/10/lab3/syndc.tcl ~/IC_CAD/synth

Look over the script. It is written in TCL (tool control language), with extensions that
Design Compiler understands. Near the beginning of the file, it sets “myFiles” to
mips.sv and the basename (the module you want to synthesize) to controller_synth.
If you were synthesizing something else, you would need to change these lines.

Copy your mips.sv file from lab2 into the synth directory. While in the synth
directory, invoke synthesis using the command

syn-dc –f syndc.tcl

You’ll get a bunch of messages that may scroll off the screen. It may be easier to pipe
them to more so you get one screenful at a time:

syn-dc –f syndc.tcl | more

The first time that you run, Design Compiler will analyze the muddlib.db file to
determine which cells are available in the cell library. Subsequent runs in the same
directory will be much faster after this analysis is complete.

Check the report carefully. You should get many warnings in the first 100 lines of
mips.sv because the testbench contains nonsynthesizable commands such as initial
blocks, assertions, and $finish. You’ll also get warnings about driving cell attributes that
you may ignore. You’ll also notice that certain unused bits are optimized out of the
instruction register. Get a sense of what a good report looks like so you can recognize a
bad one.

Inspect the output files named controller_synth_syn.v, .rep, .pow, and
.sdc. The .v file is the structural netlist produced by synthesis. The .rep file is the
synthesis report, including a summary of the critical path timing and the area. The .pow
file has a power report. The .sdc file contains timing constraints.

IV. Controller Place & Route with SOC Encounter

Now, you can import the synthesized design back into the Cadence tools and place &
route it into a layout using SOC Encounter. (SOC stands for System-On-Chip.)

Make another directory in IC_CAD called soc for your SOC Encounter runs. Then
make a subdirectory within soc (e.g. lab3_xx) for this particular run. Change into this
new run directory.

You’ll need copies of your structural netlist and timing constraints files from synthesis.
The best way to do this is to create a symbolic link so that if you change your synthesis
results, the new netlist is automatically visible:

 5

ln –s ~/IC_CAD/synth/controller_synth_syn.v .
ln –s ~/IC_CAD/synth/controller_synth_syn.sdc .

You’ll also need links to muddlib.lib and muddlib.lef. muddlib.db is the
Synopsys library file containing timing information about the cells used by synthesis.
muddlib.lef is a Library Exchange Format file containing physical information about
the cell sizes and pin locations.

ln –s /courses/e158/10/lab3/muddlib.lib .
ln –s /courses/e158/10/lab3/muddlib.lef .

Invoke SOC Encounter at the command line by typing cad-soc. (Note that Encounter
needs your terminal window and will crash if you try to run it in the background.)
Encounter can also be driven with a GUI or with a script. In this lab, we’ll use the GUI
because there aren’t too many commands to enter and you’ll be able to see what is going
on.

Invoke Design • Import Design. Enter controller_synth_syn.v for your Verilog
netlist and controller_synth as the top-level cell. Enter muddlib.lib as the Common
Timing Library, muddlib.lef as the LEF file, and
controller_synth_syn.sdc as the timing constraint file. Then, click on the
Advanced tab. Click on Power and enter vdd! as the Power Net and gnd! as the Ground
Net.

Watch for errors in the console. You can ignore the max_capacitance attribute warnings
if they appear. Encounter’s internal state is easily corrupted when there are errors. If you
get errors along the way, it is better to start over from scratch by reinvoking cad-soc
rather than attempting to redo the command.

Choose Floorplan • Specify Floorplan. Set margins of 30 (microns) from the core to the
left, right, top, and bottom sides to give room for a power ring later on. You’ll see a
window with some rows for standard cells and some space around the edge. You can
leave 0 spacing between pairs of rows for now. If you were building a more complex
design and had trouble with insufficient space for routing, you might wish to increase the
row spacing under the Advanced tab.

Use Design • Save Design As • SoCE… and save the design as
controller_synth_floorplan.enc. Encounter doesn’t allow Undo, so if you
goof a later step, you’ll be able to revert to this step. In general, save often with different
file names corresponding to the steps you are at so that you can revert to the last good
place. If you need to reload a saved design, choose Design • Restore Design • SoCE….

Invoke Power • Power Planning • Add Rings… to add the power rings around the cells.
Set the width of the top, bottom, left, and right rings to 9.9 (microns) and the spacing to
1.8 to provide fat wires that can carry plenty of current to the design. Click Center in

 6

channel at the Offset option to center the rings in the margin around the rows of cells.
You’ll see the power rings appear in the Encounter window.

Invoke Route • Special Route… to route power and ground to each row, and press OK.
Notice that Encounter automatically flips cells between rows and overlaps the power and
ground wires to save space. You may wish to save again now.

Invoke Place • Standard Cells…. Turn off all optimization because you don’t want
Encounter to modify your design (which would cause LVS errors later). Click OK to
place the cells in the design. It will appear that nothing happened. On the right end of
the second row of the toolbar, click on the Physical View icon that looks like a transistor.
This will bring you to a new view in which you can see the gates placed in the rows.
Check the console window and look for errors. Ignore warnings about the scan chain
because you don’t have one. Encounter has a degree of randomness in cell placement
and occasionally fails to place the cells. If you have an error, restore the last saved
version and try again. If all is good, save again.

Invoke Route • Nanoroute • Route… and click OK to route the design. Check the
console to verify that the number of fails is 0 and the number of DRC violations is 0.
Again, if it fails, restore and try again. Notice how the cells are routed together and
connect to pins scattered randomly around the periphery.

Invoke Place • Physical Cells • Add Filler… to add filler cells so there is a continuous n-
well even where there are no logic gates. Click select, then choose fill_1_wide and click
Add. You’ll see the gaps (mostly) filled up.

Invoke Verify • Verify Geometry… to do a basic design rule check. Make sure there are
no violations.

Invoke Verify • Verify Connectivity… to ensure the design is really connected in the way
that the structural netlist specified. Make sure there are no violations.

You are now done with place & route. Save once more. Then choose Design • Save •
DEF to save the output in Design Exchange Format that the Virtuoso Layout Editor will
be able to read back in. Change to DEF version 5.5 and click OK. Close Encounter.

V. Import the Synthesized and Placed Controller

The next step is to import the schematic and layout for the controller back into the
Cadence tools.

In the icfb window, choose File • Import • Verilog. Set the Target Library Name to
lab3_xx. Add mudlib10 to Reference Libraries, along with basic. Set the Verilog
Files to Import to ~/IC_CAD/synth/controller_synth_syn.v. You’ll see
warnings about Verilog definitions for modules not being found. These are ok because
the tool uses muddlib10 cells. Open the controller_synth schematic. You should be

 7

able to identify the eight latches and a rat’s nest of gates that make you thankful the FSM
was synthesized rather than designed by hand.

In the icfb window, choose File • Import • DEF. Enter your library (e.g. lab3_xx),
controller_synth for the cell, and layout for the view. Click Use and enter muddlib10
as the reference library to indicate where the standard cells are taken from. Enter
~/IC_CAD/soc/lab3_xx/controller_synth.def for the DEF file. In the
icfb window, you should have warnings about failing to open the techfile.cds or the
controller_synth layout and viagen layouts and finding the master core. Watch for
other errors.

In the Library Manager, open the controller_synth layout that you just imported. The
design will initially open in “Preview” mode without the usual set of menus. Choose
Tools • Layout to return to your familiar layout model.

All of the cells are imported as “abstract” views with just port information but no real
layout. You’ll need to use find & replace to change these to “layout” views. Choose Edit
• Search… Click Add Criteria. Change the criteria to view name. Set it equal to
“abstract” Click Apply, and all the abstracts will be selected. At the bottom of the
window, choose Replace -> view name -> and enter “layout” in the box. Click Replace
All, and close the search box. Zoom in and inspect the layout that was just produced. Be
sure to save the file.

Run DRC and LVS. There should be no errors.

V. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for the future.
2. A printout of the aludec schematics and layout.
3. A printout of the controller_synth schematics and layout.
4. What are the DRC and LVS status of aludec and controller_synth?

