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Functional Overview 

 Our system implements a six-bit, four-tap fast Fourier transform circuit.  A four-tap fast 

Fourier transform (FFT) computes the Fourier coefficients of the spectrum of an input sequence 

that consists of four complex numbers.  Our system generates these coefficients for a sequence of 

four numbers, each of which consists of a six-bit real component and a six-bit imaginary 

component.  In general, an N-tap FFT is accomplished using the following equation: 
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For a four-tap FFT, this simplifies to: 
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In our design, the real and imaginary parts are kept separate and all the multiplication is trivial 

(shifts or multiplication by 1 or –1). 

 Because there are only 34 i/o pins available, there are not enough pins to import and 

export the real and imaginary parts of each tap at the same time.  Therefore, six bits are input at 

one time, along with a three-bit value designating which tap it is, as well as whether it is the real 

or imaginary part of that tap.  This process is controlled by a write enable.  The values are 

registered and fed to the FFT circuitry entirely in parallel.  The output of the FFT circuitry is 

multiplexed using a tristate multiplexer such that it is available one six-bit packet at a time.  The 



external system can select which packet to read through another three input pins.  The mapping 

of address to tap is as shown in the table, below. 

Address Input Value Output Value 
000 Im{x[0]} Im{X[0]} 
001 Im{x[1]} Im{X[1]} 
010 Im{x[2]} Im{X[2]} 
011 Im{x[3]} Im{X[3]} 
100 Re{x[0]} Re{X[0]} 
101 Re{x[1]} Re{X[1]} 
110 Re{x[2]} Re{X[2]} 
111 Re{x[3]} Re{X[3]} 

 In general, the addition of two n-bit number results in an (n+1)-bit sum.  In a digital 

system, this can lead to errors of overflow and underflow.  In our system, the six-bit values are 

added to become seven-bit values, which are in turn added to produce eight-bit values.  In order 

to avoid problems of overflow and underflow, the internal computations carry through all eight 

bits.  Then the division by four is accomplished by truncating the lower two bits.  However, the 

truncation does lead to rounding error.  Specifically, any value not evenly divisible by four is 

rounded down.  For example, 5 ÷ 4 = 1, and –5 ÷ 4 = -2.   



Chip Floorplan 

 
Figure 1: FFT Floorplan 

 Figure 1, above, shows the floorplan for the FFT circuit.  The large square surrounding 

the modules represents the area constraint of 2200 λ x 2200 λ.  The entire top- level module has 

dimensions 1958.75 λ x 2116.5 λ, which falls within the constraint. 



 
Figure 2: Floorplan with interconnect. 

 In figure 2, above, the interconnections between cells are represented by the gray squares.  

Much of the routing between the primary and secondary unit was done over the top of the cells 

by including routing channels in each bitslice.  Each routing channel had to be wide enough to 

accommodate 8 metal lines.   

Area and Design Time 

Cell Dimensions  
(λ  x λ) 

Area  
(λ2) 

Estimated Area  
(λ2) 

Design Time 
(hrs) 

Full Adder 170 x 87 14,790 12,800 5 
Inverter 25 x 87 2,175 1,600 2 

Tristate Inverter 30 x 87 2,610 3,200 2.5 
Latch 75 x 87 6,525 5,600 3 



Inverter Array 121 x 87 10,527 N/A 1 
Register File Bitslice 295.5 x 87 25,708.5 N/A 3 
Register File Datapath 350 x 525 18,3750 268,800 1 
Primary Computation 

Unit Bitslice 
1,269 x 87 110,403 N/A 6 

Primary Computation 
Unit Datapath 

1,327.5 x 699 927,922.5 704,000 2 

Secondary Computation 
Unit 

999 x 87 86,913 N/A 4 

Secondary Computation 
Unit Datapath 

1057.5 x 699 739,192.5 524,800 1 

Input Address Decoder 434 x 338 168,392 172,000 2 
Output Address Decoder 559.5 x 127 71,056.5 44,000 2 

Top Level 1958.75 x 2116.5 4,145,694.375 2,686,400 10 
 

Simulation Results 

 
Figure 3: Sample Simulation Waveforms  



 In order to verify that our design was correct, we simulated a number of test cases.  First, 

we set all of the input values to one and checked the output.  In the case of all input values being 

equal, the 0th output is equal to the input, and all others are zero.  The system passed that test.  

We repeated the test for the values of –1, 2, 31 (the maximum value), and –32 (the minimum 

value).  The system passed all of those tests.  We then tested a semi-random mix of those values, 

as is shown in figure 3, above.  The results are tabulated in decimal form, below. 

Input Value Output Expected Value Actual Value 
Im{x[0]} 1 Im{X[0]} 8 8 
Im{x[1]} 2 Im{X[1]} -7 -7 
Im{x[2]} 31 Im{X[2]} 7 7 
Im{x[3]} -1 Im{X[3]} -9 -9 
Re{x[0]} 1 Re{X[0]} 8 8 
Re{x[1]} 2 Re{X[1]} -9 -9 
Re{x[2]} 31 Re{X[2]} 7 7 
Re{x[3]} -1 Re{X[3]} -6 -6 

As predicted, the truncation results in downward rounding of all values not evenly divisible by 

four.  Finally, we tested a set of random numbers.  The results are tabulated below. 

Input Value Output Expected Value Actual Value 
Im{x[0]} 5 Im{X[0]} 7 7 
Im{x[1]} 20 Im{X[1]} 0 0 
Im{x[2]} 11 Im{X[2]} 0 0 
Im{x[3]} -6 Im{X[3]} -4 -4 
Re{x[0]} -31 Re{X[0]} -7 -7 
Re{x[1]} -17 Re{X[1]} -10 -10 
Re{x[2]} -20 Re{X[2]} 19 19 
Re{x[3]} 8 Re{X[3]} 3 3 

 

Verification Results 

 All cells pass DRC, ERC and NCC without errors. 



Postfabrication Test Plan 

 In order to easily test the production of this chip, it is desirable to add hardware to the 

design such as a ring oscillator to test the functionality of the i/o pads, or scan chains to the 

register file.  Unfortunately, the top level of the FFT layout is too large to incorporate such 

features.  However, it is possible to take advantage of the FFT algorithm in order to test the chip.  

As mentioned above, the 0th Fourier coefficient is equal to: 
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Therefore, in order to test the production of the input address decoder, register file and primary 

computation unit, the tester can tie the write enable high, set all of the inputs to zero but one and 

then examine the output to see if it is equal to one-fourth the non-zero input.  It is important to 

note that all of the values must be initialized at startup, as there is no reset function implemented 

in the system.  The output decoder can be tested by entering some simple test cases that 

guarantee all four output bytes to be different (such as x[0] = 1, x[1] = 2, x[2] = 3, x[3] = 4), then 

cycling through the outputs to ensure that none are the same. 



Schematics 

Leaf Cells 

 
Figure 4: Inverter Schematic  

 

 
Figure 5: Tristate Inverter Schematic 

 
 

 
Figure 6: Latch Schematic 



 
Figure 7: Full Adder Schematic 

Non-Leaf Cells 

 
Figure 8: Inverter Array Schematic 

 
Figure 9: Register File Bitslice Schematic 



 
Figure 10: Register File Datapath Schematic 

 
Figure 11: Input Address Decoder Schematic  

 
Figure 12: Output Address Decoder Schematic 



 
Figure 13: Primary Computation Unit Bitslice Schematic 

 

 
Figure 14: Secondary Computation Unit 

Bitslice Schematic 

 

 



 
Figure 15: Primary Computation 

Unit Datapath Schematic 

 
Figure 16: Secondary Computation Unit Datapath 

Schematic 
 



Figure 17: Top-Level Schematic 



Layout 

Leaf Cells 

 
Figure 18: Inverter Layout 

 
Figure 19: Tristate Inverter Layout 



 
Figure 20: Latch Layout 



 
Figure 21: Full Adder Layout 

Non-Leaf Cells 

 
Figure 22: Inverter Array Layout 



 
Figure 23: Input Address Decoder Layout 

 
Figure 24: Register File Bitslice Layout 



 
Figure 25: Regis ter File Datapath Layout 



 
Figure 26: Output Address Decoder 

 
Figure 27: Primary Computation Unit Bitslice Layout 

 
Figure 28: Secondary Computation Unit Bitslice Layout 

 
Figure 29: Primary Computation Unit Datapath Layout 



 
Figure 30: Secondary Computation Unit Datapath Layout 



 
Figure 31: Top-Level Layout 

 


