
Mini MIPS Microprocessor

Daniel Lee
Sean Kao

VLSI Spring 2001

Functional Overview

 The Mini MIPS Microprocessor is an 8-bit microprocessor designed to support a
limited subset of the MIPS instruction set. This design fits in the area constrained to a
“TinyChip” MOSIS using a 1.5 µm process. In the CAD tool, the microprocessor’s total
area fits in a less than 2200 x 2200 λ square area. The microprocessor uses a two
phase clocking scheme so there are two independent clock inputs, clock phi 1 and clock
phi 2. Memory is stored off the chip, so there is several interface inputs dedicated
toward interacting with memory. There are three 8-bit buses to memory, one is input
for MemData, data from memory to the microprocessor datapath, another is out for
Address to specify the address in memory that the datapath needs to read or write
from, and the third is Write Data, the data that will be written to memory when
required. Input Reset is used to reset the controller FSM to state 0 which is the initial
state that begins every instruction, also it sets the memory Address to an initial starting
position, 11111111. Finally, several pads are dedicated to power and ground. A chart of
the inputs and outputs:

Inputs Outputs
ph1 clock phi 1 adr[7:0] Specifies the memory address from
 which to read data or to write data to.
ph2 clock phi 2 writedata[7:0] Sends eight bits to the memory at
 a specified address.
reset Resets the controller to state 0, memread Signal to the memory to read
 and sets the Memory Address data at the specified address.
 to the starting position.
memdata[7:0] Recieves 8 bits from the memwrite Signal to the memory to write data at
 memory at a specified address. the specified address.
testin Check to see that the chips works testout Output of the test signal, should oscillate
 from the manufacturer. when testin is high.

The microprocessor executes instructions which it fetches at an address specified by
adr[7:0]. The instructions coming from the memory is interpreted by the controller,
which is implemented as a finite state machine. This controller supports the following
MIPS instructions with the standard MIPS encoding modified for an 8-bit datapth:

Instruction Operation ALUOp Funct Field ALU control Input
load word 00 XXXXXX 010
store word 00 XXXXXX 010
branch equal 01 XXXXXX 110
add 10 100000 010
subtract 10 100010 110
AND 10 100100 000
OR 10 100101 001
Set on less than 10 101010 111

Chip Pinout

 vdd (input) clock (input)

 gnd(input)

 output

 input

gnd

memdata[0] memdata[1]

memdata[2]

memdata[3]

memdata[4]

memdata[5] memdata[6] memdata[7] reset

ph1

ph2

testin

testout

vdd

writedata[0]

writedata[1] writedata[2]

writedata[3]

writedata[4]

writedata[5]

writedata[6] writedata[7]

adr[0]

adr[1]

adr[2]

adr[3]

adr[4]

adr[5]

adr[6] adr[7] memwrite memread

Chip Floorplan

D a ta p a th

9
5
0
 λ

1750λ

C o ntro lle r

5
5
0
 λ

500 λ

G e ne ra l
Re g iste rs9

2
0
 λ

590 λ

A LU

A LU O p

550 λ

7
7
0
 λ

A LU C o ntro lle r

120 λ

9
5
 λ

A LUC o ntro l

Rd 1 , Rd 2, W d

Sr
c
1
,
Sr
c
2
,
A
LU

R
e
su

lt

C
o
n
tro

l S
ig
n
a
ls

O
p
 c

o
d
e
s

In
st
r[]
 t
o
 R
e
g
is
te

rs

A
d
d
re
ss
,
W
rit
e
D
a
ta

,
M
e
m

D
a
ta

In
st
r[]
 t
o
 A

LU
 C

o
n
tro

lle
r

O sc illa to r

1
2
0
 λ

150 λ

This is a block diagram of the major modules of the Mini MIPS, zerodetect is not
included because it is small and fairly trivial. The major buses run from the datapath to
the general registers, reading A or B from the registers and writing to the registers, and
from the datapath to the 8-bit ALU that includes source 1, source 2 from two control
muxes in the datapath and the ALU’s result back to the datapath. Most control signals
run from the main controller to the datapath, these wires spread throughout the top of
the datapath to the zipper. Also, there are two register control signals from the
controller to the general registers. The datapaht sends op codes to the controller for it
to determine what the next state should be, these are the most significant six

instruction bits. Other instruction bits are sent to the general registers to control which
register should be read from or written to. Finally the main controller sends ALU op
codes to the ALU controller which in turn takes those op codes and some instruction
bits to send the ALU control signals to the ALU.

Area and Design Time Data

Cell Type Design Time (hrs) Leaf Cell Height (λ) Length(λ) Area(λ2) Notes
Mux2 sch 1 yes 80 35 2800 Modified to make modest
(modified) lay 1 space savings.
Flop sch 2 yes 80 96 7680 Saves nearly 40 lambda in
(modified) lay 8 length from the original.
Register sch 20 yes 48 70 3260 Implemented as a slice since
 lay 7 it is mirrored.
Decoder sch 5 yes 450 90 40500 Has extremely long poly traces
 lay 7 which may be a problem.
PLA sch 40 yes 550 500 275000
(Controller) lay 50
Datapath sch 10 no 950 1750 1662500 Uses modified Mux2s and
(modified) lay 30 Flops.
Register sch 3 no 390 650 253500 Mirrored to save space.
Array lay 10
General sch 2 no 920 590 542800 Connects Register Array to
Registers lay 20 Decoders appropriately.
8 bit ALU sch 5 no 770 530 408100
 lay 1
ALU Control sch 0 no 85 150 12750
 lay 0
Inverter sch 0 yes 80 15 1200
 lay 0
Inverter 4x sch 0 yes 80 20 1600
 lay 0
Buffer 4x sch 1 no 80 50 4000 There are several modified
 lay 1 versions of this facet
Nand 2 sch 1 yes 80 20 1600
 lay 1
Nor 2 sch 0 yes 80 20 1600
 lay 0
weak pmos sch 1 yes 590 20 11800 Responsible for driving psuedo
drivers lay 2 nmos circuits.
nand 3 sch 1 yes 55 30 1650 Used in the decoders
 lay 1
Zero Detect sch 0 yes 950 50 770 Modifed since some of the
 lay 1 design rules changed.
Oscillator sch 1 yes 120 120 14400
 lay 1

Simulation results

Controller
 The controller for the processor follows the same FSM from Lab 4.

The controller utilizes a two phase clock, which is what cycles through each state in the
FSM. The inputted Op codes will branch the machine to its respective state.

Instruction Op Code

Load Bite 100011

Save Bite 101011

R-type 000000

Branch if Equal 000100

Jump 000010

Each Op code in the controller outputs the correct signals at the correct states.

8 bit ALU

The ALU took a lot of time to simulate correctly, but finally the simulation worked. The
ALU can AND, OR, and ADD two inputted signals. The op and binv inputs determine
what function the ALU will perform. The simulation shows that the ALU AND’s, OR’s,
and ADD’s properly.

ALU Control
 The ALU Control simulated accurately. The expected outputs was provided
earlier in the report. The funct inputs are the four least significant bits in the instruction
register. The aluop inputs come from the controller and the alucontrol signals go to the
eight-bit ALU.

Datapath

The first action is the activation of reset. Reset sets the adr to 11111111, but
this only occurs if pcchange is activated after a cycle of ph2 and ph1. This is outlined in
the red box. Irwrite enables the instruction registers to take on data from memdata.
The highest bit in irwrite corresponds to the highest 8 register bits. In the simulation
irwrite is activated from 1000 to 0001 in order, this indicated by the blue box.

 Wd, write data to the registers is activated here by high MemtoReg, wd takes on
the value from memory data register, which receives its input from memdata. The
output wd is shown in the green box.

 Registers A and B can take their values from inputs rd1 and rd2. The outputs a
and b represent the first and second argument to the ALU. These outputs are selected
by alusrca and alusrcb. Here both muxes are selecting the variable register values and
these are outputted to the ALU, outlined in the red box. The second argument, b, can
also be 4 if selected by alusrcb as 01. The first argument can also output the value of
the PC register, which had acquired a value of 00000000 from ALU result from the PC
mux. This is outlined in the blue box.

 The second argument can output a value directly from the least significant eight
instruction bits. This is shown in the green box, where the instruction registers take the
value of 00001111 from memdata. When alusrcb selects the proper control, then the
instruction bits are outputted.

General Registers

 The General Registers are to write when regwrite and ph2in is high. Initially, no
data values are loaded in the registers. By setting regdst high, the write address is
selected from instr[13-11]. This is shown writing 00000000 to register 0. The reads are
inversed from the written byte, this negation is acceptable because the data sent to the
registers is already negated from the datapath. Nothing can be written unless both
regwrite and ph2in are high. When regdst is low, the writing address is decoded from
instr[18-16] which is written to register 1.

Verification results

The top level MIPS microprocessor has passed all DRC, ERC, and all NCC checks in the
Electric CAD tool.

Test plan
 The design of the chip includes a ring oscillator, which will test to see if the chip
is functional. When the input is turned high, then the output will oscillate high and low.
If the input is turned low, there will be no oscillation. The oscillator will be the first test
for the chip.
 The tester will first set the reset high and go through a clock cycle to set the
controller to the first state and to set adr to 11111111.

Name Format 6 bits 3 bits 3 bits 3 bits 5 bits 6 bits Example
add R 0 2 3 1 0 32 add $1, $2, $3

 000000 010 011 001 00000 100000
sub R 0 2 3 1 0 34 sub $1, $2, $3

 000000 010 011 001 00000 100010
and R 0 2 3 1 0 36 and $1, $2, $3

 000000 010 011 001 00000 100100
or R 0 2 3 1 0 37 or $1, $2, $3
 000000 010 011 001 00000 100101

lb I 35 2 1 100 lb $1, 100($2)
 100011 010 001 00000001100100

sb I 43 2 1 100 sb $1, 100($2)
 101011 010 001 00000001100100

beq I 4 1 2 25 beq $1, $2, 100
 000100 001 010
j J 2 2500 j 10000
 000010

 Next, each instruction that the processor supports must be tested. Load bite and
save bite will be the first instructions to be tested. In order to get the whole 32 bits in,
the processor will need to write in the 8 bit instruction registers four times, starting with
the most significant bit. The two phase clock will cycle through the controller. If it is
correct, load bite should output the correct adr and make memread high. Save bite will
provide the desired writedata address along with memwrite, telling the memory to write
the data. It is important to test these instructions first since they will be used later to
test other instructions.
 The tester will then check the R-type instructions. The proper instruction
register will be inputted. To check if the R-type instruction executed properly, the
tester will need to perform a save bite instruction and receive the data from the
registers the execution was stored into.
 The branch and jump instructions will simply output the corresponding addresses
that the instruction wants the processor to branch or jump to.
 Finally, the tester will again activate reset and see if the outputs correspond
correctly.
 Note: the bits allocated for the registers in the table above is only 3 bits because
the registers in this design only go up to 8, so 3 bits is sufficient. The table was
extracted from the back cover of Patterson and Hennessey’s book.

Complete schematics

 Controller

 The controller was implemented as a PLA (Programmable Logic Array). The PLA
used pseudo NMOS technology, placing only weak PMOS transistors and carrying out
most of the design with NMOS transistors. The left half of the PLA is basically the
ANDed portion of a PLA. Instead of using AND gates, DeMorgan’s law was used and
NOR gates were used with inverted inputs. The outputs of the ANDed portion are
taken to the right half of the PLA, which is the ORed portion. This side is actually
NORed and the output is inverted to give the correct value. The state outputs are fed
back to the input. The output created is first ANDed with the reset inverted and each
of those values are put into the flip flop. The controller uses a two phase clock. The
output of the flip flops serve as the state inputs in the ANDed portion of the controller.
Below is a table of the inputs and outputs.

Inputs Outputs
PCWrite Op[5] – Instr[31]

PCWriteCond
PCSource1 Op[4] – Instr[30]
PCSource0

RegDst Op[3] – Instr[29]
RegWrite
IRWrite3 Op[2] – Instr[28]
IRWrite2
IRWrite1 Op[1] – Instr[27]
IRWrite0
Memread Op[0] – Instr[26]
Memwrite
MemtoReg reset
ALUOp1
ALUOp0 ph1
ALUSrcA
ALUSrcB1
ALUSrcB0

ph2

IorD

Flop
 Schematic of the modified
flop shows that it is entirely created
on the transistor level to optimize
spacing during layout. It is
essentially two latches with one
minor design difference. The
original first latch inverter
connection to the second latch’s
pass gate has been changed to a
tri-state. This is done so the
transistors can be put in series to
save space. While the design is
different it is logically the same
since only pmos transistor are to
pass high and only nmos transistor
should pass low.

Mux2
 This is exactly the same
as the Mux2 with two tristates
only it is made with transistor
so the layout can be further
optimized.

Inverter Inverter
4x

Buffer 4x

Nand2
Nor2

Nand3

8 bit ALU
 Schematic of eight ALUs connected with the
lowest cin connected to ground. The set of the
highest bit is connect to the less of the lowest bit
to perform set less than operations. A bug was
found and corrected in the ALU. The latest version
of Electric (6.03 put up as 4/02/01) united all the
set outputs that were not connected to anything.
This caused an error in simulations. All the sets
have been given their own names, this has
corrected the error. The ALUs are taken from the
lab 3 solutions library.

ALU Controller
 The ALU Controller designed in lab 4.
This facet has been taken from the lab 4
solutions. It takes two op codes from the
Controller, aluop[1,0] and several
instructions from the datapath, instr[3-0], to
create control ALU control signals which are
sent to the ALU.

Datapath Bit Slice
 The bit slice processes each bit on the datapath. It is composed of nine flops to
slow data tokens and provide them appropriately, nine mux2s (some of which are
combine for mux4s) to provide control and an and gate for reset capabilities. The flops
are controlled by specific clock inputs which is sent by the zipper to each bit slice. Each
flop is controlled by two clocks ph2 and ph1 and their complements, many of these are
controlled clocks in that they do not send out signals every clock cycle. Inputs and
Outputs to memory are sent to the external world through the pads, this includes the
input Memdata, outputs Writedata and Address. The register slice has been removed
from the original bit slice and I/O is provided to the General Registers. Also, the ALU
has been removed, so several interface bits provide the two arguments, a and b that
are outputs, and the input from the ALU, aluresult. Each instruction register, which is a
flop, provides an output, although not all of these will be connected to other cells.

Zipper
 The zipper receives signals from the Controller, buffers them, and provides true
and complementary true to the datapath. Clocks ph1 and ph2 are inputs and buffered
and sent as outputs to the datapath. Irwrite input signals along with the clocks provide
signals telling when the instruction registers should take data. Some parts, including the
decoders and buffers to the ALU have been removed from the original zipper since
those parts have been removed from the datapath bit slice.

Datapath
 The zipper is on top and takes control signals from the Controller. It then outputs
the appropriate signals to the bit slices. The clock inputs for the flops are located on the
left and the control signals for the muxes are on the right. Proper instruction signals are
tapped out on the right hand side. Memory (external) I/O is on the left, the register I/O
is in the center and ALU I/O is on the right. The instructions are also attached to the
instruction shift inputs of the proper bit slices to allow the datapath to shift the
instruction by two bits. The inputs four are connected to grounds and power to allow
the datapath to directly add four when necessary, this is four program counter
incrementing. A table of datapath inputs and outputs:

Name Type Connection
memdata[7:0] input external Retrieves input data from the external world.
adr[7:0] output external Specifies the address at which to retrieve data.
writedata[7:0] output external Sends data to the external world.
aluresult[7:0] input ALU Gets the result from ALU calculations.
a[7:0] output ALU Sends the first argument to the ALU.
b[7:0] output ALU Sends the second argument to the ALU.
rd1[7:0] input registers Gets data for the a register in the datapath.
rd2[7:0] input registers Gets data for the b register in the datapath.
wd[7:0] output registers Sends data to be written in the general registers.
alusrca input Controller Controls the output a to the ALU.

alusrcb0,1 input Controller Controls the output b to the ALU.
iord input Controller Determines where to select the memory address from.
memtoreg input Controller Determines where to select the wd to registers from.
pcsource0,1 input Controller Controls the input to the PC register.
pcchange input Controller Determines when to change the PC.
reset input external Resets the address to some predetermined location.
ph1 input external Clock 1.
ph2 input external Clock 2.
instr[31:26] output Controller Determines what state path to follow.
instr[23:21] output registers Determines where to read rd1 from.
instr[18:16] output registers Determines where to read rd2 from.
instr[13:11] output registers May determine where which register to write to.
instr[5:0] output ALU Controller Defines which ALU function to perform.

Zerodetect
 Outputs whether or not all ALU
results are zero. This is used for
determining whether the program
counter should change. It is taken from
lab 3 solutions library.

Decoder
 Uses several nand3 gates to determine
which bit should be active based on the three
input bits. This is a three input decoder so it
specify 2 to the 3rd bits or 8 addresses. The
control signals are active high from the
inverters at the end. Buffers to the signal
strengthen the signal and provide true and
complementary true. Note that each nand3 is
implemented as an individual and unique
facet even though they are exactly the same
as all other nand3 gates. This is done because
in layout each facet is sightly different to
optimize space.

Weak pmos Drivers
 These are used to drive
the psuedo nmos parts of the
register array.

Register Slice
 The register slice is a custom designed register
cell. While these are larger and require more transistors
than the six transistor static RAM, this is also easier to
design, simulate, and guarantee correctness. This uses
psuedo nmos technology and weak nmos and pmos
feedback transistor. There is a “sticky latch” where an
inverter is connected to a weak feedback inverter. The
feedback inverter maintains the integrity of a value if
nothing new is being written. However when the pass
gate allows a bit through, then those pass gates must
over power the feedback inverter. The outputs are
connected only by nmos since there will be weak pmos
drivers to put out high if the output nmos is turned off.
Note that it is vital for nmos outputs to overpower the
weak pmos drivers. This cell is implemented as a bit
slice because the layout is mirrored.

Register Array
 Combines all the register slices with the pmos drivers.

General Registers
 The Register array is composed of eight bit slices for a total of eight 8 bit
registers and a series of weak pmos drivers driving each of the bit slices. There are
three decoders, one for read 1, one for read 2, and the third for the write address. The
read 1 takes instr[23:21] as inputs to determine where to read from, read2 takes
instr[18:16]. Write register can be either instr[18:16] or instr[13:11] depending on the
control signal regdst provided by the controller. Also, writing can only be enabled if
regwrite is high, which is connected to the series of nand3 gates. The other input to the

registers is the clock ph2, so the registers can only be written when ph2 is high and
regwrite is high. Buffers are used to provide a stronger signal, true and complementary
true where they are needed. The bottom of the register array provides the I/O for the
datapath where wd[7:0] is input from the datapath to write to the registers and
rda[7:0] and rdb[7:0] are outputs to the datapath for registers A and B respectively.

Oscillator
 The oscillator is used to test whether or not any manufacturing errors were
made while making the chip. When the input testin is low, the output, testout, should
also be low. To make initial tests of the chip, testin can be set high, which should force
testout to oscillate. There is a single nand2 gate with twelve feedback inverters, which
ensure an oscillatory response, and an extra inverter to the output. This makes for a
simple test to begin chip validation.

8-bit MIPS Microprocessor
 Top level schematic which shows the Controller in the upper left corner which
sends control signals to the datapath on the bottom, to the ALU Controller in the upper
right, and to the General Registers in the middle right. Most of the external I/O comes
from the datapath on the bottom left. Other than the control signals, the major bus
lines come from the interface between the datapath and the General Registers and the
datapath with the 8 bit ALU. The zerodetect is seen here connecting to an OR and AND
gate which combine with some Controller signals for controlling when the PC register
should change. Other external I/O are clocks ph1 and ph2, input reset, and outputs
memread and memwrite. The test oscillator is in upper right hand corner.

Complete layout

 Controller

 This is the layout of the controller. The column on the right is the ORed portion
of the PLA, with the outputs tapped out at the bottom and the next states tapped out at
the top. The ANDed portion is immediately to the left of the ORed portion. To reduce
some height, the transistors forming the twelve states was folded over above the
transistors forming the op inputs. The flip flops and AND gates are located at the top of
the layout, feeding the state inputs above the ANDed portion of the PLA. The op inputs
come from the bottom.

Flop
 The modified flop is placed on an 80 λ
pitch with metal 2 running horizontally and metal
1 running vertically. Several transistors are folded
to allow for more compactness. This cell is
optimized for area, and length in the horizontal
direction. Control signals for phi 2 and phi 1 can
be run vertically in metal 1. Input for d on the left
side is meant to come in horizontally, but there is
enough space to run the signal vertically. The
output, q, comes out on the right side and can be
run horizontally. This is one of the basic
components of the datapath. Note that the two
latches which form the flop are not identical so
this is implemented on the transistor level. This
passes DRC, ERC and all NCC checks.

Mux2
 The modified mux 2 is nearly the same as the
original, it is on an 80 λ pitch, with metal 2 running
horizontally and metal 1 running vertically. The
selection control signals are metal 1-2 contacts so the
input can be run in with either metal 1 or 2. This is
implemented on the transistor level to make a slight
savings in space. This passes all checks.

Inverter
Inverter 4x

Buffer 4x

Nand2

Nor2

Nand3
 Modified version of the
standard Nand3. This is put on a
small 55 λ pitch to minimize space
requirements. These are extremely
versatile because of their small size
and lack of a great deal of metal 2.

8 bit ALU
 This is the 8 bit ALU it
performs all the functions of an
ALU, AND, OR, ADD, SUB, Set Less
Than. The pmos transistors are on
the bottom since this whole facet is
inverse of the datapath. This allows
more compact bus use between the
datapath and the ALU. Inputs src1
and src2 are on the right. Output
ALUResult is also on the right this is
the interface with the datapath.
Control signals are received from
the top where they are sent from
the ALU Controller. The ALU is
taken from the lab 3 solutions
library. It passes DRC, ERC and all
NCC checks with the facet.

ALU Controller
 The ALU Controller is also taken
from the lab 3 solutions library. It uses
standard layout of a 60 λ pitch and
horizontal metal 1, vertical metal 2
wiring. It receives inputs on the bottom
from the Controller, the and the
datapath and sends outputs to the ALU
on the bottom, the ALU Control signals.
It passes DRC, ERC, and all NCC checks.

Zipper
 Zipper is also built on an 80 λ pitch. This takes control signals from the Controller
generally on the top, some are distributed. Instructions are sent through the top to the
appropriate parts, the Controller, the ALU Controller and the General Registers. This is
why there are so many gaps in the zipper. Metal 2 runs horizontally and metal 1
vertically. Outputs to the bit slices are passed through the bottom. The gap in the
middle is to permit the I/O from the bit slices to the registers to go through. This will
snap perfectly on top of the bit slices to form the datapath. All the outputs to the bit
slices are perfectly aligned. However, inputs from the Controller are not because the
Controller will send its signals to many different places, it is extremely important to
leave gaps for metal 2 to transport the signals.

Datapath Bit Slice
 Built on a regular 80 λ pitch, metal 2 runs generally horizontally and metal 1
vertically. Data is processed and regulated horizontally, external inputs and outputs to
the outside world, MemData, Address, and WriteData are placed on the left. These will
have to be connected to pads on the chip and they are all located on the right. Control
signals are passed vertically in metal 1 from the zipper to all the slices. There are only
two main leaf cells that compose the bitslice, mux2s and flops. These are highly
optimized versions of the ones in class. There are nine flops, nine mux2s, one nand2,
and two inverters in the path so even small savings in the leaf cells are magnified. The
gap in the middle is left for I/O to the general registers. Instructions are tapped out
from the instruction registers near the left side. These will be outputted to the
Controller, ALU Controller, and General Registers. Outputs src1 and src2 are sent out on
the right and input ALU result is received from the ALU on the right. The zerodetect
facet will be added on the right side of the datapath. Power and Ground will run on the
left side to unite all bit slices and the zipper. This passes all checks.

Datapath
 This is built from eight bit slices and one zipper on top of the bit slices which
takes signals from the Controller, distributes, provides true and complementary true,
and buffers signals to the bit slices. Control signals are sent vertically in metal 1 to the
bit slices. Data is processed horizontally, generally left to right. The I/O for the
Controller is distributed throughout the top of the datapath. I/O for the external world,
the MemData input bus, Address and WriteData output busses. General Register I/O is
sent up through the center of the datapath, input busses Read data 1, Read data 2,
which receive information from the registers and output bus Write data which sends
data to be stored in the registers. I/O for the ALU, sending two arguments and
receiving the result is on the right side of the datapath. The instruction registers sends
their data through the upper left of the datapath. This passes all checks.

Zerodetect
 The zerodetect is
implemented on an 80 λ
pitch with the signal passed
upward. This is placed at the
end of the datapath and
interfaces with ALU result.
The output is sent out on top
in Metal 1 where it will
interface with an AND, an OR
gate, and some Controller
signals to signal when the
Program Counter should
change. This passes all
checks

Decoder
 This is the decoder used to interpret
the proper register address from instruction
bits. There are buffers on the bottom to
generate true and complementary true. Three
address bits are received on the bottom and
buffered through the decoder to generate
read and write signals on the write. The true
and complementary are passed up in long
polysilicon traces, this could be a problem.
Each part of the decoder is like a nand3 only
with different inputs. Note that there is no
metal 2 usage, this allows metal 2 wires to be
ran completely over the cells. This passes all
checks.

Register Slice
 The register slice is a
vertical slice of eight custom
designed registered cells. This is
implemented as a slice since all
registers are mirrored. Metal 2
runs horizontally and Metal 1 runs
vertically. Read and write control
signals are passed vertically along
a slice, while data is passed along
horizontally. The read and write
control signals will come from
decoders while the data bits will
come from the datapath. These
registers use pseudo nmos
technology, as well as weak
transistor technology. This is why
the regular pmos transistors are
so large, to overpower a weak
nmos transistor. Also, there are
weak pmos drivers along each
horizontal bit from which there
are nmos transistors in each
transistor to possibly over power
them. Note that the read b control
signal is wired in both polysilicon
and metal 1,this is used to avoid
metal 2 usage which would block
horizontal metal 2 wires. These
polysilicon parts are made
extremely wide, 5 λ, to reduce
resistance. This was used instead
of the 6 transistor static RAM
because of the ease of
implementation. This passes all
checks.

Weak pmos Driver
 Lines up
along the Register
slice and drives a
weak one to the
registers. The
registers have
stronger pull-down
nmos transistors to
overcome this.

Register Array
 Control signals generally come in from the top although there is room to wire in
the control signals along metal 2 horizontally. Each byte is a vertical slice of eight bits
and there are eight bytes. This is a total of eight 8 bit registers. The weak pmos drivers
are located on the right to provide a high. These registers are custom built and
mirrored to save space.

General Registers
 The register array is composed of 8 register slices for a total of eight 8-bit
registers. There are weak pmos drivers at the end. One decoder for the write signal is
on the left hand side and these signals are buffered for true and complementary true
and sent to the register array. Control signals for read A and read B are generated in
the decoders on the bottom. The decoders are placed here to save space in the
horizontal direction. Note that the control signals for the reads are actually ran vertically
in metal 2 (the register slice is on its side), this was done to save space and because
there was enough room in the registers to run more control with metal 2. The register
destination selection mux is included on the bottom of the decoder because there was
enough space with an input from the controller on the left. Register Write control signal
from the controller is connected to a series of nand 2 gates for the write signals that
only allows write to be true when Reg Write is enabled. Notice some of the
extraordinarily wide I/O bus to the datapath ran in metal 2 (the metal 2 wires on the
bottom of the cell) can overlap with the decoders since there is no metal 2 in the
decoders. This saves more than 100 λ in the vertical direction. Instructions for
addresses are ran in metal 1 to allow overlap. This passes all checks.

Oscillator
 This is implemented on a
standard 60 λ pitch with metal 1
running horizontally and metal 2
running vertically. This is a simple
circuit used only for testing, so
space and design time were
minimized. The input and output
are connected to external I/O pads.
This passes all checks.

8-bit MIPS Microprocessor
 Top level layout of all modules linked together properly. The datapath occupies
the entire bottom half. Controller implemented as a PLA is in the upper left with many
control signals coming out of it. Most control signals are routed down to the datapath,
mostly through the zipper. Two signals are sent just to the General Registers which are
in the upper middle section. ALU op signals are sent above the registers to the ALU
Control which is in the upper right corner which sends buffered signals down to the 8
bit ALU on the upper right side. There is no standard metal 1, metal2 direction since
some modules are more efficiently implemented in one direction than another. Interface
between modules often shows bending metal 1 or 2. However, this is also used
extremely advantageously in bus line to from the datapath to the ALU where metal 1 is

layed directly over metal 2. Read data 1, 2, and write data to and from the registers
goes from the center of the datapath to the registers. External signals from the
datapath are clumped on the left hand side and will have to be distributed to reach I/O
pads. The ring oscillator is in the top left corner. This top level cell passes DRC, ERC,
and all NCC checks.

