
1

Final Report
Intro to CMOS VLSI Design

E158

8 Bit Floating Point Adder/ Subtractor

11 April 2001
Andrew Ingram

Ronalee Lo

2

Table of Contents
Section page

Color Chip Plots 1

Functional Overview 2-3

Chip Floorplan 4-5

Area and Design Time Data 6

Simulation Results 7
1) Verilog waveforms 8-13
2) IRSim simulation 14-16

Verification Results 17

Postfabrication Test Plan 18-25

Schematics/ Verilog 26
1) Readable Verilog Code 26-36
2) Verilog Code for Electric 37-47
3) Leaf Cell: Mux2 (schematic) 48
4) Leaf Cell: Full adder (schematic) 48
5) Hand layout of the Exponent Bitslice (schematic) 49
6) Hand layout of Exponent Datapath (schematic) 49
7) Synthesized and hand layout of full datapath (schematic) 50

Layout
1) Leaf Cell: Mux2 (layout) 51
2) Leaf Cell: Full Adder (layout) 51
3) Hand layout of Exponent Datapath (layout) 52
4) Synthesized and hand layout of full datapath (layout) 52

3

Color Chip Plot

4

Functional Overview:
Two Function Calculator

The motivation for this project began at almost the very beginning of our HMC
careers. During the freshman year we worked on the giant calculator that was given to
Professor Benjamin. We used the logic from a hand-held calculator to generate the
results. For this project we would like to actually construct the logic on the transistor
level for a subset of the calculator functions.

Specifically, we propose to build an 8 bit floating point adder. Floating point
numbers allow computers to perform operations on numbers other than simple integers.
According to the IEEE standards, floating point numbers are of the form (-1)^S * 2^E *
M. Here, S is the sign bit, which determines whether the number is positive or negative.
The mantissa, M, holds the significant bits of the floating point number. Using a notation
similar to scientific notation, E is the exponent that the mantissa is raised to.

A 32 bit floating point number is standard, but due to size limitations in our
design, both in available I/O pins, and chip area, we will be using an 8 bit representation.
We will have a sign bit, 3 bits available for the exponent, and the remaining 4 bits will be
devoted to the mantissa. This will allow us to represent a resolution as small as 1/128
when the implicit leading 1 is taken into account. However the smallest number we can
represent is 1/8

We are aware that 8 bits are not terribly useful for performing extremely accurate
calculations, but it does demonstrate the operation of a floating point adder. The design
methodology is nearly identical for an 8 bit adder as for the larger adders, and the
learning gained from the 8 bit version will be just as valuable.

Our adder should perform correctly in the normal cases, but for extreme cases we
have devised ways of handling exceptions. For the subtraction of two equal numbers, the
result should be zero. For our implementation, zero will be denoted on a separate zero-
detect pin on the chip. When a calculation results in zero, that pin will be at logical 1.
When adding numbers that produce a result out of range, an overflow occurs. For this
exception, we will have a separate signal that indicates that an overflow has occurred, and
that the result [0:7] is not reliable.

Data will be loaded into our adder using 16 parallel inputs, [7:0] for A and [16:8]
for B and the result [7:0] will also be 8 bits in parallel. We will also need to assign a pin
to be function select. This selects whether we are performing subtraction or addition.

This project will be implemented in two different software packages. We first
designed the entire project in verilog to ensure that the logic was correct. The formal
layout for this project is quite large, so given the time constraints we will be laying out
the exponent datapath and synthesizing the mantissa datapath from the generated verilog
code. We will join the exponent datapath with the mantissa datapath to create the final
chip design.

The final test to see whether our design meets the specs in this proposal is simple:
can it correctly add and subtract two floating point numbers? Does it handle the
exceptions correctly, as described herein? Finally, although neither of us be here next
year, this might be something that would be useful to add to a micro-p’s project in the
future.

5

Inputs Outputs
A[0:7] Result[0:7]
B[0:7] Zero detect
Clk Overflow
Function select
Power
Ground

6

Chip Floorplan: Block Diagram

7

Chip Area Estimate

8

Area and Design Time Data
Cell Name Area Design Time Comments
2-Input Mux 4982λ2 1 hour Modified a design found in

an existing library
INV 3007λ2 5 minutes Taken from another library
Adder 20286λ2 4 hours Metal modifications to an

existing design
Exponent Bitslice 102729λ2 9 hours Assembled various parts,

required a lot of updating as
designs changed

Exponent Datapath 477252λ2 3 hours Assembled bitslices, also
took a lot of updating and
modifications

Synthesized Datapath NA See below

Complete layout NA

Other Time Considerations
Task Time Comments
Conceptual Design 8 hours Visualizing the data path, identifying

the inputs and outputs to each module

Verilog Code 40-45 hours Many attempts to get a working code.
Had to gain a clear understanding of
how a floating-point adder works.
Commenting and rewriting code to
accommodate Electric

Verification of Exponent Datapath 4 hours Getting DRC, ERC, and NCC to pass in
Electric for the hand-layout of the
exponent datapath layout and
schematic. Some time was spent trying
to get NCC to pass in Electric but ended
up verifying using Gemini.

Simulation of Exponent Datapath 14 hours Electric has a lot of trouble generating a
.sim file for both the layout and
schematic datapath, see Simulation
section for more details

Synthesize Mantissa Datapath 7 hours Design Analyzer could not make a non-
hierarchical .vhdl file for Electric

Final Report 10 hours

9

Simulation Results

Many simulation tests were performed on this project during various stages in the
development. The first set of waveforms following this section is the simulation done on
the complete Verilog code using the Xilinx simulation tool. The complete code includes
both the exponent and mantissa datapaths. By proving that the code is simulating
properly, we are fairly confident that the synthesized mantissa datapath will be correct,
but that we can also use the exponent datapath code as a guide for the hand drawn
exponent datapath. We tested the code with all of the cases listed in the testing protocol.

10

11

12

13

14

15

16

The next set of tests would have been to use IRSim to test the full schematic
datapath. This test could not be completed because Electric could not generate a .sim
file for the layout. It was unable to place two of our exports from the layout into the .sim
file. Below is a screen shot of the list of exports for the layout and also the error given
when IRSim is trying to generate the .sim file for the layout.

Export list of the exponent datapath layout:

17

Screen shot of IRSim error message

As you can see, Electric clearly knows that the exports exist but when we looked
in the generated .sim file, there were no connected or even mention of exp_diff_sign or
exp_diff_signb.

We were told that since we managed to get NCC to check on Gemini if we can
prove that the simulation works on the schematic datapath then we can safely assume that
the simulation of the layout would also be successful. However when we tried to run the
generated .sim file for the schematic datapath of the exponent we were given the
following error.

Irsim> ana exp_diff_sign
{tty,1}:exp_diff_sign: No such node or vector
irsim> ana exp_diff_signb
{tty, 2}: exp_diff_signb: No such node or vector

18

Screen shot of IRSim message window

Since neither datapath was able to generate a proper .sim file, the full datapath
could not be simulated. We attempted to track down the bug which prevented Electric
from generating a correct .sim file. We check other facets such as INV and AND using
IRSim to simulate their functionality. Both gates simulated properly. In the end we still
could not find the problem.

Too many errors in sim file <expdpsch.sim>

19

Verification Results

DRC, ERC, and NCC verification was done in separate stages as our project
progressed. We verified DRC, ERC, and NCC on many smaller layouts and schematics
to make sure that our design was not going awry without us realizing it. DRC, ERC, and
NCC passed on the MUX and Adder. We also verified DRC and ERC on the exponent
datapath bitslice. However, we ran into some problems when we tried to verify NCC.
We eventually used Gemini to determine why NCC was not passing. We also used
Gemini to verify NCC on the full datapath of the exponent layout and schematic. Gemini
did identify minor modifications that needed to be made to our design. However, even
though Gemini verified both the bitslice and the datapath, Electric would not pass NCC
on either. We were told that Gemini is more reliable so we did not spend any more time
trying to get Electric to pass NCC for the exponent bitslice and the datapath.

After the rest of the datapath for a floating-point adder was synthesized, we
performed more verification tests on the full design. NCC was not expected to pass using
Electric since the exponent datapath did not pass. Again, we used Gemini to verify NCC
on the full datapath.

Results:
Cell DRC ERC NCC
MUX Pass Pass Pass
INV Pass Pass Pass
Adder Pass Pass Pass
Exponent Bitslice Pass Pass Pass in Gemini
Exponent Datapath Pass Pass Pass in Gemini

Full Datapath

20

Post-Fabrication Test Plan
Testing the chip just calls for enough runs to test a fair portion of the capabilities

of the chip and a few special cases. To test the chip, one can hook the chip to a
protoboard. Note the physical locations of each input and output pin. Once you have
verified the pin locations, hook dip switches to the inputs and LEDs to the outputs. The
dip switches will allow you to manually apply high and low values to each input pin. For
quick verification, the LEDs should light if the desired output is high.

Note that the test plan does not call for a test of every possible combination of
numbers. Each 8 bit floating point number can represent 28 different numbers. So it
would require 217 tests to check all possible combinations(including the function choice).
So instead of testing 217 different cases, we will only test the boundary cases.

Listed below are equations that should be applied and why it is important.

1) Same exponent, same mantissa value- these tests will verify if the chip is
functioning properly when no original shifting is required to add or subtract
two identical numbers.

• Addition of two identical numbers (but more importantly, since they have the
same exponent value, the mantissa does not need to be shifted)

5 + 5 = 10

Also try this equivalent case [5 – (-5)] = 10
Input Output
A[7:0] 01010100 Y[7:0] 01100100
B[7:0] 11010100 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 01010100 Y[7:0] 01100100
B[7:0] 01010100 Zero 0
Funct 0 Overflow 0

21

• Subtraction of two identical numbers (assert the zero pin)

5 - 5 = 0

Equivalent cases (–5 + 5), [-5 – (-5)]
X denotes “don’t care”

(-5 + 5) = 0

[(-5) – (-5)] = 0

2) The next few cases will be used to determine if the shifting functions are
working properly. The shifting functions will be used since the exponents are
not equal, therefore the smaller mantissa will need to be shifted in order to
perform the calculation.

• Adding two positive numbers

18 + 7 = 25

*note: the values given to input A and input B can be switched in order to do a more
thorough check, the output values should remain unchanged*

Input Output
A[7:0] 01010100 Y[7:0] XXXXXXXX
B[7:0] 01010100 Zero 1
Funct 0 Overflow 0

Input Output
A[7:0] 11010100 Y[7:0] XXXXXXXX
B[7:0] 01010100 Zero 1
Funct 0 Overflow 0

Input Output
A[7:0] 11010100 Y[7:0] XXXXXXXX
B[7:0] 11010100 Zero 1
Funct 1 Overflow 0

Input Output
A[7:0] 01110010 Y[7:0] 01111001
B[7:0] 01011100 Zero 0
Funct 0 Overflow 0

22

• Adding two negative numbers

(-18) + (-7) = (-25)

*note: the values given to input A and input B can be switched in order to do a more
thorough check, the output values should remain unchanged*

• Adding a positive and negative number where the positive number is bigger

18 + (-7) = 11

*note: the values given to input A and input B can be switched in order to do a more
thorough check, the output values should remain unchanged*

• Adding a positive and negative number where the negative number is bigger

(-18) + 7 = -11

*note: the values given to input A and input B can be switched in order to do a more
thorough check, the output values should remain unchanged*

• Subtracting two positive numbers, where the larger positive is given to input A

18 – 7 = 11

Input Output
A[7:0] 11110010 Y[7:0] 11111001
B[7:0] 11011100 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 01110010 Y[7:0] 01100110
B[7:0] 11011100 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 11110010 Y[7:0] 11100110
B[7:0] 01011100 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 01110010 Y[7:0] 01100110
B[7:0] 01011100 Zero 0
Funct 1 Overflow 0

23

• Subtracting two positive numbers, where the larger positive is given to input B

7 – 18 = -11

• Subtracting two negative numbers, where the larger positive is given to input A

(-18) – (-7) = -11

• Subtracting two negative numbers, where the larger positive is given to input B

(-7) – (-18) = 11

• Subtracting a positive number from a negative number where the absolute value
of the positive number is smaller than the absolute value of the negative number

(-18) – 7 = -25

• Subtracting a positive number from a negative number where the absolute value
of the positive number is larger than the absolute value of the negative number

(-7) – 18 = -25

Input Output
A[7:0] 01011100 Y[7:0] 11100110
B[7:0] 01110010 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 11110010 Y[7:0] 11100110
B[7:0] 11011100 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 11011100 Y[7:0] 01100110
B[7:0] 11110010 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 11110010 Y[7:0] 11111001
B[7:0] 01011100 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 11011100 Y[7:0] 11100110
B[7:0] 01110010 Zero 0
Funct 1 Overflow 0

24

• Subtracting a negative number from a positive number where the absolute value
of the positive number is smaller than the absolute value of the negative number

7 – (-18) = 25

• Subtracting a negative number from a positive number where the absolute value
of the positive number is larger than the absolute value of the negative number

18 – (-7) = 25

3) Overflow case: this case just checks to see if the resulting number cannot be
represented in the 8 bits provided. (i.e. the absolute value of the number is
greater than 31)

31 + 1 = 32

4) Normalization of Exponent: These cases will check the different possibilities
for normalizing the final exponent value

• Changing the exponent value by 4

31 – 30 = 1

Input Output
A[7:0] 01011100 Y[7:0] 01100110
B[7:0] 11110010 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 01110010 Y[7:0] 01111001
B[7:0] 11011100 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 01111111 Y[7:0] XXXXXXXX
B[7:0] 00110000 Zero 0
Funct 0 Overflow 1

Input Output
A[7:0] 01111111 Y[7:0] 00110000
B[7:0] 01111110 Zero 0
Funct 1 Overflow 0

25

• Changing the exponent value by 3

15 - 14 = 1

• Changing the exponent value by 2

7 – 6 = 1

• Changing the exponent value by 1

3 –2 = 1

5) Lowest number representation: These cases test the decimal numbers that
can be represented in an 8-bit floating-point scheme.

• Adding the smallest numbers that can be represented as inputs

0.125 + 0.125 = 0.25

Input Output
A[7:0] 01101110 Y[7:0] 00110000
B[7:0] 01101100 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 01011100 Y[7:0] 00110000
B[7:0] 01011000 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 01001000 Y[7:0] 00110000
B[7:0] 01000000 Zero 0
Funct 1 Overflow 0

Input Output
A[7:0] 00000000 Y[7:0] 00010000
B[7:0] 00000000 Zero 0
Funct 0 Overflow 0

26

• Adding two fractions which result in a whole number, note also the ability to
express the smallest resolution in the output (the 1/16 bit location)

0.5 + 0.5 = 1

• Adding a whole number and a fraction to get a mixed number, note also the
ability to express the smallest resolution in the output (the 1/16 bit location)

1 + 0.1875 = 1.1875

6) Shifting mantissa: These cases require varying amount of initial shifting of
the Mantissa to add two numbers. It is important to note that if two
numbers are added where the difference in their exponents is greater than 4,
the resulting output is incorrect. (i.e. 30 + ½ = 30)

• Shifting the mantissa by 4

30 + 1 = 31

• Shifting the mantissa by 3

14+ 1 = 15

Input Output
A[7:0] 00100000 Y[7:0] 00110000
B[7:0] 00100000 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 00110000 Y[7:0] 00110011
B[7:0] 00001000 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 01111110 Y[7:0] 01111111
B[7:0] 00110000 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 01101100 Y[7:0] 01101110
B[7:0] 00110000 Zero 0
Funct 0 Overflow 0

27

• Shifting the mantissa by 2

6 + 1 = 7

• Shifting the mantissa by 1

2 + 1 = 3

Input Output
A[7:0] 01011000 Y[7:0] 01011100
B[7:0] 00110000 Zero 0
Funct 0 Overflow 0

Input Output
A[7:0] 01000000 Y[7:0] 01001000
B[7:0] 00110000 Zero 0
Funct 0 Overflow 0

28

Schematics and Verilog

In this section you will find versions of the same Verilog code. The first code is a
more readable version. It still have module separations and busses which represent
various inputs. This is also the code with comments since it is easier to follow.

The second code is the version of code with all of the busses flatted so that
Electric can handle the synthesized module. The hierarchy of this code was later
removed since the data analyzer outputs a hierarchical vhdl file which also cannot be
handled in Electric.

Readable Verilog Code
//This is not the code that was synthesized
//Electric does not recognize busses so the code was redone with all of the
// busses flattened

//Also, this code contains verilog code for both the exponent and mantissa datapaths

module topadder(A, B, funct, zero, Y);

input [7:0] A ; //Input number A
input [7:0] B ; //Input number B
input funct ; // funct=0 is add, and funct=1 is subtract

output zero ; //the output at Y is not corrent for cases that
result

//in zero so a seperate output pin is assigned
//for zero cases
// zero = 1 when result is zero, zero = 0 for
//nonzero results

output [7:0] Y ; //answer

wire [2:0] exp_A; //internal wires for easier coding, represent
wire [2:0] exp_B; // theexponential values for A, B, and Y
wire [2:0] exp_Y;

wire sign_Y; //sign bit of Y

wire [3:0] mant_Y; //mantissa bits of Y

wire [2:0] exp_diff_norm; //used in the normalization module, tells the module
//what value to add or subtract to a temp exponent
//value

29

wire [1:0] exp_diff_sign; //tells the normalize module to add or subtract the
exp_diff_norm //value from the temp exp. value
wire [3:0] exp_diff; //result of exp_A - exp_B

assign exp_A = A[6:4]; //exponent bits of an 8-bit floating point number is
//in bits 4-6

assign exp_B = B[6:4];

assign Y = {sign_Y, exp_Y, mant_Y}; //initial value of Y

//module call to the synthesized mantissa datapath
synth_part get_mant(A, B, funct, zero, exp_diff_norm, exp_diff_sign, exp_diff, sign_Y,
mant_Y);

//module call to the exponent datapath (this module was used as a guide to hand draw the
//exponent datapath
exp_part get_exp(exp_A, exp_B, exp_diff_norm, exp_diff_sign, exp_diff, exp_Y);

endmodule

//**
//Module: top level module for the synthesis mantissa datapath
module synth_part (A, B, funct, zero, exp_diff_norm, exp_diff_sign, exp_diff, sign_Y,
mant_Y);

input [3:0] exp_diff; //exp_A - exp_B
input [7:0] A; //number A
input [7:0] B; //number B
input funct; // funct=0 is add, and funct=1 is subtract

output zero; //assert zero if the result is zero
output sign_Y; //resultant number
output [3:0] mant_Y; //mantissa bits of Y

output [2:0] exp_diff_norm; //amount to add/sub to temp. exp to normalize
output [1:0] exp_diff_sign; //tells normalize to add or sub the exp_diff_norm to

//get the right output exponent value

wire sign_A; //sign bits of A, B, and Y
wire sign_B;
wire sign_Y;

30

wire temp_sign; //helps with holding sign_B value in case the bit
//needs to be swizzled to accommodate subtraction
//calls

wire [3:0] mant_A; //mantissa bits of A, B, and Y
wire [3:0] mant_B;
wire [3:0] mant_Y;
wire [5:0] temp_mant_Y; //holds the sum of the two mantissa before

//normalization

wire [3:0] exp_diff; //amount to shift smaller mantissa by
//is the value of the smaller of the
//two input exponents

wire exp_diffsig; //most significant bit in the exp_diff value,
//this will check for neg. values

wire [4:0] mant_diff; //mant_A - mant_B
wire mant_diffsig; //most significant bit of mant_diff will be a

//quick check to determine
//which mantissa value was larger,
//if the bit is 0, A is larger
//if the bit is 1, B is larger

wire [3:0] small_mant; //holds the mantissa of the number with the
//smaller exponent
//if the exponent value is equal, it is
//arbitrarily set to the mantissa of A

wire [2:0] shift_amount; //amount to shift the small_mant (equal to
//exp_diff) this shift is necessary in order to
//produce a correct output

wire [5:0] shifted_mant; //small mantissa shifted by shift amount,
//also appended with the
//implied leading one

wire [3:0] big_mant; //mantissa of the number with the bigger
//exponent

wire temp_sign_B; //holds the final value of B's sign, needed to
//help in case
//of bit swizzling in the case of subtraction

wire [5:0] twos_small_mant; //possible two's compliment of the shifted
//mantissa, two's compliment

31

//used if subtraction is used

wire [1:0] exp_diff_sign; //tells normalize whether to add or subtract a
//certain value in
//order to properly normalize the exponent

wire [2:0] exp_diff_norm; //the value to add or subtract to normalize
//the exponent

//CODE BEGINS HERE
//divide inputs into Floating Point fields

assign sign_A = A[7]; //assign the sign bit of A, B
assign sign_B = B[7];

assign mant_A = A[3:0]; //assign mantissa bits of A, B
assign mant_B = B[3:0];

assign exp_diffsig = exp_diff[3]; //exp_diff is an input so set the highest bit
// 1 => exp_B is larger than exp_A
// 0 => exp_A is larger than exp_B

//find mantissa difference
assign mant_diff = mant_A - mant_B;
assign mant_diffsig = mant_diff[4]; //mant_diff

// 1 => mant_B is larger than mant_A
// 0 => mant_A is larger than mant_B

//assign small_mant to be the value of the mantissa of the number with the smaller of the
//two exponents
big_small mants(mant_A, mant_B, exp_diff, exp_diffsig, mant_diffsig, big_mant,
small_mant);

//assign the shift amount, don't need the highest bit of exp_diff since it just tells you
//which exponent is larger. Also, if exp_B is larger, the exp_diff is in two's compliment
//form so perform another two's compliment to get a positive shift value
assign shift_amount = (exp_diffsig)? -(exp_diff[2:0]): exp_diff[2:0];

//code for addition or subtraction, if subtraction is being done, swizzle the sign bit of B
assign temp_sign = funct? ~sign_B: sign_B;
assign temp_sign_B = temp_sign;

//shift mantissa to align decimal points

32

right_shifter shift_mantissa(small_mant, shift_amount, shifted_mant);

//calculate the two's compliment of the shifted mant, only needed in the case of
//subtraction or equivalent case (i.e. adding a negative number to a positive number)
twos_comp two_small_mant(sign_A, sign_B, funct, shifted_mant, twos_small_mant);

//add the two mantissas together
assign temp_mant_Y ={1'b1, big_mant} + twos_small_mant;

//assign zero detect
zero_detect zero_find(sign_A, sign_B, funct, exp_diff, mant_diff, zero);

//normalize the mantissa and exponent value so it's back in floating point representation
normalize normal(temp_mant_Y, mant_Y, exp_diff_norm, exp_diff_sign);

//determine sign of the final value
final_sign sign_find(exp_diffsig, mant_diffsig, exp_diff, sign_A, temp_sign_B, sign_Y);

endmodule

//**
//Module: see if the result of the operation results in a zero

module zero_detect (sign_A, sign_B, funct, exp_diff, mant_diff, zero);
input sign_A, sign_B, funct; //sign bits of A and B, and function being

//performed
input [3:0] exp_diff; //exponential difference (exp_A - exp_B)
input [4:0] mant_diff; //mantissa difference (mant_A - mant_B)
output zero; //assert true when result is zero

reg zero;

always@(sign_A or sign_B or funct or exp_diff or mant_diff)

//(sign_A^sign_B)^funct is 1 when after you convert the operation to addition
//(i.e. a - b => a + (-b) OR a - (-b) => a + b) if the signs of A and B are different

if(((sign_A^sign_B)^funct)&(exp_diff == 4'b0000)&(mant_diff == 5'b00000))
zero <= 1; //zero asserted if the signs of A and B are

//different and there is no
//difference in the mantissa and exponent

33

// a number plus a conjugate
else

zero <= 0;

endmodule

//**
//Module: perform two's compliment if subtraction operation is called for

module twos_comp (sign_A, sign_B, funct, shifted_mant, twos_small_mant);
input sign_A, sign_B, funct; //sign bits of A and B, function being

//performed
input [5:0] shifted_mant; //the smaller mantissa shifted so that the

//numbers are aligned in order to do the
//operation

output [5:0] twos_small_mant; //result either same as input or the two's
//compliment of input

//two's compliment of shifted mantissa if numbers are being subtracted or adding
//a negative number
assign twos_small_mant = ((sign_A^sign_B)^funct)? -(shifted_mant): shifted_mant;

endmodule

//**
//Module: Normalize the final exponent and mantissa value so it can be represented in
//floating point format

module normalize (in_mant, out_mant, exp_diff_norm, exp_diff_sign);

input [5:0] in_mant; //input sign_A, sign_B, funct;

output [3:0] out_mant; //normalized mantissa value
output [1:0]exp_diff_sign; //tells the exponent nomalization module

//whether the exponent value
//needs a value added or subtracted in order
//to be normalized, this is a 2 bit bus because
//it simplifies the exponent datapath layout

output [2:0]exp_diff_norm; //the value that needs to be added or
//subtracted

reg [5:0] in_mant;
reg [3:0] out_mant;
reg [2:0]exp_diff_sign;

34

reg [2:0]exp_diff_norm;

//find the first "1" (i.e. locate a one and shift accordingly in order to get the implicite
//leading one for floating point representation
always@(in_mant)
begin

 if (in_mant[5])
begin

out_mant <= in_mant[4:1];
exp_diff_norm <= 3'b001;
exp_diff_sign <= 2'b01; //0 means add to in_exp

//the value in exp_diff_sign[1] can
//be decoded to determine the
//operation
// 0 => add
// 1 => subtract
//the other bit is used in the exponent
//datapath for the select_bar line of a
//mux

end
else if (in_mant[4])

begin
out_mant <= in_mant[3:0];
exp_diff_norm <= 3'b000;
exp_diff_sign <=2'b01;

end
else if (in_mant[3])

begin
 out_mant <= {in_mant[2:0], 1'b0};
 exp_diff_norm <= 3'b001; //1
 exp_diff_sign <= 2'b10; // 1 means to subtract

end
else if (in_mant[2])

begin
 out_mant <= {in_mant[1:0], 2'b00};
 exp_diff_norm <= 3'b010; //2
 exp_diff_sign <= 2'b10; //subtract

end
else if (in_mant[1])

begin
 out_mant <= {in_mant[0], 3'b000};
 exp_diff_norm <= 3'b011; //3
 exp_diff_sign <= 2'b10; //subtract

end
else if (in_mant[0])

35

begin
 out_mant <= 4'b0000;
 exp_diff_norm <= 3'b100; //4
 exp_diff_sign <= 2'b10; //subtract

end
 else
 begin
 out_mant <= in_mant;
 exp_diff_norm <= 3'b001; //1
 exp_diff_sign <= 2'b01; //add
 end
end

endmodule

//**
//Module: Determines the sign of the resulting value
module final_sign (exp_diffsig, mant_diffsig, exp_diff, sign_A, sign_B, sign_Y);

input exp_diffsig; // 0 => exp_A is greater than or equal to
//exp_B
// 1 => exp_A is less than exp_B

input mant_diffsig; // 0 => mant_A is greater than or equal to
//mant_B
// 1 => mant_A is less than mant_B

input [3:0]exp_diff; //the exponent difference (exp_A - exp_B)
input sign_A; //sign bits of A, B, and Y
input sign_B;
output sign_Y;

reg sign_Y;

always@(exp_diffsig or mant_diffsig or exp_diff or sign_B or sign_A)
begin

if (exp_diffsig)
sign_Y <= sign_B; //if the exp_diffsig is 1 (number B is bigger)

//give sign_Y the sign of B
else
 begin

if (exp_diff == 4'b0000) //if the exp_diff is 0 (the two exp are
//equal), check the mantissa values

 begin
if (mant_diffsig) //if the mant_diffsig is 1 (number B is

//bigger)
 sign_Y <=sign_B; //give sign_Y the sign //of B
else

36

 sign_Y <= sign_A; //if the exp_diff is 0 and the
//mant_diffsig != 1

end //A and B have the same exponent but the
//difference in the mantissas are zero or
//greater

 else sign_Y <= sign_A; //give sign_Y the sign of A
end //give sign_Y the sign of A

//if exp_diffsig != 1
//(exp_A is bigger) and exp_diff is greater
//than zero

end

endmodule

//**
//Module: find which mantissa is bigger
module big_small (mant_A, mant_B, exp_diff, exp_diffsig, mant_diffsig, big_mant,
small_mant);

input [3:0]mant_A, mant_B, exp_diff; //mantissa bits of A, B and the difference in /
//the exponents (exp_A -exp_B)

input exp_diffsig, mant_diffsig; //bits which tell which mantissa and
//exponent value was larger for exp_diffsig
// 0 => exp_A is greater than or equal to
//exp_B
// 1 => exp_A is less than exp_B
//for mant_diffsig
// 0 => mant_A is greater than or equal to
//mant_B
// 1 => mant_A is less than mant_B

output [3:0] big_mant, small_mant; //the larger exponant's mantissa
//and the smaller exponent's mantissa

reg [3:0]mant_A, mant_B, exp_diff;
reg exp_diffsig;
reg [3:0] big_mant, small_mant;

always@(mant_A or mant_B or exp_diff or exp_diffsig or mant_diffsig)

//if there exponents are equal
if (exp_diff == 4'b0000)

begin
big_mant <= (mant_diffsig)? mant_B: mant_A;

//assign based on which mantissa value is larger

37

small_mant <= (mant_diffsig)? mant_A: mant_B;
end

//if the exponents are not equal
else

begin
big_mant <= (exp_diffsig)? mant_B: mant_A;

//big mant is the mantissa of the number with the larger exponent
small_mant <= (exp_diffsig)? mant_A: mant_B;

end
//small mant is the other mantissa

endmodule

//**
//Module: Shifts a given numner to the right by an amount (shift_amt)
module right_shifter(small_mant, shift_amt, shifted_mant);

input [3:0] small_mant; //the smaller exponent's mantissa
input [2:0] shift_amt; //the amount to right shift
output [5:0] shifted_mant; //resulted shifted mantissa

reg [3:0] small_mant;
reg [5:0] shifted_mant;

//shift and append the implicite leading one
always@(small_mant or shift_amt)

case (shift_amt)
3'b000: shifted_mant <= {2'b01, small_mant[3:0]};
3'b001: shifted_mant <= {3'b001, small_mant[3:1]};
3'b010: shifted_mant <= {4'b0001, small_mant[3:2]};
3'b011: shifted_mant <= {5'b00001, small_mant[3]};
3'b100: shifted_mant <= 6'b000001;

default: shifted_mant <= 6'b000000;

endcase

endmodule

//**
//Module: Verilog representation of the exponent datapath

38

module exp_part(exp_A, exp_B, exp_diff_norm, exp_diff_sign, exp_diff, exp_Y);

input [2:0] exp_A, exp_B, exp_diff_norm; //exponent values of A, B and the
//normalization number

input [1:0]exp_diff_sign; //operation in order to normalize

output [3:0] exp_diff; //the difference between exp_A - exp_B
output [2:0] exp_Y; //final exponent value

wire exp_diffsig; //0 => exp_A is greater than or equal to
//exp_B
// 1 => exp_A is less than exp_B

wire [2:0] temp_exp_Y; //holds the larger exponent value

reg [2:0] exp_Y;

//find exponent difference

assign exp_diff = exp_A – exp_B; //find the exponent difference
assign exp_diffsig = exp_diff[3];

//give temp_exp_Y the exp value of the bigger exp value
assign temp_exp_Y = (exp_diffsig)? exp_B: exp_A;

//normalizing the exponent value
always@(exp_diff_norm or exp_diff_sign or temp_exp_Y)

if(exp_diff_sign[1]) //if =1 subtract
exp_Y <= (temp_exp_Y) - (exp_diff_norm);

else
//if =0 add

exp_Y <= (temp_exp_Y) + (exp_diff_norm);

endmodule

39

Flatten Code
//Same code but with flattened busses for Electric
//Not as many comments since it's already hard to read

module topadder(A7, A6, A5, A4, A3, A2, A1, A0, B7, B6, B5, B4, B3, B2, B1, B0,
funct, zero, Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0);

input funct; // funct=0 is add, and funct=1 is subtract

input A0;
input A1;
input A2;
input A3;
input A4;
input A5;
input A6;
input A7;

input B0;
input B1;
input B2;
input B3;
input B4;
input B5;
input B6;
input B7;

output zero ;
output Y0;
output Y1;
output Y2;
output Y3;
output Y4;
output Y5;
output Y6;
output Y7;

wire sign_Y;

wire exp_diff_norm0;
wire exp_diff_norm1;
wire exp_diff_norm2;

wire exp_diff_sign0;
wire exp_diff_sign1;

40

wire exp_diff0;
wire exp_diff1;
wire exp_diff2;
wire exp_diff3;

synth_part get_mant(A7, A3, A2, A1, A0, B7, B3, B2, B1, B0, funct, zero,
exp_diff_norm2, exp_diff_norm1, exp_diff_norm0, exp_diff_sign1, exp_diff_sign0,
exp_diff3, exp_diff2, exp_diff1, exp_diff0, Y7, Y3, Y2, Y1, Y0);

exp_part get_exp(A6, A5, A4, B6, B5, B4, exp_diff_norm2, exp_diff_norm1,
exp_diff_norm0, exp_diff_sign1, exp_diff_sign0, exp_diff3, exp_diff2, exp_diff1,
exp_diff0, Y6, Y5, Y4);

endmodule

//**
module synth_part (A7, A3, A2, A1, A0, B7, B3, B2, B1, B0, funct, zero,
exp_diff_norm2, exp_diff_norm1, exp_diff_norm0, exp_diff_sign1, exp_diff_sign0,
exp_diff3, exp_diff2, exp_diff1, exp_diff0, Y7, Y3, Y2, Y1, Y0);

input exp_diff3, exp_diff2, exp_diff1, exp_diff0 ;
input A7, A3, A2, A1, A0;
input B7, B3, B2, B1, B0;
input funct; // funct=0 is add, and funct=1 is subtract

output zero;
output Y7, Y3, Y2, Y1, Y0;
output exp_diff_norm2, exp_diff_norm1, exp_diff_norm0;
output exp_diff_sign1, exp_diff_sign0;

wire temp_sign;

wire temp_mant_Y5;
wire temp_mant_Y4;
wire temp_mant_Y3;
wire temp_mant_Y2;
wire temp_mant_Y1;
wire temp_mant_Y0;

wire mant_diff4;
wire mant_diff3;
wire mant_diff2;
wire mant_diff1;
wire mant_diff0;

41

wire mant_diffsig;

wire small_mant3;
wire small_mant2;
wire small_mant1;
wire small_mant0;

wire shift_amount0;
wire shift_amount1;
wire shift_amount2;

wire shifted_mant5; //small mantissa shifted
wire shifted_mant4;
wire shifted_mant3;
wire shifted_mant2;
wire shifted_mant1;
wire shifted_mant0;

wire big_mant3; //bigger of the two mantissas
wire big_mant2;
wire big_mant1;
wire big_mant0;

wire temp_sign_B;
wire twos_small_mant5;
wire twos_small_mant4;
wire twos_small_mant3;
wire twos_small_mant2;
wire twos_small_mant1;
wire twos_small_mant0;

wire exp_diff_sign1;
wire exp_diff_sign0;
wire exp_diff_norm2;
wire exp_diff_norm1;
wire exp_diff_norm0;

//divide inputs into FP fields

//find mantissa difference

assign {mant_diff4, mant_diff3, mant_diff2, mant_diff1, mant_diff0} = {A3, A2, A1,
A0} - {B3, B2, B1, B0} ;

assign mant_diffsig = mant_diff4;

42

//assign small_mant to be the value of the mantissa of the number with the smaller of the
//two exponents
big_small mants(A3, A2, A1, A0, B3, B2, B1, B0, exp_diff3, exp_diff2, exp_diff1,
exp_diff0, mant_diffsig, big_mant3, big_mant2, big_mant1, big_mant0, small_mant3,
small_mant2, small_mant1, small_mant0);

assign {shift_amount2, shift_amount1, shift_amount0} = (exp_diff3)? -({exp_diff2,
exp_diff1, exp_diff0}): {exp_diff2, exp_diff1, exp_diff0};

//code for addition or subtraction

assign temp_sign = funct? ~B7: B7;
assign temp_sign_B = temp_sign;

//shift mantissa to align decimal points
right_shifter shift_mantissa(small_mant3, small_mant2, small_mant1, small_mant0,
shift_amount2, shift_amount1, shift_amount0, shifted_mant5, shifted_mant4,
shifted_mant3, shifted_mant2, shifted_mant1, shifted_mant0);

twos_comp two_small_mant(A7, B7, funct, shifted_mant5, shifted_mant4,
shifted_mant3, shifted_mant2, shifted_mant1, shifted_mant0, twos_small_mant5,
twos_small_mant4, twos_small_mant3, twos_small_mant2, twos_small_mant1,
twos_small_mant0);

//add the two mantissas together

assign {temp_mant_Y5, temp_mant_Y4, temp_mant_Y3, temp_mant_Y2,
temp_mant_Y1, temp_mant_Y0} =

{1'b1, {big_mant3, big_mant2, big_mant1, big_mant0}} +
{twos_small_mant5, twos_small_mant4, twos_small_mant3, twos_small_mant2,
twos_small_mant1, twos_small_mant0};

//assign zero detect
zero_detect zero_find(A7, B7, funct, exp_diff3, exp_diff2, exp_diff1, exp_diff0,

mant_diff4, mant_diff3, mant_diff2, mant_diff1, mant_diff0, zero);

normalize normal(temp_mant_Y5, temp_mant_Y4, temp_mant_Y3, temp_mant_Y2,
temp_mant_Y1, temp_mant_Y0, Y3, Y2, Y1, Y0, exp_diff_norm2, exp_diff_norm1,
exp_diff_norm0, exp_diff_sign1, exp_diff_sign0);

final_sign sign_find(mant_diffsig, exp_diff3, exp_diff2, exp_diff1, exp_diff0, A7,
temp_sign_B, Y7);

endmodule

43

//**

module zero_detect (A7, B7, funct, exp_diff3, exp_diff2, exp_diff1, exp_diff0,
mant_diff4, mant_diff3, mant_diff2, mant_diff1, mant_diff0, zero);
input A7, B7, funct;

input exp_diff3, exp_diff2, exp_diff1, exp_diff0;
input mant_diff4, mant_diff3, mant_diff2, mant_diff1, mant_diff0;

output zero;
reg zero;

always@(A7 or B7 or funct or exp_diff3 or exp_diff2 or exp_diff1 or exp_diff0 or
mant_diff4 or mant_diff3 or

mant_diff2 or mant_diff1 or mant_diff0)
if(((A7^B7)^funct)&({exp_diff3, exp_diff2, exp_diff1, exp_diff0} == 4'b0000) &

({mant_diff4, mant_diff3, mant_diff2, mant_diff1, mant_diff0} == 5'b00000))
zero <= 1;

else
zero <= 0;

endmodule

//**
module twos_comp (A7, B7, funct, shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0, twos_small_mant5, twos_small_mant4,
twos_small_mant3, twos_small_mant2, twos_small_mant1, twos_small_mant0);

input A7, B7, funct;
input shifted_mant5, shifted_mant4, shifted_mant3, shifted_mant2, shifted_mant1,

shifted_mant0;

output twos_small_mant5, twos_small_mant4, twos_small_mant3, twos_small_mant2,
twos_small_mant1, twos_small_mant0;

//two's compliment of shifted mantissa if numbers are being subtracted or adding
//a negative number

assign {twos_small_mant5, twos_small_mant4, twos_small_mant3, twos_small_mant2,
twos_small_mant1, twos_small_mant0} =

((A7^B7)^funct)? -({shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0}):

{shifted_mant5, shifted_mant4, shifted_mant3, shifted_mant2, shifted_mant1,
shifted_mant0};

44

endmodule

//**
module normalize (in_mant5, in_mant4, in_mant3, in_mant2, in_mant1, in_mant0,

out_mant3, out_mant2, out_mant1, out_mant0, exp_diff_norm2,
exp_diff_norm1, exp_diff_norm0, exp_diff_sign1, exp_diff_sign0);

input in_mant5, in_mant4, in_mant3, in_mant2, in_mant1, in_mant0;

output out_mant3, out_mant2, out_mant1, out_mant0;
output exp_diff_sign1, exp_diff_sign0;
output exp_diff_norm2, exp_diff_norm1, exp_diff_norm0;

reg in_mant5, in_mant4, in_mant3, in_mant2, in_mant1, in_mant0;
reg out_mant3, out_mant2, out_mant1, out_mant0;
reg exp_diff_sign1, exp_diff_sign0;
reg exp_diff_norm2, exp_diff_norm1, exp_diff_norm0;

always@(in_mant5 or in_mant4 or in_mant3 or in_mant2 or in_mant1 or in_mant0)
begin

 if (in_mant5)
begin

{out_mant3, out_mant2, out_mant1, out_mant0} <= {in_mant4,
in_mant3, in_mant2, in_mant1};
{exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b001;
{exp_diff_sign1, exp_diff_sign0} <= 2'b01;

end
else if (in_mant4)

begin
{out_mant3, out_mant2, out_mant1, out_mant0} <= {in_mant3,
in_mant2, in_mant1, in_mant0};
{exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b000;
{exp_diff_sign1, exp_diff_sign0} <=2'b01;

end
else if (in_mant3)

begin
 {out_mant3, out_mant2, out_mant1, out_mant0} <=
{{in_mant2, in_mant1, in_mant0}, 1'b0};

 {exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b001;
 {exp_diff_sign1, exp_diff_sign0} <= 2'b10;

end
else if (in_mant2)

begin
{out_mant3, out_mant2, out_mant1, out_mant0} <= {{in_mant1,
in_mant0}, 2'b00};

45

 {exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b010;
 {exp_diff_sign1, exp_diff_sign0} <= 2'b10;

end
else if (in_mant1)

begin
{out_mant3, out_mant2, out_mant1, out_mant0} <= {in_mant0,
3'b000};

 {exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b011;
 {exp_diff_sign1, exp_diff_sign0} <= 2'b10;

end
else if (in_mant0)

begin
 {out_mant3, out_mant2, out_mant1, out_mant0} <= 4'b0000;
 {exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b100;
 {exp_diff_sign1, exp_diff_sign0} <= 2'b10;

end
 else
 begin
 {out_mant3, out_mant2, out_mant1, out_mant0} <= {in_mant3,

in_mant2, in_mant1, in_mant0};
 {exp_diff_norm2, exp_diff_norm1, exp_diff_norm0} <= 3'b001;
 {exp_diff_sign1, exp_diff_sign0} <= 2'b01;
 end
end

endmodule

//**
module final_sign (mant_diffsig, exp_diff3, exp_diff2, exp_diff1, exp_diff0, sign_A,
sign_B, sign_Y);

input mant_diffsig;
input exp_diff3, exp_diff2, exp_diff1, exp_diff0;
input sign_A;
input sign_B;

output sign_Y;

reg sign_Y;

always@(mant_diffsig or exp_diff3 or exp_diff2 or exp_diff1 or exp_diff0 or sign_B or
sign_A)
begin

if (exp_diff3)
sign_Y <= sign_B; //if the exp_diffsig is 1 (number B is bigger)

//give sign_Y the sign of B

46

else
begin

if ({exp_diff3, exp_diff2, exp_diff1, exp_diff0} == 4'b0000)
//if the exp_diff is 0 (the two exp are equal),

begin //check the mantissa values
 if (mant_diffsig) //if the mant_diffsig is 1 (B is bigger)

sign_Y <=sign_B; //give sign_Y the sign
//of B

 else
sign_Y <= sign_A; //if the exp_diff is 0

//and the mant_diffsig
//!= 1

end //(A and B have the
//same exponent but
//the difference in the
//mantissas are zero or
//greater

else sign_Y <= sign_A;
//give sign_Y the sign of A

end //give sign_Y the sign of A if exp_diffsig !=
//1 (exp_A is bigger)
//and exp_diff is greater than zero

end

endmodule

//**
//find which mantissa is bigger

module big_small (A3, A2, A1, A0, B3, B2, B1, B0, exp_diff3, exp_diff2, exp_diff1,
exp_diff0, mant_diffsig, big_mant3, big_mant2, big_mant1, big_mant0, small_mant3,
small_mant2, small_mant1, small_mant0);

input A3, A2, A1, A0;
input B3, B2, B1, B0;
input exp_diff3, exp_diff2, exp_diff1, exp_diff0;
input mant_diffsig;

output big_mant3, big_mant2, big_mant1, big_mant0;
output small_mant3, small_mant2, small_mant1, small_mant0;

reg A3, A2, A1, A0, B3, B2, B1, B0, exp_diff3, exp_diff2, exp_diff1, exp_diff0;
reg big_mant3, big_mant2, big_mant1, big_mant0, small_mant3, small_mant2,
small_mant1, small_mant0;

47

always@(A3 or A2 or A1 or A0 or B3 or B2 or B1 or B0 or exp_diff3 or exp_diff2 or
exp_diff1

or exp_diff0 or mant_diffsig)

if ({exp_diff3, exp_diff2, exp_diff1, exp_diff0} == 4'b0000)
begin

{big_mant3, big_mant2, big_mant1, big_mant0} <=
(mant_diffsig)? {B3, B2, B1, B0}: {A3, A2, A1, A0};
{small_mant3, small_mant2, small_mant1, small_mant0} <=
(mant_diffsig)? {A3, A2, A1, A0}: {B3, B2, B1, B0};

end
else

begin
{big_mant3, big_mant2, big_mant1, big_mant0} <= (exp_diff3)?
{B3, B2, B1, B0}: {A3, A2, A1, A0};
{small_mant3, small_mant2, small_mant1, small_mant0} <=
(exp_diff3)? {A3, A2, A1, A0}: {B3, B2, B1, B0};

end

endmodule

//**
module right_shifter(small_mant3, small_mant2, small_mant1, small_mant0,
shift_amount2, shift_amount1, shift_amount0, shifted_mant5, shifted_mant4,
shifted_mant3, shifted_mant2, shifted_mant1, shifted_mant0);

input small_mant3, small_mant2, small_mant1, small_mant0;
input shift_amount2, shift_amount1, shift_amount0;

output shifted_mant5, shifted_mant4, shifted_mant3, shifted_mant2, shifted_mant1,
shifted_mant0;

reg small_mant3, small_mant2, small_mant1, small_mant0;
reg shifted_mant5, shifted_mant4, shifted_mant3, shifted_mant2, shifted_mant1,
shifted_mant0;

always@(small_mant3 or small_mant2 or small_mant1 or small_mant0 or shift_amount2
or shift_amount1 or shift_amount0)

case ({shift_amount2, shift_amount1, shift_amount0})
3'b000: {shifted_mant5, shifted_mant4, shifted_mant3,

shifted_mant2, shifted_mant1, shifted_mant0} <=
{2'b01, {small_mant3, small_mant2, small_mant1,
small_mant0}};

48

3'b001: {shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0} <=
{3'b001, {small_mant3, small_mant2, small_mant1}};

3'b010: {shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0} <=
{4'b0001, {small_mant3, small_mant2}};

3'b011: {shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0} <=
{5'b00001, small_mant3};

3'b100: {shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0} <=
6'b000001;

default: {shifted_mant5, shifted_mant4, shifted_mant3,
shifted_mant2, shifted_mant1, shifted_mant0} <=
6'b000000;

endcase

endmodule

//**
//exponent stuff
module exp_part(A6, A5, A4, B6, B5, B4, exp_diff_norm2, exp_diff_norm1,
exp_diff_norm0, exp_diff_sign1, exp_diff_sign0, exp_diff3, exp_diff2, exp_diff1,
exp_diff0, Y6, Y5, Y4);

input A6, A5, A4, B6, B5, B4, exp_diff_norm2, exp_diff_norm1, exp_diff_norm0;
input exp_diff_sign1, exp_diff_sign0;

output exp_diff3, exp_diff2, exp_diff1, exp_diff0;
output Y6, Y5, Y4;

wire exp_diffsig;
wire temp_exp_Y2;
wire temp_exp_Y1;
wire temp_exp_Y0;

reg Y6, Y5, Y4;

49

//find exponent difference

assign {exp_diff3, exp_diff2, exp_diff1, exp_diff0} = {A6, A5, A4} - {B6, B5, B4};

//give the exp_Y the exp value of the bigger exp value
assign {temp_exp_Y2, temp_exp_Y1, temp_exp_Y0} = (exp_diff3)? {B6, B5, B4}: {A6,
A5, A4};

always@(exp_diff_norm2 or exp_diff_norm1 or exp_diff_norm0 or exp_diff_sign1 or
exp_diff_sign0 or

temp_exp_Y2 or temp_exp_Y1 or temp_exp_Y0)

if(exp_diff_sign1) //if =1 subtract
{Y6, Y5, Y4} <= ({temp_exp_Y2, temp_exp_Y1, temp_exp_Y0}) -

({exp_diff_norm2, exp_diff_norm1, exp_diff_norm0});

else
//if =0 add

{Y6, Y5, Y4} <= ({temp_exp_Y2, temp_exp_Y1, temp_exp_Y0}) +
({exp_diff_norm2, exp_diff_norm1, exp_diff_norm0});

endmodule

50

Schematics
Leaf Cell: Mux2 Schematic

Leaf Cell: Full Adder Schematic

51

Exponent Bitslice Schematic

Exponent Datapath Schematic

52

Exponent and Mantissa Datapath Schematic

You will note that the schematic for the mantissa is missing. A program called
data analyzer is supposed to be able to generate a schematic and layout from Verilog
code. However, the code cannot contain any hierarchy or busses for data lines. The
entire Verilog code was rewritten to accommodate Electric. However, even though the
Verilog code does not contain any module calls, it implies an adder and a subtractor. The
Data Analyzer program created an adder and a subtractor in submodules. The Data
Anaylzer has a “Flatten Hierarchy” option, however, when we applied it to the design it
said that the operation to flatten hierarchy was too expensive. The Data Analyzer creates
a .vhdl file which is supposed to be imported into the Silicon Compiler option in Electric.
Electric then reads the .vhdl netlist to create a layout and a schematic of your code. On
the off chance that Electric would be able to handle the adder and subtractor submodules,
we imported the Data Analyzer result to Electric. However, Electric was unable to create
the desired designs since it was unable to handle the .vhdl file sent by the Data Analyzer.
There is a slight possibility that one could trick the Data Analyzer into creating the adder
without generating a submodule. This would require someone to layout the result of each
bit on an adder using logic gates. This problem quickly turns into a gigantic undertaking.

53

Layout
Leaf Cell: Mux2

Leaf Cell: Full Adder Layout

54

Exponent Bitslice Layout

Exponent Datapath Layout

