| | | | | | | | | | | | | | [|
4)

Introduction to CMOS VLS| Design (E158)

SleH

Lab 5: Microprocessor Assembly

N\ J
[I [I [I [I [I [I [I [I

In this final 1ab, you will assemble and simulate your entire MIPS microprocessor! Y ou
will first put together the top-level schematic and simulate that it executes MIPS
instructions properly. You will then assemble the layout and check that it is clean and
matches the schematics. Finaly, you will generate a pad frame to connect your processor
to the external world and verify that your system works in the pad frame.

1. Top-Level Schematic Simulation

Copy your lab4 xx library to lab5_xx for this lab. Look at the top-level mips cell that
includes your datapath, alucontrol, and controller icons. The system has the following
exported inputs and outputs:

Inputs Outputs

phl adr[7:0]

ph2 writedata[7:0]
reset memread
memdata[7:0] memwrite

Table 1: MIPS Processor Inputs & Outputs
Notice that the internal wires and icons are also named to simplify debugging.

To demonstrate basic functionality of your microprocessor, you will simulate the
processor running a very simple program:

addi $1, $0, 43 # Register 1 <- 43 instr: 20010043
addi $2, $0, 1A # Register 2 <- 1A instr: 2002001A
or $3, $1, $2 # Register 3 <- 5B instr: 00221825
sb $3, 38($2) # Men[{52] <- 5B i nstr: 60430038

Recall that you have developed a multi-cycle processor, so each instruction will require
several steps. The table attached at the end of the lab lists the inputs and expected
outputs on each cycle. The steps for the first instruction have been completed for you.
Please fill out the remainder of the table.

A mips.cmd file has been provided for you with the commands to simulate the first
instruction. Add more commands to check the other instructions and verify that the final
output driven on the writedata linesis 5B. If they do not, track down the problem; it is

likely an error in your addi code or your FSM synthesis. You can use the Tools ?
Simulation ? Down Hierarchy command to descend into various cells and check that the
inputs and outputs match expectation. This is easiest if you give the cells names in your
schematics.

*** The simulator seems to hang Electric fairly regularly, so save often. If you can
reproduce the way to cause the hang, please report it.

*** Note that thereisabug in thisyear’slab. On each instruction fetch step, the address
is incremented by 4 (one word) rather than 1 (one byte). You may ignore checking the
address during instruction fetch to avoid fixing this bug.

2. Top-Level Layout

Create anew layout in the lab5_xx library named mips. In thistop-level cell, place your
datapath, alucontrol, and controller so that they will be easy to connect. Wire together
the modules. Don't forget to connect power and ground with fat wires and arrays of vias
to handle the higher levels of current that may flow! You will avoid creating a rats nest
of wiring if you systematically reserve metal2 for vertical lines and metal1 for horizontal
lines. Y ou may wish to consider placing alarge number of long horizontal wires between
the datapath and the controller/alucontrol, then dropping vertica lines in a systematic
fashion to connect the blocks together.

Export al the inputs and outputs. Label the internal signals. Be sure all your labels and
exports agree with the schematic.

Verify that your layout passes DRC (except the controller), ERC, and network compares
with the schematic. Fix any problems that might arise. As usual, ssmulating may catch
problems that are difficult to isolate with NCC.

3. Pad Frame Assembly

Thetiny transistors on a chip must eventually be attached to the external world with a pad
frame. A pad frame consists of metal pads about 100 microns square; these pads are
large enough to be attached to the package during manufacturing with thin gold bonding
wires. Each pad also contains large transistors to drive the relatively enormous
capacitances of the external environment.

Electric provides a handy pad frame generator that automatically assembles a pad frame
for you from alibrary. To use the pad frame generator, you need your library, a pad
library, and a pad arrangement file. The pad library is named muddpads11l ami05.€lib.
Two pad arrangement files, mips_sch.arr and mips_lay.arr are aso in the class directory.
Look at one of the pad arrangement files. It definesthe library in which the pad frameis
stored, the name of the cell to generate, and the name of your top-level design. It then
contains alist of each pad for the system.

Use the Tools » Generation ¢ Pad Frame command and choose the mips_sch.arr file. This
will create a new facet called padframe{ sch} with generic unrouted arcs connecting the
pads to the mips core. Inspect the padframe to be sure it looks reasonable.

Opening the muddpadsll amiO5 library will leave you with two libraries open. Note
that the Edit Facet dialog has a drop-down list of open libraries to help you navigate
among the libraries. Y ou may aso find the File « Change Current Library command to be
useful to switch between default libraries.

Now you must connect power and ground for the pads together. Each pad hasaVDD
and a GND export on both edges that must be connected to the adjacent pad. To do this,
we can take advantage of the auto stitching capability to save having to make every
connection by hand. Select everything with the Select All command. Then choose Tools
* Routing « Autostitch Highlighted Now to automatically connect all the overlapping
VDD and GND exportsin the pads.

Repeat the process for the layout using mips_lay.arr. Autostitch power and ground again.
In areal design you would need to delete the generic unrouted arcs in the layout and
replace them with real metal lines, but in thislab you may skip that step.

Do athorough final check on the top-level layout using the following steps and fix any
errors (except DRC errorsin the controller):

1. Toolse DRC « DRC Options: Clear valid DRC dates
Check that alternate contact rules are selected and 3 layer submicron rules are
used.
Tools* DRC « Hierarchical Check
Tools Network ¢ Network Options:
Clear valid NCC Dates
Recursive Through Hierarchy
Select Ignore Power and Ground and Check Export Names
Do NCC Now
4. Toolse Electrical Rules+ Analyze Wells
5. Simulate your design from the master command file. This command file would also
be used to test your chip after it is manufactured.

W

4. Tapeout

The final step in designing a chip is creating a file containing the geometry needed by the
vendor to manufacture masks. Once upon atime these files were written to magnetic
tape, so the processis still known as tapeout. The two popular output formats are CIF
and GDS; we will use CIF (the Caltech Interchange Format) because it is a human-
readable text file and thus easier to inspect for problems than the binary GDS format.

TowriteaCIFfile:

1. File«10 Optionse CIF Options:
Check Output Instantiates Top Level
Select Show Resolution Errors
Output resolution 0.5

2. Files Export * CIF

Look at the CIF filein atext editor. Y ou should be able to identify the various cells.
Each cell contains boxes (rectangles) for each layer. For example, the CMF layer isfirst-
level metal and the CWN is n-well.

Electric may issue warnings about obscured facet exports; these may be ignored.
However, if you receive any resolution errors, try to fix them. These occur if the
elements of the design are not all on a 0.5 lambda grid and usually indicates sloppy
layout practices such as not using facet centers or not drawing on grid.

Electric will report aMOSIS Cyclical Redundancy Check (CRC) code to ensure your
CIF transmits correctly. Record the two humbers indicating checksum and count,
respectively.

5. Summary

If you have successfully completed the lab, congratulations! You have designed,
assembled, and tested your own microprocessor! You now are familiar with the maor
aspects of custom CMOS VLSI design:

Leaf cell design

Datapath design and assembly

Hardware specification with Verilog

Standard cell synthesis and place & route

Top-level system assembly

Pad frame generation and routing

Switch-level ssimulation and logic debug

Design Rule Checking

Electrical Rule Checking

Network compare and debug of mismatched networks

You will put these skillsto use as you proceed with your final project!
6. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for the future.

2. What was unclear in this lab writeup? How would you change it to run more
smoothly next time?

3. A printout of your mips schematic.

4. Your table with inputs and expected outputs when simulating the processor.

5. Simulation waveforms demonstrating correct operation of the mips processor.

6. A printout of your mips layout.

7. What is the verification status of your mips layout? Does it pass DRC? ERC?
NCC?

8. A color printout of your chip layout.

9. What is the verification status of your mips layout? Does it ssimulate? Pass DRC?
ERC? NCC?

Extra Credit

As you are probably aware by now, Electric has plenty of bugs and idiosyncrasies. A
major goal of this class is to improve the stability and ease-of-use of Electric. Please
email your bug reports directly to Prof. Harris in the format described in Lab Manual 1.

|

MemData

Adr

WriteData

MemRead

MemWrite

ALUSIcA

ALUSIcB

ALUControl

X

X

20

00

01

010

01

01

010

00

01

010

43

01

010

11

010

x

10

010

X

X

20

EXXXOOO
WIN |-

XX [X[XXX |X|X]|X

S ===l R RS

OO0 |0O|0 0|0 |0|0|X

O|X [k |O|O0|O|0|0O|X

01

010

‘DOO\IOUUWBOONI—‘O\Q
Q
0]

OO0 |O0O|0|O0O|I0|0O|I0|0|I0|0O|0|0|0|0O|0|0|0|0|0|0|0|0|o0|o0|o0(O|F

