# **3-Coefficient FIR Filter Chip**

# Nick Bodnaruk and Carrie Chung

# April 11, 2001



## **Table of Contents**

| Functional Overview       | 3 |
|---------------------------|---|
| Pinout Diagram            | 4 |
| Chip Floorplan            | 5 |
| Area and Design Time Data | 7 |
| Simulation Results        | 9 |
| Verification Results      |   |
| Test Plan                 |   |
| Schematics                |   |
| Layouts                   |   |
| -                         |   |

### **Functional Overview**

This chip contains the logic for a three-coefficient Finite Impulse Response (FIR) filter, described by the equation:

$$y[n] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2],$$

where y[n] is the output signal and x[n] is the input signal at sample time *n*, and  $a_k$  are the coefficients. Each data input and coefficient is a 4-bit number, and the final output is a 10-bit number. These signals are shown in Table 1.

| Signals             | I/O     | Description         |
|---------------------|---------|---------------------|
| d0[3:0]             | Input   | Current data        |
| d1[3:0]             | Input   | n-1 data            |
| d2[3:0]             | Input   | n-2 data            |
| a0[3:0]             | Input   | Coefficient 0       |
| a1[3:0]             | Input   | Coefficient 1       |
| a2[3:0]             | Input   | Coefficient 2       |
| y[9:0]              | Output  | Output Signal       |
| Total I/O Pins Used |         | 34                  |
|                     | Table 1 | List of I/O signals |

Table 1. List of I/O signals.

The major components of the chip are three multipliers, one for each coefficient/data pair, and two adders that are used to sum the products of the multipliers.

## **Pinout Diagram**

| VDD         | d2[1]<br>IN | d2[2]<br>IN | d2[3]<br>IN | a0[0]<br>IN | GND | a0[1]<br>IN | a0[2]<br>IN | a0[3]<br>IN | a1[0]<br>IN | VDD         |
|-------------|-------------|-------------|-------------|-------------|-----|-------------|-------------|-------------|-------------|-------------|
| d2[0]<br>IN |             |             |             |             |     |             |             |             |             | a1[1]<br>IN |
| d1[3]<br>IN |             |             |             |             |     |             |             |             |             | a1[2]<br>IN |
| d1[2]<br>IN |             |             |             |             |     |             |             |             |             | a1[3]<br>IN |
| d1[1]<br>IN |             |             |             |             |     |             |             |             |             | a2[0]<br>IN |
| d1[0]<br>IN |             |             |             |             |     |             |             |             |             | a2[1]<br>IN |
| d0[3]<br>IN |             |             |             |             |     |             |             |             |             | a2[2]<br>IN |
| d0[2]<br>IN |             |             |             |             |     |             |             |             |             | a2[3]<br>IN |
| d0[1]<br>IN |             |             |             |             |     |             |             |             |             | y[0]<br>OUT |
| d0[0]<br>IN |             |             |             |             |     |             |             |             |             | y[1]<br>OUT |
| GND         | y[9]<br>OUT | y[8]<br>OUT | y[7]<br>OUT | y[6]<br>OUT | VDD | y[5]<br>OUT | y[4]<br>OUT | y[3]<br>OUT | y[2]<br>OUT | GND         |



### **Chip Floorplan**

Figure 1. Actual Floorplan with Dimensions.



Figure 2. Estimated Floorplan.



Figure 3. Actual layout of FIR Filter

The arrangement of the facets on the chip is basically the same as our originafloorplan estimate. The main differences between the actual and the originafloorplans are their areas and the positioning of the facets. The original area estimate was  $2.5 \times 10^6 \lambda^2$ , while the actual area occupied by the filter is  $1.79 \times 10^6 \lambda^2$ , a difference of  $7.6 \times 10^5 \lambda^2$ . We initially allocated 100 between each multiplier instance for wiring. In our final design, many of the wires were overlaid on the instances, allowing them to be placed closely to one another. Also, the standardfulladder and AND leaf cells were modified such that the n- and p-wells associated with the well contacts do not overlap. This enabled the leaf cells to be stacked closely, resulting in smaller heights for our facets. These improvements along with efficient wiring between the adders led to the reduced overall area in our final design.

| Area ar | ıd Design | <b>Time Data</b> |
|---------|-----------|------------------|
|---------|-----------|------------------|

| Facet      | Function       | Inputs            | Outputs     | Sub-facets    | Complexity |
|------------|----------------|-------------------|-------------|---------------|------------|
| AND        | logic gate     | a,b               | y           | N/A           | 1          |
| fulladder  | 1-bit adder    | a, b, cin         | sum, cout   | N/A           | 2          |
| 9adder     | 9-bit adder    | a[8:0],b[8:0]     | s[9:0]      | 8 fulladders  | 2          |
| 4xbitslice | bitslice for   | a,d[3:0],cin[2:0] | ad3, s[2:0] | 4 AND gates   | 3          |
|            | 4slicemul      | b[2:0]            | cout[2:0]   | 3 fulladders  |            |
| 4slicemul  | 4x4 multiplier | d[3:0]            | p[7:0]      | 5 4xbitslices | 4          |
|            | , T            | a[3:0]            |             |               |            |
| 3cfir      | 3-coefficient  | d0[3:0], a0[3:0]  | y[9:0]      | 3 4slicemul's | 3          |
|            | FIR Filter     | d1[3:0], a1[3:0]  |             | 2 9adders     |            |
|            |                | d2[3:0], a2[3:0]  |             |               |            |

Table 2. Facet Descriptions.

| Facet       | Actual Area   | Estimated Area | Time Spent (Hours) |      |        |            |              |
|-------------|---------------|----------------|--------------------|------|--------|------------|--------------|
|             | <b>(1^2</b> ) | (1^2)          | Schematic          | Icon | Layout | Simulation | Verification |
| AND         | 49*97         | 50*80          | 0.5                | 0    | 0.5    | 0          | 0.5          |
|             | 4.75E+03      | 4.00E+03       |                    |      |        |            |              |
| fulladder   | 169*97        | 170*80         | 0.5                | 0    | 1      | 0          | 0.5          |
|             | 1.64E+04      | 1.36E+04       |                    |      |        |            |              |
| 9adder      | 821*183       | 800*200        | 1                  | 0.5  | 3      | 6          | 1            |
|             | 1.50E+05      | 1.60E+05       |                    |      |        |            |              |
| 4xbitslice  | 709*97        | N/A            | 1                  | 0.5  | 2      | 1          | 1            |
|             | 6.88E+04      | N/A            |                    |      |        |            |              |
| 4slicemul   | 467*766       | 500*800        | 8                  | 0.5  | 20     | 6          | 10           |
|             | 3.58E+05      | 4.00E+05       |                    |      |        |            |              |
| 3cfir       | 1402*1275     | 1500*1700      | 4                  | 0    | 15     | 4          | 10           |
|             | 1.79E+06      | 2.55E+06       |                    |      |        |            |              |
|             |               | Total          | 15                 | 1.5  | 41.5   | 17         | 23           |
| Grand Total |               |                |                    |      | 98     |            |              |

Table 3. Area and Design Time.

#### Schematic

While designing the schematics, most of our time was spent on the 4slicemul facet. This was because our initial design was not optimized for the layout process. It was a direct translation of the array multiplier at the logical level. We redesigned it such that it utilizes the 4xbitslice facet in order to reduce the amount of layout work, at the expense of introducing redundant transistors.

#### Layout

The multiplier and the filter required many wires for the interconnections. The placement of these wires was the most difficult aspect of the layout, and consequently, took the most amount of time. Additional time was spent towards placing the facets as close together as possible.

#### Simulation

IRSIM was used to simulate all of our circuits. Since we were not familiar with this program, several hours were spent learning how to use it. The rest of the simulation time was used to develop test vectors that verify the performance of the designs.

#### Verification

There was a problem in the Electric NCC routine that causes NCC to fail when the 'merge parallel components' option is selected. Finding this bug was a part of our verification process. We also used Gemini to double check Electric's NCC results and no problems were found. The rest of the verification time was used to debug mistakes we made during the wiring process.

|         |        |        |        | 2111   | lula   | 1011   | NES         | uns               |      |       |     |
|---------|--------|--------|--------|--------|--------|--------|-------------|-------------------|------|-------|-----|
| -       | 0110   | 0111   | 0110   | 0111   | 0110   | 0111   | 2a          | 2a                | 054  | 2a    | 07e |
| 1220,00 | 0110   | 0111   | 0110   | 0111   | 0110   | 0111   | 2a 2        | 2a                | 054  | 2a    | 07e |
|         | 0000   | 0000   | 0000   | 0000   | 0000   | 0000   | 00          | 00                | 000  | 8     | 000 |
|         | 1111   | 111    | 111    | 1111   | 111    | 1111   | e1          | e1                | 1c2  | e1    | 2a3 |
| 2       | 0000   | 0000   | 0000   | 0000   | 0000   | 0000   | 00          | 0                 | 000  | 8     | 000 |
|         | 1010   | 1010   | 1011   | 1011   | 1001   | 1100   | 64          | 62                | PP0  | 9     | 149 |
|         | 0000   | 111    | 0000   | 1100   | 111    | 0101   | 00          | 0                 | 000  | 4b    | 04b |
| 2       | 1110   | 1110   | 1110   | 1110   | 1110   | 1110   | c4          | c4                |      | c4    | 24c |
| 1195.40 | 1101   | 1101   | 1101   | 1101   | 1101   | 1101   | 99 B        | 99 Be             | 152  | 90 Be | 1fb |
|         | 1000   | 1001   | 0110   | 0111   | 0100   | 0101   | 48          | 2ª                | 072  | 14    | 980 |
|         | 1110   |        | 1100   | 1101   | 1010   | 1011   | d2          | ]] <sup>3</sup> c | 16e  |       | 1dc |
|         | 1111   | 1111   | 1111   |        | 111    | 1111   | e1          | e1 📗              | 1c2  | e1    | 2a3 |
|         | 1110   | 1101   | 0000   | 1111   | 0010   | 0001   | ₽6 <b>∭</b> | 00                | 0066 | 02    | 068 |
|         | 1000   | 0111   | 1010   | 1001   | 1100   | 1011   | 38          | 2a                | 092  | 84    | 116 |
|         | 0010   | 0001   | 0100   | 0011   | 0110   | 0101   | 02          | 00                | 00e  | 1e II | 02c |
| .63     | ) 0000 | ) 0000 | ) 0000 | ) 0000 | ) 0000 | ) 0000 | 00          | 00                | 000  | 8     | 000 |
| ĥ       |        |        |        |        | N      | N      |             |                   |      |       |     |

**C**:

| test# | d0 | a0 | d1 | a1 | d2 | a2 | p0 | p1 | ps  | p2 | y(hex) |
|-------|----|----|----|----|----|----|----|----|-----|----|--------|
| 1     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0      |
| 2     | 1  | 2  | 3  | 4  | 5  | 6  | 2  | с  | e   | 1e | 2c     |
| 3     | 7  | 8  | 9  | 10 | 11 | 12 | 38 | 5a | 92  | 84 | 116    |
| 4     | 13 | 14 | 15 | 0  | 1  | 2  | b6 | 0  | 0b6 | 2  | 0b8    |
| 5     | 15 | 15 | 15 | 15 | 15 | 15 | e1 | e1 | 1c2 | e1 | 2a3    |
| 6     | 15 | 14 | 13 | 12 | 11 | 10 | d2 | 9c | 16e | 6e | 1dc    |
| 7     | 9  | 8  | 7  | 6  | 5  | 4  | 48 | 2a | 72  | 14 | 86     |
| 8     | 13 | 13 | 13 | 13 | 13 | 13 | a9 | a9 | 152 | a9 | 1fb    |
| 9     | 14 | 14 | 14 | 14 | 14 | 14 | c4 | c4 | 188 | c4 | 24c    |
| 10    | 15 | 0  | 12 | 0  | 5  | 15 | 0  | 0  | 0   | 4b | 04b    |
| 11    | 10 | 10 | 11 | 11 | 12 | 9  | 64 | 79 | 0dd | 6c | 149    |
| 12    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0      |
| 13    | 15 | 15 | 15 | 15 | 15 | 15 | e1 | e1 | 1c2 | e1 | 2a3    |
| 14    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0      |
| 15    | 7  | 6  | 7  | 6  | 7  | 6  | 2a | 2a | 54  | 2a | 07e    |

### **Expected Results for Simulation**

Table 4: Inputs and Outputs for Simulation.

Max Delay: 55nsec (for layout simulation)

#### **Verification Results**

The top-level design 3cfir and all its ubfacets pass DRC, ERC, and NCC. NCC was checked with both Electric and Gemini.

#### **Test Plan**

The first step in testing the chip is to examine the power (VDD) and ground (GND) pins before connecting a power supply to the chip. The resistance between VDD and GND pins should be very high (on the order of M $\Omega$ s). The resistance between two VDD pins should be small, and similarly for GND pins. Also, the resistance between any power pin and signal pin should be high. With these tests complete, hook up a power supply, and make sure a large current is not drawn and that the chip stays at room temperature.

Unfortunately, all the I/O pins on this chip are used, so we were not able to include any test circuits to help in the testing procedure. To test the basic functionality of the chip, make sure all the input pins are grounded (not floating). Connect a0[0] and d0[0] high, this should result in y[0] outputting high. Ground a0[0] and set a0[1] high, which will cause y[0] to fall low, and y[1] to output high. If these two tests succeed, proceed to hook up the chip to a chip tester and use the following IRSIM deck. The desired results are shown in Table 4 above.

```
vector d0 d0[3] d0[2] d0[1] d0[0]
vector d1 d1[3] d1[2] d1[1] d1[0]
vector d2 d2[3] d2[2] d2[1] d2[0]
vector a0 a0[3] a0[2] a0[1] a0[0]
vector a1 a1[3] a1[2] a1[1] a1[0]
vector a2 a2[3] a2[2] a2[1] a2[0]
vector p0 p0[7] p0[6] p0[5] p0[4] p0[3] p0[2] p0[1] p0[0]
vector p1 p1[7] p1[6] p1[5] p1[4] p1[3] p1[2] p1[1] p1[0]
vector ps ps8 ps7 ps6 ps5 ps4 ps3 ps2 ps1 ps0
vector p2 p2[7] p2[6] p2[5] p2[4] p2[3] p2[2] p2[1] p2[0]
vector y y[9] y[8] y[7] y[6] y[5] y[4] y[3] y[2] y[1] y[0]
ana a0 d0 a1 d1 a2 d2 p0 p1 ps p2 y
set d0 0000
set a0 0000
set d1 0000
set al 0000
set d2 0000
set a2 0000
s 80
set d0 0001
set a0 0010
set d1 0011
set al 0100
set d2 0101
set a2 0110
s 80
set d0 0111
set a0 1000
set d1 1001
set al 1010
set d2 1011
```

| set  | a2          | 1100 |
|------|-------------|------|
| 5 00 | ,<br>,      | 1101 |
| set  | au<br>- 0   | 1110 |
| set  | a0          |      |
| set  | aı          |      |
| set  | a⊥          | 0000 |
| set  | d2          | 0001 |
| set  | a2          | 0010 |
| s 80 | )           |      |
| set  | d0          | 1111 |
| set  | a0          | 1111 |
| set  | d1          | 1111 |
| set  | al          | 1111 |
| set  | d2          | 1111 |
| set  | a2          | 1111 |
| s 80 | )           |      |
| set  | d0          | 1111 |
| set  | a0          | 1110 |
| set  | dl          | 1101 |
| set  | al          | 1100 |
| set  | d2          | 1011 |
| set  | a2          | 1010 |
| s 80 | )           |      |
| set  | d0          | 1001 |
| set  | a0          | 1000 |
| set  | aı          | 0111 |
| set  | aı          | 0110 |
| set  | a2          |      |
| set  | az          | 0100 |
| s ou | ,<br>,<br>, | 1101 |
| set  | 20<br>20    | 1101 |
| get  | d1          | 1101 |
| set  | a1          | 1101 |
| set  | d2          | 1101 |
| set  | a2          | 1101 |
| s 80 | )           |      |
| set  | d0          | 1110 |
| set  | a0          | 1110 |
| set  | d1          | 1110 |
| set  | al          | 1110 |
| set  | d2          | 1110 |
| set  | a2          | 1110 |
| s 80 | )           |      |
| set  | d0          | 1111 |
| set  | a0          | 0000 |
| set  | d1          | 1100 |
| set  | al          | 0000 |
| set  | d2          | 0101 |
| set  | a2          | 1111 |
| s 80 | )           |      |
| set  | d0          | 1010 |
| set  | a0          | 1010 |
| set  | d1          | 1011 |
| set  | al          | 1011 |
| set  | α2          | 1001 |
| set  | a∠          | TUUT |

| set  | d0 | 0000 |
|------|----|------|
| set  | a0 | 0000 |
| set  | d1 | 0000 |
| set  | al | 0000 |
| set  | d2 | 0000 |
| set  | a2 | 0000 |
| s 80 | )  |      |
| set  | d0 | 1111 |
| set  | a0 | 1111 |
| set  | d1 | 1111 |
| set  | al | 1111 |
| set  | d2 | 1111 |
| set  | a2 | 1111 |
| s 80 | )  |      |
| set  | d0 | 0000 |
| set  | a0 | 0000 |
| set  | d1 | 0000 |
| set  | al | 0000 |
| set  | d2 | 0000 |
| set  | a2 | 0000 |
| s 80 | )  |      |
| set  | d0 | 0111 |
| set  | a0 | 0110 |
| set  | d1 | 0111 |
| set  | al | 0110 |
| set  | d2 | 0111 |
| set  | a2 | 0110 |
| s 80 | )  |      |

### Schematics













## Layouts

3cfir



4slicemul



4xbitslice







and2

