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ABSTRACT

In this project we developed a single satellite/offset GPS searcher using the 1.5
mm, 5V MOSIS process. A GPS (Globa Positioning System) searcher is an important
module in a GPS receiver that constantly analyzes antenna data and identifies which
satellites are available in the user’ s location and their corresponding power.

Our design allows searching for a single satellite at asingle offset at atime. This
is quite simple in comparison to available receivers in the market, but we were limited by
the required size of the chip for this project.

This searcher will be manufactured with the MOSIS 1.5mm, 2 metal, 1 poly

process on a 2.2mm by 2.2mm die and placed in the tinyCHIP 40 pin DIP package.
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INTRODUCTION

The GPS searcher we designed has the same basic functionality of any other
searcher in the market, but allows the user to search for only one satellite starting at only
one offset. This may seem like a feature that makes it useless, but severa of these
searchers could be placed in parallel with different start signas, allowing the user to
search for different satellites at different offsets.

GPS searchers look for available satellites by correlating a known pseudorandom
noise (PN) code with the incoming signal. The PN code is generated with LFSRS, which
are then synchronized with the other searcher modules to provide the PN code asiit is
needed.

The searcher reads the incoming data as two 4-bit signals: | (for in-phase) and Q
(for quadra-phase). In simpler words, these two signals are the output of a 16-bit A/D
converter of the antenna signal. In general, the antenna data is sampled with at least 4
samples. However, our chip does not analyze al samples. The user must choose the
sample to be analyzed and provide that to the chip.

During a search, the searcher performs coherent accumulations and noncoherent
accumulation. In coherent accumulation, the correlation results of | and Q are
accumulated independently for a certain amount of chips (defined by the input N). The
value of N ranges from 0 to 3, to indicate 17, 33, 65 or 129 accumulations. During
noncoherent accumulation, the absolute values of the independent coherent results are
summed together. Noncoherent accumulation is necessary because of the natural

difference in frequency between the searcher and the satellite transmitting the data. Our



searcher performs L noncoherent accumulations (provided by user). The input L can vary
from 0 to 3, indicating 1 to 4 noncoherent accumulations.
At the end of the search, out chip outputs a done interrupt and the energy value

found for that satellite.



ARCHITECTURE

We divided this chip into 6 functional blocks: PN generator, BDS (2 instances),
coherent accumulator (2 instances), noncoherent accumulator, coherent counter, and

noncoherent counter. The figure below shows the interface between the blocks:
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Figure 1: Top-level interface between searcher modules

PN Generator

The function of the PN generator is to produce the pseudorandom noise code for

the GPS satellite of interest. It performs the operations described in the following figure:
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Figure 2: GPS PN code generation

This module contains two 10-bit LFSRs and two 10-bit MUXs. The LFSRs are
rows with 10 flip-flops, caled G1 and G2. All flopsin G1 and G2 reset to high. The input
to the first flop in G1 is the XOR of the values in flops 3 and 10. The input to the first
flop in G2 isthe XOR of the valuesin flops 2, 3, 6, 8, 9 and 10. Thisis common to all
satellites.

The output of G1 is smply the value in flop 10. On the other hand, the output of
G2 isthe XOR of the vaues in two flip-flops. The two flops chosen are called the taps,
and vary for each of the 32 available satellites. For example, satellite 1 uses taps 2 and 6,
while satellite 7 uses taps 2 and 10. This process generates distinct PN codes for each
satellite. At the end, the outputs of G1 and G2 are XORed, generating the PN code. This
process is clocked, so we obtain one bit of PN code for every clock.

To choose which taps will be XORed in G2, we used two 10-bit MU Xs. Each 10-
bit MUX is responsible for choosing one of the two taps. The figure below shows the 10-

bit MUX used:
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Figure 3: 10-bit MUX used for choosing taps for each satellite

\i;x/ N\ mux / \mux / \mux/ \ mux /o

The inputs s3 ~ S0 choose TAP 1, while inputs s7 ~ s4 choose TAP 2. Also,
because of the 2-bit MUXs used, the inputs should be inverted. For example, for satellite
1wewant TAP 1to be 2, and TAP 2 to be 6. Thus, s3 ~ s0 should be 1110, and s7 ~ s4

should be 1010. The table below contains the required input for each satellite:

Table1: Required input for selecting satellite

SatelliteID  Satellite code (S7 ~ S0) Satellite 1D \Satellitecode(87~SO)

1 10101110 17 11001111
2 10011101 18 10111110
3 10001100 19 10101101
4 01111011 20 10011100
5 01111111 21 10001011
6 01101110 22 01111010
7 10001111 23 11011111
8 01111110 24 10101100
9 01101101 25 10011011
10 11011110 26 10001010
11 11001101 27 01111001
12 10101011 28 01101000
13 10011010 29 10101111
14 10001001 30 10011110
15 01111000 31 10001101
16 01100111 32 01111100

11



BDS

The BDS block is quite simple. The | and Q inputs are first converted into 5-bit inputs by
making the LSB equal to 1. Thus, the inputs represent values ranging from —7.5(10001b) to +7.5
(01111b). The PN code represents what we expect the | and Q valuesto be. It PN is zero (low),
that means we expect the input to be positive. If PN is one (high), we expect the input to be
negative. The BDS block outputs a number that represents how much | and Q match the PN
code. The more positive the number, the better the match. Thus, if PN iszero and | is+7.5, it
outputs +7.5 (a perfect match). If PN isoneand | is—7.5, it dso outputs +7.5 (a perfect match).
However, if PN isone and | is +7.5, then the BDS block outputs —7.5 (a perfect mismatch).
These values are then accumulated by the other blocks in the searcher, resulting in afinal vaue
that represents how much the entire incoming signal matches the PN code.

Our implementation is actually quite simple. We simply XOR the inputs (I and Q) with
PN to generate the outputs leff and Qeff. The next block (coherent accumulator) uses PN as a
carry-in input to its accumulators (see below). Thus, if PN isoneand | is—7.5 (10001), then the
BDS block inverts the bitsin | (to 01110) and the coherent accumulator block adds PN as a

carry-in, resulting in 01111 (+7.5).

Coherent Accumulator Block

This block accumulates the values received from the BDS block. The
accumulated value is registered in flip-flops. It is then used as an input to the noncoherent
accumulator block when it detected an interrupt from the coherent counter. Once the value has

been transmitted, the flip-flops are reset to zero to start a new accumulation.
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Noncoherent Accumulator Block

This block sums the coherent accumulator values for | and Q, and then accumulates it.
The accumulated value is the instantaneous energy of the signal. Once it detects the done
interrupt from the noncoherent counter, it refrains from accumulating any further. The energy is

then ready for the user.

Coherent Counter Block

This block countsto 17, 33, 65 or 129 for N = 0, 1, 2 or 3 respectively. Once it reaches
the requested value, it resets to zero and outputs an interrupt to the coherent accumulator block.
This interrupt makes the coherent value be released to the noncoherent accumulator, and it resets

the coherent accumulator registers in the next cycle.

Noncoherent Counter Block

This block countsto (L + 1), where L can range from 0 to 3. However, it uses the
interrupt from the coherent counter as a carry-in, such that it only increments when the coherent
counter outputs the interrupt. Once this block reaches the value in L, it outputs a done interrupt
that can be detected by the user (indicating that the energy value is ready) and keeps the

noncoherent accumulator block from accumulating any further.
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PINOUT TABLE

Table2: Chip pinout

Name 1/O Length (bits) Explanation
I Input 4 (i4-i0) Input | data
Q Input 4 (g4-q0) Input Q data
Start Input 1 Start search
Reset Input 1 Abort search
N Input 2 (N1,NO) # of coherent accums. (00 = 17, 01 = 33, 10 = 65,
11 = 129)
L [nput 2(L1,LO) # of noncoherent accums.
Sat. ID | Input 8 (s7-0) Satellite code (0 ~ 31)
Energy | Output 7 (e9-€3) Final energy value
Done Output 1 Search done interrupt
phl Input 1 Clock for phase 1
ph2 Input 1 Clock for phase 2
in Input 1 Input signal to test inverter on chip
out Output 1 Output signal from inverter

Total = 34 pins

14




PINOUT DIAGRAM

orange =» input
green =» output
purple = Vdd/Gnd
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FLOORPLAN

The following figure indicates the general location of each functional block within the

chip and their corresponding sizes.
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Figure4: Chip floorplan
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Functional Block

Table 3: Occupied areal Time spent

Total Area(sg. lambda)

Time Spent (hours)

Flop 12,900 1
Xor2 6,300 2
Pn_gen or flop 18,900 1
Pn_gen 10 Ifsr 185,000 2
Pn_gen _mux 63,500 2
Pn_gen 841,500 6
Coh_adder 1bit 20,490 0
Accumulator_reg 37,000 1
Datapath_energy 1bit 63,000 1
Datapath_energy 663,000 4
Datapath_coherent_1bit 44,200 1
Datapath_coherent 467,000 2
Datapath_bds 33,000 1
Datapath iq 500,000 1
Datapath 2,005,000 3
Counter_reg_reset 31,500 1
4bit_counter 130,000 1
8bit_counter 293,000 1
Noncoherent Counter 222,000 2
Coherent Counter 340,000 2
Searcher 4,650,000 4
(w/ connections to pads) (4,940,000) (10

Total Occupied Area = 4,650,000 sgq. lambda
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SIMULATION
To simulate this design, we used MATLAB to produce test vectors. Below are the steps

necessary to run the MATLAB simulation:

Use the MATLAB code developed for the Texas Instruments clinic project 2000/2001 to
generate GPS data. The command is:

Searcher(satid, power, offset)
Thus, to smulate satellite 30 at offset 5, type

Searcher(30, 1, 5)

Thiswill generate adatafile called rci_rxif_iq 0.in.

Run the MATLAB code vlsi_searcher.m. This code performs several functions:
o0 Conv_vlsi.m: Convertstherci_rxif_ig 0.infileto iq_data.in. The function keeps
one sample out of the 8 samplesin the former file;
0 Runs smulation: Using loops for the coherent and noncoherent counters, it reads
the iq_data.in file and generates the expected energy output of our chip;
o VIs.m: This function creates a searcher.cmd file that must be copied to the
IRSIM directory to run the simulation. The function takes care of setting all

parameters and sending the data from the iq_data.in file.

The syntax is: vlsi_searcher(satid, N, L, offset)

Thus, to ssimulate satellite 30 at offset 5 (with 129 coherent accumulations and 4

noncohorent accumulations), type

18



Vlsi_searcher(30,3,3,5)

Finally, copy the generated searcher.cmd file and run it with IRSIM.

NOTE: See apperdix A for the source code of vis.m and visi_searcher.m.
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Simulation Results

Test 1:

Variable/Result Value

Satellite ID 1

Offset 0

N (# of coherent accumulations) 3

L (# of noncoherent accumulations) 3

MATLAB result 902 (dec) = 386 (hex)

Test 2:

Satellite ID 30

Offset 5

N (# of coherent accumulations) 0

L (# of noncoherent accumulations) 0

MATLAB result 60 (dec) = 3C (hex)

K analizer [=[5]=]
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Test 3:

Satellite ID 5
Offset 0
N (# of coherent accumulations) 0
L (# of noncoherent accumulations) 0

MATLAB result

154 (dec) = 9A (hex)

Test 4:

Satellite ID 5

Offset 1

N (# of coherent accumulations) 0

L (# of noncoherent accumulations) 0

MATLAB result 48 (dec) = 30 (hex)

2 amalvzer

L0000
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Test 5:

Satellite ID 5
Offset 9
N (# of coherent accumulations) 3
L (# of noncoherent accumulations) 3
MATLAB result 1008 (dec) = 3F0 (hex)
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POSTFABRICATION TESTING

We (Sergio!) will use the DN2000K 10 board to test the chip when it returns from
fabrication. We decided to use this board since it is well documented and the C++ interface code
is aready capable of sending | and Q data from therci_rxif_iq_0.in file. We realize the board is
overkill for the project, but it seemsto be the simpler way.

The Virtex FPGA in the board will be used as a buffer to our chip, passing the input
signals from the PCI interface to the chip. As for the output signals, we can simply verify them
with alogic analyzer.

We are using 2 pads in the chip to verify that the chip was manufactured correctly: input
in and output out. The output is the inverse of the input. Sergio will check this at first to make
sure the chip is good.

List of Necessary Changesto DN2000K 10 board

PCI Interface Verilog code:
0 Sergio can use the code provided as an example in the TI project fina report;
o0 Create the following inputs:
= phl, ph2, resetb, start, i, q, s, N and L
0 Note: Outputs will go directly to logic analyzer
C++ Interface code:
o0 Modify the send_1Q() function to:
» Read theiq datain file (instead of rci_rxif_iq_0.in);
= Send4 MSBsfor | and Q (instead of all 5 bits);

*  Produces phl and ph2 (instead of a single clock).

23



Batch File:

0 Create abatch file that programs satid, N and L automatically.

NOTE: Fernando Mattos will be available for contact via email at fbmattos@earthlink.net or

Fernando mattos@hmc.edu
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VERIFICATION RESULTS

Electric

DRC

Checking... (type Windows-C to abort)
Checking facet searcher{lay}

No errors found (20.97 seconds so far)
0 errors found (took 20.97 seconds)

ERC

Checking electrical rules... (type Windows-C to abort)
Farthest distance from a P-Well contact is 58.6006
Farthest distance from a N-Well contact is 78.3662
1997 nodes of type P-Transistor

1997 nodes of type N-Transistor

1999 networks found

No ERC errors found
NCC

--- Comparing facet inv{lay} (2 components, 2 nets) with facet inv{sch} (2 components, 2 nets)
Facets are equivalent (took 0 seconds)

--- Comparing facet tri{lay} (4 components, 6 nets) with facet tri{ sch} (4 components, 6 nets)
Facets are equivaent (took O seconds)

--- Comparing facet mux2{lay} (2 components, 5 nets) with facet mux2{ sch} (2 components, 5
nets)

Facets are equivaent (took O seconds)

--- Comparing facet mux4{lay} (3 components, 11 nets) with facet mux4{ sch} (3 components,
11 nets)

Facets are equivaent (took O seconds)

--- Comparing facet latch{lay} (12 components, 8 nets) with facet latch{sch} (12 components, 8
nets)

Facets are equivaent (took O seconds)

Cannot find schematic view of facet latch2{lay}

--- Comparing facet flop{lay} (2 components, 5 nets) with facet flop{sch} (2 components, 5
nets)

Facets are equivaent (took O seconds)

--- Comparing facet nand2{lay} (4 components, 4 nets) with facet nand2{ sch} (4 components, 4
nets)

25



Facets are equivaent (took 0 seconds)

--- Comparing facet and2{lay} (2 components, 4 nets) with facet and2{ sch} (2 components, 4
nets)

Facets are equivalent (took 0 seconds)

--- Comparing facet xor2{lay} (7 components, 5 nets) with facet xor2{sch} (7 components, 5
nets)

Facets are equivaent (took O seconds)

--- Comparing facet counter_reg_reset{lay} (4 components, 8 nets) with facet
counter_reg_reset{ sch} (4 components, 8 nets)

Facets are equivaent (took O seconds)

--- Comparing facet 8bit_counter{lay} (8 components, 19 nets) with facet 8bit_counter{sch} (8
components, 19 nets)

Facets are equivaent (took O seconds)

--- Comparing facet coh_dwell _counter{lay} (8 components, 20 nets) with facet
coh_dwell_counter{ sch} (8 components, 20 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet nand3{lay} (6 components, 6 nets) with facet nand3{ sch} (6 components, 6
nets)

Facets are equivaent (took O seconds)

--- Comparing facet coh_adder_and_inv{lay} (2 components, 5 nets) with facet
coh_adder_and_inv{sch} (2 components, 5 nets)

Facets are equivaent (took O seconds)

--- Comparing facet fulladder{lay} (28 components, 17 nets) with facet fulladder{ sch} (28
components, 17 nets)

Facets are equivaent (took O seconds)

--- Comparing facet accumulator_reg{lay} (4 components, 11 nets) with facet
accumulator_reg{ sch} (4 components, 11 nets)

Facets are equivaent (took O seconds)

--- Comparing facet coh_adder_1bit{lay} (2 components, 8 nets) with facet con_adder 1bit{ sch}
(2 components, 8 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet datapath_energy 1bit{lay} (2 components, 13 nets) with facet
datapath_energy 1bit{ sch} (2 components, 13 nets)

Facets are equivalent (took 0 seconds)

--- Comparing facet datapath_energy{lay} (11 components, 58 nets) with facet
datapath_energy{sch} (11 components, 58 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet datapath_bits5to8{lay} (2 components, 10 nets) with facet
datapath_bits5to8{ sch} (2 components, 10 nets)

Facets are equivalent (took 0 seconds)

--- Comparing facet datapath_bit9{lay} (4 components, 11 nets) with facet datapath_bit9{ sch} (4
components, 11 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet datapath_coherent{lay} (10 components, 35 nets) with facet

datapath _coherent{ sch} (10 components, 35 nets)

Facets are equivaent (took 0 seconds)
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--- Comparing facet datapath_bds{lay} (5 components, 11 nets) with facet datapath_bds{ sch} (5
components, 11 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet datapath_ig{ lay} (2 components, 25 nets) with facet datapath_ig{ sch} (2
components, 25 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet datapath{lay} (3 components, 47 nets) with facet datapath{ sch} (3
components, 47 nets)

Facets are equivaent (took O seconds)

--- Comparing facet 4bit_counter{lay} (4 components, 12 nets) with facet 4bit_counter{ sch} (4
components, 12 nets)

Facets are equivalent (took 0 seconds)

--- Comparing facet nor2{lay} (4 components, 4 nets) with facet nor2{ sch} (4 components, 4
nets)

Facets are equivaent (took O seconds)

--- Comparing facet or2{lay} (2 components, 4 nets) with facet or2{sch} (2 components, 4 nets)
Facets are equivalent (took O seconds)

--- Comparing facet noncoh_dwell _counter{lay} (8 components, 18 nets) with facet
noncoh_dwell_counter{ sch} (8 components, 18 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet pn_gen or_flop{lay} (2 components, 6 nets) with facet

pn_gen or_flop{sch} (2 components, 6 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet pn_gen_10Ifsr{lay} (10 components, 14 nets) with facet

pn_gen 10Ifsr{sch} (10 components, 14 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet pn_gen mux{lay} (9 components, 23 nets) with facet pn_gen mux{sch} (9
components, 23 nets)

Facets are equivaent (took 0 seconds)

--- Comparing facet pn_gen{lay} (13 components, 42 nets) with facet pn_gen{sch} (13
components, 42 nets)

Facets are equivalent (took 0 seconds)

--- Comparing facet searcher{lay} (4 components, 38 nets) with facet searcher{sch} (4
components, 38 nets)

Facets are equivaent (took O seconds)

NOTE: Flatten NCC did not work because of an Electric bug.

Gemini

Gemini 2.7.3 1994/10/12

Graph "test3.sim": unit scale = 80, format 'SU' is unknown (assume MIT)
format = NULL (assume MIT)
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format = NULL (assume MIT)
format = NULL (assume MIT)
format = NULL (assume MIT)

format = NULL (assume MIT)

format = NULL (assume MIT)
Number of devices. 3267
Number of nets: 1276

Graph "test_sch.sim": unit scale = 200, format 'SU' is unknown (assume MIT)
format = NULL (assume MIT)
Number of devices: 3267
Number of nets: 1276
4407 (96%) matches were found by local matching
All nodes were matched in 172 passes
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SCHEMATICS

Basic Cells
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mux2

fulladder
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This facet creates a two-phase clocked “flop”

Xor2
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PN Generator Cells

pn_gen or_flop
This facet smply makes a resettable flip-flop

pn _gen 10 Ifsr
10 resettable flops connected in series to create a 10-bit LFSR
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pn_gen_mux
mux with 4-bit select to tap 10 bits from the second LFSR




pn_gen
PN generator cell that performs the algorithm represented in Fig. 2 - The bottom two

modules are the 10-bit muxes that tap from the second LFSR
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Datapath Cells

coh add and inv

Noncoherent accumulations will not receive data unless the searcher is both “not done”
and the enable interrupt is set

coh_adder 1bit
This facet smply makes a 1-bit adder with the above characteristics

accumulator reqg
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datapath energy 1bit
Combining the coherent and noncoherent accumulations to simplify layout

i_cr:ut
q_c*nut
dﬂqﬁ;b coh_adder_1bit — EE accumulator_re@ 1L I'g}’
enabte resetb

0 qlin
i_éin =

Datapath enerqgy
Connects 10 bits of datapath_energy

P,

L5

. i apiy apip apy iy i ipt Ot a4 i
I—.,...-_..lu & 4 & A 4 & & & & &

Zoom of right portion

—* '—éﬂﬁ.ble S

i Py

datpath_ekengy bS catpath_eiengy b9

o5 &9
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Zoom of left portion (datapath_energy)

datapath coherent 1bit

datapath coherent
Connects facets for 10-bit coherent accumul ator
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Zoom of right portion (datapath_coher ent)

datapath _bds
Correlator of PN code with each | or Q bit
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datapath ig
Connects bds with coherent accumulator — the top 5 bits of the accumulator are the same

asthetop bit of the incoming | or Q signal to be consistent with 2's complement




Datapath
Connects bds with coherent accumulator with noncoherent accumul ator
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Coherent/Non Coherent Dwell Counter Cells

Counter reg reset

1-bit resettable counter

4-bit counter
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8-bit counter

coh dwell counter

noncoh dwell counter




Sear cher




LAYOUT

Basic cells

inv/nand2/or 2

inv nand2 or2

mux?2




fulladder
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PN Generator Cells

pn gen or flop

pn gen 10 Ifsr

pn_gen mux
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Zoom of bottom left portion of pn_gen (6 XOR’Ss)




Zoom of bottom right portion of pn_gen (2 10-bit MUXES and 2 XOR’s)

Datapath Cells

coh adder 1bit
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accumulator req

datapath energy 1bit
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Datapath enerqy




datapath coherent 1bit

datapath coherent
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datapath bds
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datapath iqg
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Datapath

58



Coherent/Noncoherent Facets

Counter reg reset

4-bit counter
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8-bit counter
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coh dwell counter
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noncoh dwell counter
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APPENDIX A : vls_searcher.m SOURCE CODE

function energy = vlsi_searcher(satid, N, L, offset)

conv_vls

pndata = full _signal delay(satid, 1, 0);

pndata = pndata - 1; %% Converting to 1s and Os
pndata = pndata ./ -2;

pndat a(1: 15)
pndata = shift(pndata, 1023 - offset);
pndat a(1: 15)

iqdata = fopen('iqgdata_vlsi.in", "r");

nonc_count = O;
coh_count = 0;
energy = 0;

whi | e (nonc_count < 27L)
coh_count = 0;
coh_i = 0;
coh_q = 0;
while (coh_count < 27(N+4) +1)
i ghex = fgetl (iqdata);
i gbi n = hex_bin(ighex);
i = [igbin(3) iqgbin(4) igbin(5) igbin(6) igbin(7)];

q [igbin(8) iqgbin(9) igbin(10) iqgbin(1l) igbin(12)];
%986 BDS REG
if (pndata(l) == 0)
ieff =1i;
qeff = q;
el se
ieff = (i .* -1) + 1; %% |nvert
geff = (q .* -1) + 1
end

%o 1/ Q Accunul at e

coh_i = coh_i + bin_dbl _t(ieff) + pndata(l); % Accunul ate and use PN as
carry in

coh_gq = coh_q + bin_dbl _t(qgeff) + pndata(l); % Accunul ate and use PN as
carry in

coh_count = coh_count + 1;
pndata = shift(pndata, 1022); % gets next PN bit

end
% I NV / MJIX
coh_i_bin = dbl _bin(coh_i, 10, 10, 0); % Conv. to BIN 2's conpl.
coh_qg_bin = dbl _bin(coh_q, 10, 10, 0);
if (coh_i_bin(1l) == 0)
c2n_i = coh_i _bin;
el se
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c2n_i = (coh_i_bin .* -1) + 1
end

if (coh_qg_bin(1l) == 0)
c2n_q = coh_q_bin;

el se

c2n_qgq = (coh_g bin .* -1) + 1
end
c2n_i _dec = bin_dbl (c2n_i);
c2n_g_dec = bin_dbl (c2n_q);
%% CLINI C

%on_dec = ((c2n_i _dec + coh_i _bin(1))”2) + ((c2n_q_dec +
coh_qg_bin(1))"2);

%energy = energy + non_dec

%% VLS

non_dec = c2n_i_dec + c2n_g_dec + coh_i_bin(1); %% Uses bit 9 of | as
carry in

energy = energy + non_dec + coh_qg_bin(1l); %6 Uses bit 9 of Qas carry in

nonc_count = nonc_count + 1;
end

fcl ose(iqdat a);
foo = vlsi(satid, N, L, offset)

y = energy,



APPENDIX B : vls.m SOURCE CODE

function w = vlsi(satid, N, L, offset)

satid_bin = conv_satid(satid);

warning(' Creating files for VLSl sinulation fromiqdata vlsi.in ...");

fidl = fopen('iqgdata vlsi.in", "'r');

fid2 = fopen(' searcher.cnd', 'W);

fprintf(fid2, '"clock ph2 000 0000011111111 1000000000
000000O0O0O0O0O\n);

fprintf(fid2, "clock ph2 000 0000000000000O00O0OOO0OO0OOO0O0O01
11111121000 0\n");

fprintf(fid2, "\n');

fprintf(fid2, "vector i 14 i3 i2il\n");

fprintf(fid2, 'vector g g4 93 g2 ql\n');

fprintf(fid2, 'vector satid s7 s6 s5 s4 s3 s2 s1 s0\n');
fprintf(fid2, 'vector energy €9 e8 e7 e6 e5 e4 e3 e2 el e0O\n');
fprintf(fid2, "vector N N1 NO\n');

fprintf(fid2, '"vector L L1 LO\n\n");

fprintf(fid2, "\n");

%86 Vi sual i zat i on
fprintf(fid2, '"ana resethb start ph2 i g enable energy doneb\n\n');

%9686 Set Sat | D HERE
fprintf(fid2, 'set satid');
for count =1 : 8
fprintf(fid2, "%"', satid_bin(count));
end
fprintf(fid2, "\n');

N_bin
L_bin

dbl _bin(N, 2, 2, 0);
dbl _bin(L, 2, 2, 0);
fprintf(fid2, '"set N');
for count =1 : 2

fprintf(fid2, "% "', N_bin(count));
end
fprintf(fid2, "\n');

fprintf(fid2, '"set L ');
for count =1 : 2
fprintf(fid2, "% ', L_bin(count));
end
fprintf(fid2, "\n\n");

%86 Reset sear cher

fprintf(fid2, 'l reseth start\n');
fprintf(fid2, '"c\n');
fprintf(fid2, "c\n');
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fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n\n");

fprintf(fid2, "h resetb\n');

for count = 1 :

of f set
fprintf(fid2, 'c\n");

end

fprintf(fid2, '"h start\n\n');

while (feof (fidl) == 0)

hex_10bit = fgetl (fidl);
bi n_10bit = hex_bin(hex_10bit);
g_5bit = [bin_10bit(8) bin_10bit(9) bin_10bit(10) bin_10bit(11)

bi n_10bit (12)];

i 5Sbit = [bin_10bit(3) bin_10bit(4)

bin_10bi t (7)];

g_4bit
i _4bit

fprintf(fid2,

for count =

fprintf(fid2,

end

fprintf(fid2,
fprintf(fid2,

for count =

fprintf(fid2,

end

fprintf(fid2,
fprintf(fid2,

end

fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n');
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");
fprintf(fid2, 'c\n");

fclose(fidl);
fclose(fid2);

w = 0;

1:

1:

[bin_10bit(8) bin_10bit(9)
[bin_10bit(3) bin_10bit(4)

'set
4

‘\n);
‘set q '
4

\nt)s
"c\n\n\n\n\n');

bi n_10bi t (5) bin_10bit (6)

bi n_10bi t (10) bin_10bit(11)];
bi n_10bi t (5) bin_10bit(6)];

i _4bit(count));

g_4bit(count));
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