

A 6-Bit, 4-Tap Fast Fourier Transform Circuit

James Speros Mike Sakasegawa Intro to CMOS VLSI Design Prof. Harris

Functional Overview

Our system implements a six-bit, four-tap fast Fourier transform circuit. A four-tap fast Fourier transform (FFT) computes the Fourier coefficients of the spectrum of an input sequence that consists of four complex numbers. Our system generates these coefficients for a sequence of four numbers, each of which consists of a six-bit real component and a six-bit imaginary component. In general, an N-tap FFT is accomplished using the following equation:

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \left(\frac{2p}{N}\right)n}, k = 0, ..., N-1$$

For a four-tap FFT, this simplifies to:

$$X[0] = \frac{1}{4} [x[0] + x[1] + x[2] + x[3]]$$
$$X[1] = \frac{1}{4} [x[0] - x[2] + j(x[1] - x[3])]$$
$$X[2] = \frac{1}{4} [x[0] - x[1] + x[2] - x[3]]$$
$$X[3] = \frac{1}{4} [x[0] - x[2] - j(x[1] - x[3])]$$

In our design, the real and imaginary parts are kept separate and all the multiplication is trivial (shifts or multiplication by 1 or -1).

Because there are only 34 i/o pins available, there are not enough pins to import and export the real and imaginary parts of each tap at the same time. Therefore, six bits are input at one time, along with a three-bit value designating which tap it is, as well as whether it is the real or imaginary part of that tap. This process is controlled by a write enable. The values are registered and fed to the FFT circuitry entirely in parallel. The output of the FFT circuitry is multiplexed using a tristate multiplexer such that it is available one six-bit packet at a time. The external system can select which packet to read through another three input pins. The mapping of address to tap is as shown in the table, below.

Address	Input Value	Output Value
000	$Im{x[0]}$	$Im{X[0]}$
001	$Im{x[1]}$	$Im{X[1]}$
010	$Im{x[2]}$	$Im{X[2]}$
011	$Im{x[3]}$	$Im{X[3]}$
100	$\operatorname{Re}\{x[0]\}\$	Re{X[0]}
101	$Re{x[1]}$	Re{X[1]}
110	$\operatorname{Re}\{x[2]\}$	Re{X[2]}
111	$\operatorname{Re}\{x[3]\}$	Re{X[3]}

In general, the addition of two n-bit number results in an (n+1)-bit sum. In a digital

system, this can lead to errors of overflow and underflow. In our system, the six-bit values are added to become seven-bit values, which are in turn added to produce eight-bit values. In order to avoid problems of overflow and underflow, the internal computations carry through all eight bits. Then the division by four is accomplished by truncating the lower two bits. However, the truncation does lead to rounding error. Specifically, any value not evenly divisible by four is rounded down. For example, $5 \div 4 = 1$, and $-5 \div 4 = -2$.

Chip Floorplan

Figure 1: FFT Floorplan

Figure 1, above, shows the floorplan for the FFT circuit. The large square surrounding the modules represents the area constraint of 2200 λ x 2200 λ . The entire top-level module has dimensions 1958.75 λ x 2116.5 λ , which falls within the constraint.

Figure 2: Floorplan with interconnect.

In figure 2, above, the interconnections between cells are represented by the gray squares. Much of the routing between the primary and secondary unit was done over the top of the cells by including routing channels in each bitslice. Each routing channel had to be wide enough to accommodate 8 metal lines.

Cell	Dimensions (1 x 1)	Area (1 ²)	Estimated Area (1 ²)	Design Time (hrs)
Full Adder	170 x 87	14,790	12,800	5
Inverter	25 x 87	2,175	1,600	2
Tristate Inverter	30 x 87	2,610	3,200	2.5
Latch	75 x 87	6,525	5,600	3

Area and Design Time

Inverter Array	121 x 87	10,527	N/A	1
Register File Bitslice	295.5 x 87	25,708.5	N/A	3
Register File Datapath	350 x 525	18,3750	268,800	1
Primary Computation	1,269 x 87	110,403	N/A	6
Unit Bitslice				
Primary Computation	1,327.5 x 699	927,922.5	704,000	2
Unit Datapath				
Secondary Computation	999 x 87	86,913	N/A	4
Unit				
Secondary Computation	1057.5 x 699	739,192.5	524,800	1
Unit Datapath				
Input Address Decoder	434 x 338	168,392	172,000	2
Output Address Decoder	559.5 x 127	71,056.5	44,000	2
Top Level	1958.75 x 2116.5	4,145,694.375	2,686,400	10

Simulation Results

fft													Wed	Apr 11	15:20:22 2001
write	1000	1001	1010	1011	1100	1101	1110				11	11			
read					000				001	010	011	100	101	110	111
din	01		1	i i	8f 0:	1 0	2	f				Зf			
dout		01	09	10		08			39	07	37	08	37	07	39
time (ns).															

Figure 3: Sample Simulation Waveforms

In order to verify that our design was correct, we simulated a number of test cases. First, we set all of the input values to one and checked the output. In the case of all input values being equal, the 0^{th} output is equal to the input, and all others are zero. The system passed that test. We repeated the test for the values of -1, 2, 31 (the maximum value), and -32 (the minimum value). The system passed all of those tests. We then tested a semi-random mix of those values, as is shown in figure 3, above. The results are tabulated in decimal form, below.

Input	Value	Output	Expected Value	Actual Value
$Im{x[0]}$	1	$Im{X[0]}$	8	8
$Im{x[1]}$	2	$Im{X[1]}$	-7	-7
$Im{x[2]}$	31	$Im{X[2]}$	7	7
$Im{x[3]}$	-1	$Im{X[3]}$	-9	-9
$\operatorname{Re}\{x[0]\}$	1	$Re{X[0]}$	8	8
$Re{x[1]}$	2	Re{X[1]}	-9	-9
$Re{x[2]}$	31	Re{X[2]}	7	7
$Re{x[3]}$	-1	$Re{X[3]}$	-6	-6

As predicted, the truncation results in downward rounding of all values not evenly divisible by

four. Finally, we tested a set of random numbers. The results are tabulated below.

Input	Value	Output	Expected Value	Actual Value
$Im{x[0]}$	5	$Im{X[0]}$	7	7
$Im{x[1]}$	20	$Im{X[1]}$	0	0
$Im{x[2]}$	11	$Im{X[2]}$	0	0
$Im{x[3]}$	-6	$Im{X[3]}$	-4	-4
$\operatorname{Re}\{x[0]\}\$	-31	$\operatorname{Re}\{X[0]\}\$	-7	-7
$\operatorname{Re}\{x[1]\}$	-17	Re{X[1]}	-10	-10
$\operatorname{Re}\{x[2]\}$	-20	Re{X[2]}	19	19
$\operatorname{Re}\{x[3]\}$	8	$Re{X[3]}$	3	3

Verification Results

All cells pass DRC, ERC and NCC without errors.

Postfabrication Test Plan

In order to easily test the production of this chip, it is desirable to add hardware to the design such as a ring oscillator to test the functionality of the i/o pads, or scan chains to the register file. Unfortunately, the top level of the FFT layout is too large to incorporate such features. However, it is possible to take advantage of the FFT algorithm in order to test the chip. As mentioned above, the 0th Fourier coefficient is equal to:

$$X[0] = \frac{1}{4} [x[0] + x[1] + x[2] + x[3]].$$

Therefore, in order to test the production of the input address decoder, register file and primary computation unit, the tester can tie the write enable high, set all of the inputs to zero but one and then examine the output to see if it is equal to one-fourth the non-zero input. It is important to note that all of the values must be initialized at startup, as there is no reset function implemented in the system. The output decoder can be tested by entering some simple test cases that guarantee all four output bytes to be different (such as x[0] = 1, x[1] = 2, x[2] = 3, x[3] = 4), the n cycling through the outputs to ensure that none are the same.

Schematics

Leaf Cells

Figure 4: Inverter Schematic

Figure 5: Tristate Inverter Schematic

Figure 6: Latch Schematic

Non-Leaf Cells

Figure 8: Inverter Array Schematic

Figure 9: Register File Bitslice Schematic

Figure 10: Register File Datapath Schematic

Figure 11: Input Address Decoder Schematic

Figure 12: Output Address Decoder Schematic

Bitslice Schematic

Figure 16: Secondary Computation Unit Datapath Schematic

Layout

Leaf Cells

Figure 18: Inverter Layout

Figure 19: Tristate Inverter Layout

Figure 21: Full Adder Layout

Figure 22: Inverter Array Layout

Figure 23: Input Address Decoder Layout

Figure 24: Register File Bitslice Layout

	-	111111	111111	-11111	
		- Di 1000	10000000	Vilo Di Millio	
				Sector - Angelet	Inell Pressent for
		AN FRAM	Vall. Prati	Kall. Predat	1. 17 1. 1997 (A. 1. 1987)
		- Maria	(All harded)	1411701412	
		1000	11111	11111	111 1999
		Circle Circle	1000	222 00000	
		a construction of			
		SAL DANKS	CANALLY, 1/ PAN	AND LIVERAN	I TELLERICAL INTEL
			(ALA (ALANA)	(MAR) MACHERA	(ala) allasta ala
				Children and	the provide the
		1010101			1 S - S / S / S - S - 4
		a see presso	and Leanerd		and control and
		A DECEMBER	AND ALLER	AND STREET	AN AND A AND
	_	alat and	1996 Add - P	Cold a la l	(here and a company party
		PROVINE			
			line stated	in the second	tender formered ten.
		1			
					ALLER OF LES
ii	_	2227	Carl Carl and a start	Carl Control of the	AS AS I TO A A A A
	HARD .	- Angele		A Martine States	
	11111	B 79 19 1	12/11 11/1/12/1	17/2 1 19/1/2	2772 1077 278 279
				length fertilities	Entra a formation of the
_		1000	1981 1 11 11 11 1981	Call & PPICANUS	112111121112111111111111111111111111111
		- Walter	(HILLIGH	A CALLANDA	Carlo a
		· · · · · · · · ·	1111 states	11111 states	IIII and III
	::	distant in the			
		A A A	MA, MARIA	ANA ANALYA	1454 1454 1454
		AND PROPERTY	a tabl 1 had some and	the lot work	ubist / isto www.com/ pist

Figure 25: Register File Datapath Layout

Figure 26: Output Address Decoder

Figure 27: Primary Computation Unit Bitslice Layout

Figure 28: Secondary Computation Unit Bitslice Layout

Figure 29: Primary Computation Unit Datapath Layout

Figure 30: Secondary Computation Unit Datapath Layout

Figure 31: Top-Level Layout