
A 6-Bit, 4-Tap Fast Fourier Transform Circuit

James Speros
Mike Sakasegawa

Intro to CMOS VLSI Design
Prof. Harris

Functional Overview

 Our system implements a six-bit, four-tap fast Fourier transform circuit. A four-tap fast

Fourier transform (FFT) computes the Fourier coefficients of the spectrum of an input sequence

that consists of four complex numbers. Our system generates these coefficients for a sequence of

four numbers, each of which consists of a six-bit real component and a six-bit imaginary

component. In general, an N-tap FFT is accomplished using the following equation:

()
1,...,0,][

1
][

1

0

2
−== ∑

−

=

−
Nkenx

N
kX

N

n

nNjk π

For a four-tap FFT, this simplifies to:

[]

()[]

[]

()[]]3[]1[]2[]0[
4
1

]3[

]3[]2[]1[]0[
4
1

]2[

]3[]1[]2[]0[
4
1

]1[

]3[]2[]1[]0[
4
1

]0[

xxjxxX

xxxxX

xxjxxX

xxxxX

−−−=

−+−=

−+−=

+++=

In our design, the real and imaginary parts are kept separate and all the multiplication is trivial

(shifts or multiplication by 1 or –1).

 Because there are only 34 i/o pins available, there are not enough pins to import and

export the real and imaginary parts of each tap at the same time. Therefore, six bits are input at

one time, along with a three-bit value designating which tap it is, as well as whether it is the real

or imaginary part of that tap. This process is controlled by a write enable. The values are

registered and fed to the FFT circuitry entirely in parallel. The output of the FFT circuitry is

multiplexed using a tristate multiplexer such that it is available one six-bit packet at a time. The

external system can select which packet to read through another three input pins. The mapping

of address to tap is as shown in the table, below.

Address Input Value Output Value
000 Im{x[0]} Im{X[0]}
001 Im{x[1]} Im{X[1]}
010 Im{x[2]} Im{X[2]}
011 Im{x[3]} Im{X[3]}
100 Re{x[0]} Re{X[0]}
101 Re{x[1]} Re{X[1]}
110 Re{x[2]} Re{X[2]}
111 Re{x[3]} Re{X[3]}

 In general, the addition of two n-bit number results in an (n+1)-bit sum. In a digital

system, this can lead to errors of overflow and underflow. In our system, the six-bit values are

added to become seven-bit values, which are in turn added to produce eight-bit values. In order

to avoid problems of overflow and underflow, the internal computations carry through all eight

bits. Then the division by four is accomplished by truncating the lower two bits. However, the

truncation does lead to rounding error. Specifically, any value not evenly divisible by four is

rounded down. For example, 5 ÷ 4 = 1, and –5 ÷ 4 = -2.

Chip Floorplan

Figure 1: FFT Floorplan

 Figure 1, above, shows the floorplan for the FFT circuit. The large square surrounding

the modules represents the area constraint of 2200 λ x 2200 λ. The entire top- level module has

dimensions 1958.75 λ x 2116.5 λ, which falls within the constraint.

Figure 2: Floorplan with interconnect.

 In figure 2, above, the interconnections between cells are represented by the gray squares.

Much of the routing between the primary and secondary unit was done over the top of the cells

by including routing channels in each bitslice. Each routing channel had to be wide enough to

accommodate 8 metal lines.

Area and Design Time

Cell Dimensions
(λ x λ)

Area
(λ2)

Estimated Area
(λ2)

Design Time
(hrs)

Full Adder 170 x 87 14,790 12,800 5
Inverter 25 x 87 2,175 1,600 2

Tristate Inverter 30 x 87 2,610 3,200 2.5
Latch 75 x 87 6,525 5,600 3

Inverter Array 121 x 87 10,527 N/A 1
Register File Bitslice 295.5 x 87 25,708.5 N/A 3
Register File Datapath 350 x 525 18,3750 268,800 1
Primary Computation

Unit Bitslice
1,269 x 87 110,403 N/A 6

Primary Computation
Unit Datapath

1,327.5 x 699 927,922.5 704,000 2

Secondary Computation
Unit

999 x 87 86,913 N/A 4

Secondary Computation
Unit Datapath

1057.5 x 699 739,192.5 524,800 1

Input Address Decoder 434 x 338 168,392 172,000 2
Output Address Decoder 559.5 x 127 71,056.5 44,000 2

Top Level 1958.75 x 2116.5 4,145,694.375 2,686,400 10

Simulation Results

Figure 3: Sample Simulation Waveforms

 In order to verify that our design was correct, we simulated a number of test cases. First,

we set all of the input values to one and checked the output. In the case of all input values being

equal, the 0th output is equal to the input, and all others are zero. The system passed that test.

We repeated the test for the values of –1, 2, 31 (the maximum value), and –32 (the minimum

value). The system passed all of those tests. We then tested a semi-random mix of those values,

as is shown in figure 3, above. The results are tabulated in decimal form, below.

Input Value Output Expected Value Actual Value
Im{x[0]} 1 Im{X[0]} 8 8
Im{x[1]} 2 Im{X[1]} -7 -7
Im{x[2]} 31 Im{X[2]} 7 7
Im{x[3]} -1 Im{X[3]} -9 -9
Re{x[0]} 1 Re{X[0]} 8 8
Re{x[1]} 2 Re{X[1]} -9 -9
Re{x[2]} 31 Re{X[2]} 7 7
Re{x[3]} -1 Re{X[3]} -6 -6

As predicted, the truncation results in downward rounding of all values not evenly divisible by

four. Finally, we tested a set of random numbers. The results are tabulated below.

Input Value Output Expected Value Actual Value
Im{x[0]} 5 Im{X[0]} 7 7
Im{x[1]} 20 Im{X[1]} 0 0
Im{x[2]} 11 Im{X[2]} 0 0
Im{x[3]} -6 Im{X[3]} -4 -4
Re{x[0]} -31 Re{X[0]} -7 -7
Re{x[1]} -17 Re{X[1]} -10 -10
Re{x[2]} -20 Re{X[2]} 19 19
Re{x[3]} 8 Re{X[3]} 3 3

Verification Results

 All cells pass DRC, ERC and NCC without errors.

Postfabrication Test Plan

 In order to easily test the production of this chip, it is desirable to add hardware to the

design such as a ring oscillator to test the functionality of the i/o pads, or scan chains to the

register file. Unfortunately, the top level of the FFT layout is too large to incorporate such

features. However, it is possible to take advantage of the FFT algorithm in order to test the chip.

As mentioned above, the 0th Fourier coefficient is equal to:

[]]3[]2[]1[]0[
4
1

]0[xxxxX +++= .

Therefore, in order to test the production of the input address decoder, register file and primary

computation unit, the tester can tie the write enable high, set all of the inputs to zero but one and

then examine the output to see if it is equal to one-fourth the non-zero input. It is important to

note that all of the values must be initialized at startup, as there is no reset function implemented

in the system. The output decoder can be tested by entering some simple test cases that

guarantee all four output bytes to be different (such as x[0] = 1, x[1] = 2, x[2] = 3, x[3] = 4), then

cycling through the outputs to ensure that none are the same.

Schematics

Leaf Cells

Figure 4: Inverter Schematic

Figure 5: Tristate Inverter Schematic

Figure 6: Latch Schematic

Figure 7: Full Adder Schematic

Non-Leaf Cells

Figure 8: Inverter Array Schematic

Figure 9: Register File Bitslice Schematic

Figure 10: Register File Datapath Schematic

Figure 11: Input Address Decoder Schematic

Figure 12: Output Address Decoder Schematic

Figure 13: Primary Computation Unit Bitslice Schematic

Figure 14: Secondary Computation Unit

Bitslice Schematic

Figure 15: Primary Computation

Unit Datapath Schematic

Figure 16: Secondary Computation Unit Datapath

Schematic

Figure 17: Top-Level Schematic

Layout

Leaf Cells

Figure 18: Inverter Layout

Figure 19: Tristate Inverter Layout

Figure 20: Latch Layout

Figure 21: Full Adder Layout

Non-Leaf Cells

Figure 22: Inverter Array Layout

Figure 23: Input Address Decoder Layout

Figure 24: Register File Bitslice Layout

Figure 25: Regis ter File Datapath Layout

Figure 26: Output Address Decoder

Figure 27: Primary Computation Unit Bitslice Layout

Figure 28: Secondary Computation Unit Bitslice Layout

Figure 29: Primary Computation Unit Datapath Layout

Figure 30: Secondary Computation Unit Datapath Layout

Figure 31: Top-Level Layout

