| | | | | | | | | | | | | | [|
4)

Introduction to CMOS VLS| Design (E158)

SleH

Lab 3: Datapath and Zipper Assembly

N\ J
[I [I [I [I [I [I [I [I

An n-bit datapath consists of n identical horizontal bitslices’. Data signals travel
horizontally along the bitslice. Control signals run verticaly to al n bits of the datapath.
Often, a small amount of logic is required to generate the control signals. For example, a
multiplexer in the datapath requires true and complementary select signals. Rather than
provide alocal inverter in each of the n bitdlices, the inverter could be placed on top of
the datapath in a zipper to drive the complementary signal to al the bitslices.

Most of the processor datapath has been provided for you, but the Arithmetic/Logic Unit
(ALU) is missing from each bitsice. You will first draw an ALU using your full adder,
AND, and OR gates. Then you will add your ALU to the bitslice and wire it in to the
system. You will then place necessary inverters in the zipper and connect them to the
datapath.

Although the total amount of layout to do in this lab is modest, you will find Electric has
alearning curve before you become proficient editing large designs like the MIPS bitdlice
or datapath.

1. ALU

Copy your lab2_xx.elib to lab3_xx.elib and open the new library. Look at the alu{sch} 1-
bit Arithmetic / Logic Unit (ALU) schematic provided. It defines a 1-bit ALU like that of
Figure 4.17 of Computer Organization and Design, sans overflow detection. Study the
schematic until you understand its operation.

Create the alu{lay} layout. Place the various gates in a horizontal line and wire them
together to match the schematic. Y ou may wish to look at the dpbitslice{lay} to see an
example of wiring an assortment of gates together. Use horizontal metal2 wires running
on top of the cells to make the connections and be sure to leave at least two metal 2 tracks
free for over-the-cell routing when you assemble the entire datapath, just as you left
tracks free over your full adder. Export a and b on the left, result, set, and less on the
right, cin on the bottom, and cout on the top. Also export the mux control signals

Here are afew hints while drawing the layout:

! In general, the bits of the datapath might vary slightly. For example, a carry lookahead adder requires
different logic in different bits. And of course, the horizontal/vertical distinction is arbitrary and a datapath
could be rotated.

Use Facet - Expand Facet Instances to view the contents of a cell.

Unexpand the facet instances to make it easier to see exports on facets

Use Windows - Alignment Options to set a 0.5 lambda grid when necessary, but
strive to keep everything on a1 lambda grid..

Ctrl-click to cycle through various different layers when you have lines drawn on top
of facets. You may find reviewing Chapter 1 Section 8 and Chapter 2 Section 1 of
the online Electric manual at htt p: / / ww. st ati cfreesof t. conf manual / helpful to
pick up the finer nuances of selecting from a stack of many different objects.

Place large pure-layer nodes for the N and P wells to avoid difficulties with gaps
between wells

Use Info - List Exports on Network to get the name of the export on a selected
network.

Use metal 1 or metal 2 pins from the palette to give yourself a destination to connect to
when Electric gets confused about snapping a connection to an undesired destination.
Select two nodes, then right click on a blank space to connect the nodes.

Use the red boxes in the palette window to choose which layer will be drawn in the
event of ambiguity. For example, when connecting two vias, select either the blue or
purple linesto indicate metal 1 or metal2 for the connection.

If you have problems getting the layout to pass NCC, you may wish to smulate it to
uncover the bugs. Also look at the results of preanalysis.

Expect to spend some time playing around with Electric to come to understand how it
makes connections when there are many layers of stuff.

Simulate your ALU layout before you run NCC to catch any obvious errors. Check that
al five operations work correctly: ADD, SUB, AND, OR, and SLT. Verify it with DRC,
ERC, and NCC. Periodically check and repair your library to catch other problems.

2. Bitdlice Assembly

Look at the datapath bitslice schematic dpbitslice{sch}. It iscomplete. Zoom in so that
you can read the labels on each icon. Match the hardware in the schematic to the MIPS
datapath in Figure 1 of Lab 1.

The processor has no on-chip memory; instead, it provides an interface to external
SRAM. The interface consists of 3 8-bit busses. Two are outputs containing the address
and data to write to the memory. The third is an input carrying the data read from the
external memory.

On the left side of the datapath is the address multiplexer (adrmux) selecting the address
for the external memory. The 32-bit instruction is stored in four 8-bit instruction
registers, so four flip-flops named ir3...ir0 are required in each bitsice. The memory
dataregister is named mdr. Next comes the interface to the register file. This consists of
the write data multiplexer wdmux, the 8-word register file itself (drawn below the
datapath to keep the entire schematic on one page), and the A and B registers.
Interdigitated with the A and B registers are the Source 1 and Source 2 multiplexers

choosing the operands for the ALU and the ALUOUL register. The program counter logic
consists of the multiplexer to choose the next value of the program counter, an AND gate
to reset the program counter to O on startup, and the program counter flop itself. At the
very right end of the bitdiceisthe ALU.

The dpbitslice{lay} is complete except for the ALU that you designed in the previous
part. Look at the layout and relate the cells in the layout to the cells in the schematic.
Double-click on each cell to view its name. At the very left end, you again find the
adrmux. Double-click on the other cells and verify that their names match the
schematic. VDD and GND run aong the top and bottom of the datapath, respectively.
Notice how metal2 bitlines on an 8| pitch are used to connect the cells together. For
example, adr, memdata, and writedata exit the bitslice to the left. These signals will
ultimately connect to the external memory. Notice how memdata runs over the top of
the adrmux and to the inputs of the four instruction registers.

Two minor corrections are required to the supplied dpbitslice. One is that DRC is too
conservative; it assumes al wells are at different potentials even though in our design we
have asingle GND and single VDD. Thisleadsto some faulty DRC errors in the register
file. To avoid these problems, use the Tools - DRC - DRC Rules dialog. Select the P-
Well layer in both the top and bottom boxes. Change the Normal - when not connected
rule (MOSIS rule 1.2) to 18 to 6 because it never should apply. Do the same for the N-
WEell rule. For the second correction, look at the dualsram{lay} cell. It hasaDRC error
caused by P-select. Create a pure-layer node of P-select of dimensions 8 x 64 and cover
the regions causing the error. Do the same in the dualsrambitO{lay} cell.

Now that you are familiar with the layout, add your ALU layout to the right end of the
dpbitslice layout. Connect VDD and GND to the adjacent flip-flop. Note that these
ports are on the left end of the flip-flop. As shown in the schematic, make three
connections to the rest of the datapath: inputs A and B come from srcl and src2, and the
output result goes to the aluresult signal. In the datapath layout style, these connections
should occur using mostly horizontal metal2 lines. The lines must run over the top of the
cells, not above VDD or below GND.

Add exports to the signals emerging from the top and bottom of the ALU. These include
inputs alubinv, alubinvb, aluop[0], aluopb[0], aluop[1], aluopb[1], less, and cin, and
outputs set and cout.

When your changes are complete, use DRC, ERC, and NCC to verify your layout.
3. Zipper Modifications

Recall that the ALU requires true and complementary versions of alubinv, aluop[0], and
aluop[1]. The controller that you will design in Lab 4 only produces the true version of
each signal. Therefore, we must locally invert the signal. Moreover, each signal must
drive eight bits of the datapath. For good performance, we would like to drive these bits
with something larger than a minimum-sized inverter. Thus, in the zipper we provide

buf4x drivers for each control signal. These accept the inputs from the controller and use
inverters with 4 times the usual transistor widths to drive true and complementary control
signals across the datapath.

Look at the datapath{lay}. You will see eight rows of the dpbitslice that you have just
completed. Above the bit dicesis the zipper that generates the control signals for all the
bits of the datapath. Look at the zipper{lay}. The center portion contains the decoder for
the register file. Theright portion contains a bunch of buf4x cells to drive control signals
across the datapath. It is missing three buf4x drivers for alubinv, aluop[0], and
aluop[1], as shown in the zipper schematics. Add these three buffers. Align the buffers
above the datapath so the outputs of the zipper are properly located to drive the
multiplexer control lines that you exported from the dpbitslice. Be sure the port names
match the zipper schematics.

Run DRC, ERC, and NCC to verify the zipper. There is a minor DRC issue regarding
rule 6.7b that is flagged in the decoder layout. Ignore this error if it shows up for you.
ERC will aso produce some warnings because there are two power and ground pairs that
are not connected within the zipper. Ignore these; they will go away when the power and
ground exports are connected together in the datapath.

4. Datapath Assembly and Verification

Your final task isto assemble and verify the datapath. Vertical metal 1 control linestie the
bitsices together. Most are already complete, but you must add the ones for the ALU.

First add the six lines for alubinv, aluop[0], aluop[1], and their complements. These
lines should connect the zipper outputs to each of the eight bitslices. Rather than clicking
seven times to connect the eight bitslices, you can save effort by connecting a pair of
bitslices then using the Tools - Routing - Mimic Stitch Now to automatically connect the
other identical pairs. Check the report that six wires were added; occasionally you might
Mimic Stitch more or fewer connections than you might have intended if they are too
similar or different. Export these signals as alucontrol[2], [0], and [1], respectively.

Next, connect the carry chain. As shown in datapath{sch}, the carry into the least
significant bit should be tied to binv so it is 1 for subtractions and O for adds. This bit is
the bottom bitslice in the datapath. Run a metal 2 jumper below the datapath to make the
connection. For each of the remaining bits, cin should be connected to cout of the bit
below. Thisiseasiest if the carry in and carry out signals are located in the same vertical
column, as you were instructed to do in Lab 2. Mimic stitching may be helpful here too.

Connect the Less signal used for the set on less than (sl t) instruction. Recall that s t

producesal if input A islessthan input B and a0 otherwise. This can be accomplished
by computing A-B. If the result is negative, indicated by a 1 in the most significant bit of
the subtraction, set the output to 1. Otherwise, set it to 0. In other words, the least
significant bit of the output should equal the most significant bit of the subtraction result.
All other bits should be 0. As shown in the datapath schematic and in Figure 4.18 of the

text, the least significant Less input connects to the set output of the most significant bit.
Remember that the least significant bit is the bottom row of the datapath and the most
significant bit isthe top row. All other Less inputs should be tied to ground and al other
set outputs may be left floating.

Finally, connect the zerodetect logic to the right edge of the datapath. The block
determinesif all of the bits of the aluresult are zero. Look at the schematic to understand
how the logic functions and should be connected. Wire the outputs of each bitdlice to the
corresponding inputs of the zerodetect unit. The zero output should already be exported;
it will feed back to the controller you design in the next lab. Be sure to attach all the
power and ground ports.

Run DRC, ERC, and NCC to verify the datapath. For a design this large, tracking down
errors is very difficult. Therefore, be sure you know what you are doing and are
confident that you made the correct connections rather than relying on the tools for
feedback to catch problems.

5.WhattoTurn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for the future.

2. What was unclear in this lab writeup? How would you change it to run more
smoothly next time?

3. Turninacopy of the ALU layout.

4. Print simulation waveforms for the ALU demonstrating correct operation of ADD,
SUB, AND, OR, and SLT operations. Annotate your waveforms to explain which
instruction is being tested and how you know the result is correct.

5. For each of the following facets, did your design pass DRC? ERC? NCC?

alu
dpbitslice
Zipper
datapath

Extra Credit
As you are probably aware by now, Electric has plenty of bugs and idiosyncrasies. A

major goal of this class is to improve the stability and ease-of-use of Electric. Please
email your bug reports directly to Prof. Harrisin the format described in Lab Manual 1.

