DES Encryption Chip

Braden Pdllett
May May Wang
Steve Yan

A S ik, i | o i i, L e i S s e B 2 S S— s e s i

AP
LA TN T Y PO A P11 P P e

(NI | TTT e

E158 | VLSI | Professor Harris
April 11, 2001

Final Project: DES Encryption Chip
Braden Pellett
May May Wang
Steve Yan
E158 | VLSI | Professor Harris
April 11, 2001

1. Introduction

The Data Encryption Standard (DES) is a cryptographic algorithm. The government
instituted DES as a standard encryption method in July 1977 and last reaffirmed it in 1993.
When DES was considered secure, it was used regularly in government use for transmission of
sensitive binary-encoded data between two endpoints on a non-secure medium.

DESrelies on akey system to both encrypt and decrypt information. The original
algorithm uses a 64-bit key that consists of a 56-bit randomly generated binary number along
with 8 bits for parity checking. The valuesin thiskey are used to convert a 64-bit block of input
datainto a 64-bit block of encrypted output data following a specific series of permutations. The
encrypted data is deciphered by applying the encryption key and reverse of the DES encryption
algorithm.

This project uses the same DES encryption process using a 32-bit key to encode a 32-bit
block of input dataviaaVLSI chip package, more specifically a2.2 x 2.2 mm 40-pin MOSIS
“TinyChip” fabricated using a 1.5 pm process. The layout fitsin a 2200\ x 2200\ area. The
logic on the chip is driven synchronously via a two-phase clock input.

1.1. Algorithm Overview

A brief overview of the implemented DES encryption algorithm is as follows.

Standard DES encryption uses a 64-bit key to encrypt a 64-bit data block. Due to space
constraints on the Mosis TinyChip, this project implements only 32-bit encryption. Furthermore,
DES encryption depends on the strength of the bit swizzle blocks described below. Since this
project was a practice in VLS| chip design rather than the mathematical details of encryption,
randomly chosen swizzle blocks were used. Therefore the strength of encryption that the chip
produces is not guaranteed.

The DES encryption algorithm can be divided into two computational paths: a path that handles
the actual data encryption, which we will call the * datapath”, and a path that takes asinput an initial key
and calculates the series of keysto be used in encrypting the data. Standard DES uses 16 keysto for
encryption; this variant of DES uses only 8.

Datapath
The design encrypts data using the following method:

The 32 bits of the input block to be enciphered are first subjected to the following
permutation, called the initial permutation IP:

1P
29 25 21 17 13 9
31 27 23 19 15 11
28 24 20 16 12 8
30 26 22 18 2 6

=
oPhNum
=

AOUOH

That is the permuted input has bit 29 of the input asitsfirst bit, bit 50 asits second bit,
and with 14 asitslast bit. The permuted input block is then the input to a key-dependent
computation described below. The output of that computation is then subjected to the following
permutation which is the inverse of the initial permutation:

1p?t
8 24 3 16
9 25 2 17
10 26 1 18
11 27 0 19
12 28 4 20
13 29 5 21
14 30 6 22
15 31 8 23

The permuted input is further scrambled using 8 iterations of modul o arithmetic computations
defined in terms of a cipher function f which operates on two blocks, one of 16 bits and one of 24
bits, and produces ablock of 16 bits. Let the 32 bits of the input block to an iteration consist of a
16-bit block L followed by a 16-bit block R. Let the 32-bit input block be LR.

Let K be ablock of 24 bits chosen from the 32-bit key, where K is selected using akey
schedule that takes as input an integer n in the range from 1 to 8 and the 32-bit KEY block. Then
the output L'R’ of aniteration with input LR is defined by:

Ll
R’

R
L O f(RK)

where O denotes bit-by-bit addition modulo 2. If L'R’ isthe output of the 8" iteration then R'L’
iswhat we call the preoutput block. Since these bit swizzle blocks are permanent, the bits of the
32-bit bus are hardwired to match the permutations.

The following isablock diagram of the enciphering computation:

INPUT[31:0]

v
C

Initial Permutation

)

)

v

RO

O« s |+

D+

;

L1 =R1 R1 = LO@® f(RO, K1)

O

D+

;

R8 = L7® f(R7, K8)

C

Inverse Initial Perm)

v

OUTPUT[31:0]

Enciphering computation

K8

K2

L1=R1 R2 = L1@® f(R1, K2)
. 2 1 ------------ Kn
(@) -smrmmemmeee O o
L7'= R6

K1

Let the 32 bits of the input block to an iteration consist of a 16 bit block L followed by a 32 bit
block R. Therefore theinput block isLR. Let K be ablock of 24 bits chosen from the 32-bit key
designed by KEY. Let K, designate a function which takes as input the 32-bit key and outputs
the n™ calculated key.

Let E denote a function which takes a block of 16 bits asinput and yields a block of 24
bits as output. Let E be such that the 24-bits of its output are obtained by selecting the bitsin its

inputs in order according to the following table:

E
1 2 3
3 4 5
5 6 7
7 8 9
9 10 11
11 12 13
13 14 15
15 16 1

The exclusive OR of the output of E and the value of K are piped through afunction block S
which maps the result to a 16-bit value (see diagram below.)

R[15:0] K[23:0]

f(R,K) [16:0]

f(R,K) cipher function

Keypath

The key schedule is calculated using a series of |eft shifts preceded and followed by two
permuted choice blocks, designated PC-1 and PC-2. This key schedule feeds into the datapath
by the following values for PC-1 and PC-2 and left shift permutations:

PC-1
24 16 8 0
25 17 9 1
26 18 10 2
27 19
30 22 14 6
29 21 13 5
28 20 12 4
11 3
PC-2
6 11 13
2 4 5
1 12 3
7 9 0
25 14 19
23 21 27
16 22 20

The following computation is performed in the keypath:

KEY [31:0]

=)

v

v v
v v

et it)
v

* »(_pc2) Kl

v

O
=

Key schedule calculation.

1.2. Hardware Implementation

1.1/0

Since the MOSIS package only allows for 40 pins, 6 of which are power and ground
lines, data is segmented into 8-hit bytes and piped into 8 x 4 arrays of latches that hold the data
and key bits. These registers allow the entire message and key to be entered into the process
before continuing to the next step. Furthermore, each 32-bit memory array is addressed using
two address bits controlled externally by the user. Therefore input and output can be entered and
extracted from the chip asynchronously.

2. Initial Permutation

Both 32-bit outputs from the key and data register must undergo an initial permutation, or
“bit-swizzling”. Bit-swizzling means that blocks of wires are swapped, or “swizzled”, to
permute the data of a 32-bit word asit transitions between logic blocks in the chip. Not all of
the bit wires need to be swizzled and retained, or vice versa, some of the bit wires can be
repeated. For example, in the case of the 32-bit key, only 28 bits are permutated and sent into
the barrel shifter, while the permutated message retains all 32 hits.

3. Initial Components for the 8-iteration Calculation

DES relies on an 8-iteration calculation that relies on the sum of two modulo arithmetic
calculations. Both summations can be performed by XOR gates.

In theinitial iteration, the first XOR sums up a 24-bit K derived from the key, and a
permutated 24-bit E derived from the message. In order to determine K, the 28-bit permutated
key is split into two 14-bit sections C, D and each section is |eft-shifted. Thisisimplemented by
two barrel shifters composed of a series of flip-flops that don’t lose their values until after they
transfer their value to the next register in line. Each of these barrel shifters includes two
transmission gates to select between data from the previous flip-flop and initialization data from
the IP permutation block.

4. Calculation of f(R,K)

Theresult of the first XOR (the sum of K and E) is a 24-bit solution or eight sections of
3-bit solutions. Each of the eight 3-bit solutions behave as address bitsto eight S function blocks
that act as ROM, holding 2 bits of data at each location. Each S-block is implemented as two
muxed smaller ROM blocks that use pull-down transistors to instantiate their values. The eight
sections of 2-bit retrieved values or 16-bit solution is then summed up with Ly using the second
XOR. Theresult isa 16-bit solution that becomes known as R;.

5. 8-iteration calculation

The calculation in the chip is controlled by a synchronous counter (composed of an
incrementer and aregister). Each iteration depends on the results of the previous iteration.
Close to the end of the first iteration, values for Ry, Ry, and Lo, were obtained. In the second
iteration, the value of R; becomes the new value for Ry. The value of
Ry becomes the new value of L1, and the value of L1 will become the value for Lo. Then the first
XOR repeatsits calculation for the second iteration. At the end of the eighth iteration, the value
of Ry and L enter afinal permutation and exit through output registers. To switch the values of
RO, LO, Ry, and L1 without losing data, four arrays of registers are used in combination with two-

phase clocking. When the correct phase of the clock goes high, the array of registersrelease
their value to the next array.

1.3. 1/0 Pinout

The following is the pinout of the chip implemented design.

NAME Description
Vop Power (3)
Gnd Ground (3)
Clkq Clock, phase 1 (1)
Clk, Clock, phase 2 (1)
Reset Global reset (1)
KeyOrData Select either key or data input (1)

OutSelect[1:0]

Output word selection (2)

InSelect[1:0]

Input word selection (2)

DatalnReady

Data ready to be read in (1)

Dataln[7:0] Unencrypted data word in (8)
Outp
NAME Description
DataOutReady Goes HI when encrypted data is ready (1)

DataOut[7:0]

Encrypted data out (8)

pins

23 pins

9 pins

Total

32 pins

vdd

Clk1

Clk2

Reset

Gnd

Dataln[7:0]

vdd

InSelect[1]

InSelect[0]

KeyOrData

OutSelect[1]

OutSelect[0]

Gnd

2200\

FLOOR PLAN

This project implemented a 32-bit version of the DES encryption algorithm onto a

2200M? layout area. The floor plan demonstrates how the chip components fit within the given

area.

2200\
- -
|
u Pc!l memreg32_and_
(27('))\ decoder
Barrel " (591\ x 355))
Co [27:0] Do [56:28] 220M)
(1023\ x 388)) I I
memreg32_and_
counter decoder
(295 x
P (591\ x 355))
IP (1147\ x 160)\)*
Ro[0:15] Lo[16:31]
PC-2 (980\ x 70\) 0 (1147) x 210)3)
E (980X x 220A)* —$— A
4_
XOR R;[0:15] L,[16:31]

XOR
(1000A x [L37A)

v 4

S block
(1095A x 368A)

(1129A x 145))

¢ = P

Memreg32out [31:0]
(691\ x 454))

Register Block

Bit-Swizzling Block

Logic Block

* not drawn to
scale|E, IP|

2.2. Layout

As seen above in the diagram, the floor plan consists of three main types of blocks: a
register block, bit swizzle block, and alogic block. Register and logic blocks consist of the |eaf
cells discussed in the next section.

[Note that bit swizzle blocks are ssmply blocks of wires that are swapped, or “swizzled”,
to permute the data of a 32-bit word asit transitions between logic blocksin the chip. Their area
estimate was calculated by finding the area that the wires required to change directions from the
output bus to the changed inputs designated for those bits.]

Below isalisting of the facet-by-facet area.

Layout Size

Leaf Cell Name Area (\?)

(W x H)

Accepts and holds 8-bit segments of

memreg32_and_decoder 591 x 355 209805 | theinput until the full 32-bits are
received.

LoRo 1147 x 210 240870 | Holdsdatauntil correct clock phase,
then delivers values to another array

LiR: 1129 x 145 163705 | of regigters
Accepts the full 32-bits of the output,

Memreg32out 691 x 454 313714 | and alowsit to leave the chip in 8-bit
segments.

Barrel 1023 x 388 396924 L eft-shifts the two halves of the

permutated key with each iteration.
Calculates the number of iterations

Counter 296.5x 118 34987 that the encryption process has
undergone.

S block [7:0] 1005x 368 | 402060 | okesinas-bitaddressand deliversa
2-bit output.

IPand 1P (swizzle 32 hits) 1147 x 160 183520

PC-1 (swizzle 32 bits) 270 x 220 59400 Bit-swizzles the input so that a

PC-2 (swizzle 32 bits) 980 x 70 68600 permutated output is sent.

E (swizzle 16 bits) 980 x 220 215600

FACET PERFORMANCES

3.1. Leaf Cells

L eaf Cell Name L?\B;\(/)L)‘(tl_si')ze
X0r2 46 x 60 11 Pass Pass

std_latch_mirror_mux 132 x 209.5 6 Pass Pass Pass
std_latch_mirror 80 x 240 3 Pass Pass Pass
std latch _mirror_2 80 x 120 3 Pass Pass Pass
register 150.5 x 103 5 Pass Pass Pass
counter 296.5x 118 9 Pass Pass Pass
s block [7:0] 131x 110.5 16 Pass Pass Pass
decoder24 en 96.5 x 265 5 Pass Pass Pass

3.2. Higher Level Cells

Layout Size | Design Time
Leaf Cell Name (\%V X H) (%rs)
mem[31:0] 591 x 355 5 Pass Pass Pass
LoRo [31:0] 1147 x 210 3 Pass Pass Pass
L;R; [31:0] 1129 x 145 3 Pass Pass Pass
Memreg32out [31:0] 691 x 454 3 Pass Pass Pass
CoD,, (barrel shifters) 1023 x 388 6 Pass Pass Pass
IPand IP" (swizzle 32 bits) 1147 x 160 1 Pass Pass Pass
PC-1 (swizzle 32 bits) 270 x 220 1 Pass Pass Pass
PC-2 (swizzle 32 hits) 980 x 70 1 Pass Pass Pass
E (swizzle 16 bits) 980 x 220 1 Pass Pass Pass
Keypath 2185 x 2210 10 Pass Pass Fail
Datapath 1579 x 1755 10 Pass Pass Fail

3.3. Simulation Results

Our design works in schematic form as verified by our encryption test program. However, the
top-level layout facet does not simulate correctly, nor does it NCC check correctly with the
accompanying schematic. However, each of the layout cells one layer below the top level do
simulate correctly and NCC check. These working layout blocks and a working top-level
schematic lead us to believe that our design is sound.

Below are ssimulation waveforms of the top-level schematic and each of the main sub-blocks
contained in the top-level layout.

1. Top Level schematic simulation. The output vector out was verified by the included
encryption verification program.

Vectors.

a[1: 0 address selection for 32-bit nenory registers

d[7: 0 8-bit input bus

enLO, enRO, enLl, enRl Clock signals for latches in facet LoRofl ay}

phl, ph2 Two phase cl ocks

reset Counter reset

S Sel ects between previous value and output of |IP pernmutation block in
facet conpute_nen{l ay}

s_key Sel ects between output of PC-1 pernutation block previous flip-flop
in facet fullbarrel {lay}

counter[2: 0] 3-bit counter

I P[31: 0 Qut put val ue of | P permutation bl ock

out [31: 0] Qut put val ue of facet conpute_nen{lay} from subfacet L1RL{l| ay}

|- B D) [e #ri /1l

2. XOR Layout simulation

B wor il |y ToN
11_IH

3. Full 32-bit barrel shifter layout simulation
| £ oitbpzen |

g NPT

acbor] oot hitesd Eaamel

4. 32-bit memory register layout simulation

Fe M= B
T S E—

POSTFABRICATION TEST PLAN

Should this design be sent to fabrication, note that a ring oscillator, an odd-numbered circular ring
of inverters, should beincluded in the design. The ring oscillator should be included in order to verify
that electrical behavior is present on the chip. Testing of the chip can be performed using afunctional
chip tester that reads IRSIM .cmd files. The .cmd file can be used to assert values on the input pins and
verify that the correct output is received on the output pins. A tester of the chip will not have to take on a
“big bang” approach. The design allows for all latches to be made transparent as asimplefirst step. This
will allow one of the input pins to be asserted and, with al latches transparent, should immediately
generate avalid output signal. Appendix B shows the contents of a.cmd that that successfully simulates
the schematic of the design.

In addition to the IRSIM file, in the process of designing our chip we wrote a simple 32-bit DES
encryption program to verify the validity of our testing results. This programisincluded in
Appendix A at the end of this document.

des32.cnd (I RSIM command file)
st epsi ze 100

I
| Tester for the big kahuna, part
I

I
| Select which of the 4 parts of the 32 bits we are
| inputting

I

vector a al a0

The 8-bit input bus

I
|
vector d d[{7:0}]

Al l ows nenory register to receive data

en_b

All ows key register to receive data

en_b_key

enabl e the previous state latch

enLO0, enRO

enabl e the current state |l atch

enLl1l, enRl

The cl ock phases

phl, ph2

Reset the chip

reset

Tell the previous state latch to select the
new i nput (0) or the next input (1)

S

|

| Tell the barrell shifter to select the new key
| (0) or to keep on shiftin' (1)
I

|

s_key

The counter [output]

< ———

ector counter counter[{2:0}]

I

| The output of IP

I
vector IP IP[{31:0}]

I
| The output of L1R1, right before IP*-1

I
vect or out out [{31: 0}]

vector finout finout[{7:0}]

I
| The output of the PCl
I

vector pcl pc[{27:0}]

| vector barrel barrel nodel8[{27:0}]
vector key_out key_outnodel8[{23:0}]
vector xor_out xor_outnodel8[{23:0}]

vector sQut sQut[{15:0}]

| *kkkkkkkkkk

ana a d en_b en_b_key enLO enRO enLl1 enRl phl ph2 reset s s_key counter

ana al_out aO_out output_en

ana pcl
| ana barre
ana key_out
ana xor_out
ana sQut

I P out finout

| a0_out al_out
h out put_en

| reset s phl ph2
h s_key
| enLO enRO enLl enRl

h en_b en_b_key

| *kkkkkkkkkkk

| I NPUT KEY
| (ASClI1 Value = "17g$")

I
| en_b_key

set a 00

set d 10001100
S

set a 01

S

set d 01111010
S

set a 10

S

set d 11100110
S

set a 11

S

set d 00100100
S

h en_b_key

S

*kkkkkkkkkkkkkkk

I
| END I NPUT KEY
I

kkkkkkkkkk

| I NPUT DATA
| (ASCl| value = "ooga")

I en_b

set a 11

set d 10000110
S

set a 10

S

set d 11100110
S

set a 01

S

set d 11110110
S

set a 00

S

set d 11110110
S

h en_b

I
| END I NPUT DATA
I

*kkkkkkkkkkkkkkk

nwuunnnnnonon

cl ock phl
clock enLl1
cl ock enRl

cl ock ph2

cl ock enLO
cl ock enRO

h reset

[oNeoNe]
[oNeoNe]
(S ==
[oNeoNe]

(S ==
[oNeoNe]
[oNeoNe]
[oNeoNe]

SCHEMATICS

5.1. DES Chip Schematic (des32

»

 EETEE E

Ly

et pla plt-es e Ame bt B 1 a1

EEEERESEREREERERERE)

1it

JLLLLL LI DL L L L L L] [

Keypath

1

T

T

I T 1

¥

1

—
memreg32 and decodk
—_——
Larfr | Ly
pe e _pec
T-n-u n 1 L LI e FIT
—_—
—— mikarre |
T fPR S S A S F A S I—HT

l{ ra it B R R i L R 0 AR L 1 L I S R R 7 L
e dar, Has March v die i tidr ek EE MiE iR LGl A E am s as e ad st e s

af[0]
TTTTTTTTITTTTTITITITTITITITTNY

@ A0r2_mirnor_24

5_biock

dded LA LL LDl L]

memreg32_and_decoder
uses decoder24_en and memreg32

Requires one register for each of the 32 information bits to be held and a decoder to distinguish between the segments. The decoder
is 2-bit binary to 4-bit mutually exclusive lines. When one of the four decoder outputs goes high, eight latches become transparent,
allowing the value to be carried by the registers. Each of the four decoder outputs correspond to one of the (4) 8-bit segments of the

32-bit key.
decoder24 en memreg32 - usesstd latch _mirror

fullbarrel
uses flipflop_mirror_2

. =
o]
i
TTTTTTTTTTIT YT TTTTTTTTITTITTT®
birel - bl
== =i R ———
0 A A A e 10 A A A A
barrel —usesflipflop_mirror_2
5 P AHNE] ib=n l j=rjfu)] pdERE] pdida] |1 L= b= PR L= fif=i 0 Thefu”barrel leldes the 28_
e * ¥ * ’ ¥ 4 bit permutated key and sends
each half into abarrel shifter,
7 e L " " =’ e - 7 e L . " 7 e L L O S WhICh |eft §]Ifts the 14'b|t
W WA W W WS WA (rany section with every two phases
of the clock.
e 17 L 1 - 17 L 11 L 1 L 17 17
s H—r—= Lo L Lo L Lo
SUEHEEE] Ut +aEio uERIlE] uifrus] USRI U] al i

flipflop_mirror_2 - usesstd_latch

Xor2 Xor2_mirror_24

The XOR gate serves as the main computation unit
for the encryption chip. 32 XORs are used to
compute bitwise modulo 2 addition on two 32-bit
words. The XOR gate layout is 46\ x 60A, with a
16x2 array not exceeding 736\ x 120A. Dueto the
multiple connections of each XOR gate, ready
accessibility requires the full XOR array to not
exceed atotal width of 1100\ (1/2 of the available
chip length).

S block

i —

i 3 el B
i T |::

irrde—

irr—— .
i

i

irr—— B
i

n‘rE*'-E_,.

l 3 Ml 3
ntH ¥ |:

n I el 4
g o s—
nHe—

n Hr— .
n

nbh—

n H— 2
e
nide—

nh— 2

*ﬁ

oo

[Nt Rt ant

=]

| s R

[Sk B

o =)

w

—_
— -

—_ -
| S R P

..
£ th

(s_block_0) - usestransmission_gate 2,

ROM_block 0132, ROM_block 1203

entl @ i
E'l"l": i |z =

S kiah_wew LIS TiEwERAEE aGsF T

|T|
|
|

GO0 !l
coi ||
»

.,__

L1511
ot

o Blars_wm_ (OO merrnaes guis 2

&
col? Jr
ool

S blocks are ROM modules with a 2-bit output
with aset of 4 lines and a set of 2 lines, where
selecting one line from each set will select one of
the 2-bit outputs. This represents atable of width
4 and height 2 filled with 2-bit outputs. There are
eight S-block designs corresponding to the eight
different functions.

Same Design, (different ROM blocks)

(s_block_1) - usestransmission_gate 2,
ROM_block 1023, ROM_block 2130
ek »
an &
: Rors_beck_am XO| j ==

ol
okt
cok2- -
a3 .

Fem_biecd_xm S313
'

rarsany_mw 1 |

hewrmans_grs 1
— }

(s block_2) - usestransmission_gate 2,
ROM _block 3021, ROM_block 0213

aull (s block_3) - usestransmission gate 2,
outl ROM_block 3102, ROM_block 2013
(s block_4) - usestransmission gate 2,

ROM_block 1302, ROM_block 2031

(s_block_5) - usestransmission gate 2,
ROM _block 1320, ROM_block 0231

(s_block_6) - usestransmission gate 2,
ROM _block 0312, ROM_block 3120

(s block_7) - usestransmission_gate 2,
ROM _block 2310, ROM_block 3201

inG #-outl ini-—# * out

transmission_gate 2)

ROM _blocks

The ROM isimplemented as two-mux’ ed smaller ROM blocks with 4 inputs and a 2-bit output. Each
smaller ROM block uses a pull-down transistor to instantiate a value.

Rom block sm 0132 Rom block sm 0213

Rom_block_sm_0231 Rom_block _sm_0312

Rom_block_sm_1023 Rom_block_sm_1203

Rom_block_sm_1302 Rom_block_sm_1320

Rom_block_sm_2013 Rom_block _sm_2031

Rom_block_sm_2130 Rom_block_sm_ 2310

Rom_block_sm_3021 Rom_block_sm_3102

Rom_block_sm_3120 Rom_block_sm_3201

datapath

I AT T YT TR
.rf.| J J (o el » wiv{x{xn o L L B
=+ l l 'lﬂﬂMJJMJMMJMM#JJJJJJJMM
] i ol A L .
| ly

fullcounter - uses counter

A synchronous counter consisting of an incrementer (XOR and AND) and aregister. A 3-bit
counter is used to count the number of calculation iterations during encryption.

counter - usesregister

compute_mem — major components are LORO and L1R1

£ o

-+ i 00 0 R R A A 2 Y

el
-—

E T

3

i A0 A T o

LR

YO0 N 0 0 o e

&

1
i
1
1

i
wrird—
il

noyiaicisicuanl i uic

LORO (L ORO) - uses std_latch_mirror_mux value of LORO and
e L1R1 until the clock
phase enables the
; . ' ; ; ; ' " ; E _ r e | L g switching of values.
LORO (L ORO) - uses std_latch_mirror_2

FNEE PR EERR R R

Variouslatch designs used

e

std_latch

register - uses std latch
ph2 pel ph
| = }
:-i-ﬂl.' I g u
. s
1.5 (TP oy e, T s 18
P oo
i_..'l]'|

Arrays of latch cells serve asregistersin the chip to hold input,
key, and output data. Furthermore, a set of intermediate registersis used
to store data as it proceeds through the 8-iteration calculation cycle. Itis
necessary that the process be able to read from all the bitsin agiven
register at once, since the computation requires cal culating all bits at once
for a given data block.

Excluding wiring, latch cells take up the most space in this chip
design. Since the latches used were always grouped in large arraysto
handle batches of 8 to 32 bits of data, the density of their arrangement was
optimized. Three distinct latch designs were created.

A regular flip-flop (two latches) with two transmission gates. The
flip-flops form two 16-bit barrel shifters used to left shift the
encryption key data. The flip-flops must be able to select between

initial key data and the neighboring flip-flop.

std_latch_mirror - usesstd latch
d3 dd di okl
g4 a
a i &
q L. e e e e el |
O

std_latch_mirror 2 - usesstd latch

g |
Lo

9 22 _LHTH _d__ - o imich "d'
« !

std_latch_mirror_mux - uses std latch

+

—d1 41
bection_mux di
stel_latch_memor_2rt—

qﬂ

13,133

"]
o

A mirrored, 1x2 array of latches. These latches need only be able
to storedata. These latchesform alarger 16x2 array of latches
that are used to store data during encryption.

A mirrored, 1x4 array of latches. These latches form alarger 8x4
array of latchesthat are used to store the 28-bit encryption key and
32-hit word for encryption.

A mirrored, 1x2 array of latches. Each latch isfitted with two
transmission gates at the top to select between two possible inputs
to thelatch. Thisleaf cell isused to form the 16x2 array of latches
that are used to store data during encryption. These latches must
have the ability to choose between initial input data or data
computed during computation.

memreg320out - usestransmission gate, std_latch mirror
= S = =
_ AT L TR]
nx __I__
=
AR AT
—
L SQm=
Bl L I
1
.t
— .
| 3
i
—
HE—p=r
LB L0
I o
i L3 L T
A
ol -
"g | I
===

Transmission_gate

enrb

1202

62

e

Similar to the input register,
memreg32out takesin 32 bits
of the output and partitions it
into 8-bit segments.

LAYOUT

memreg32_and_decoder)

Key path

memreg32_and_decoder

Datapath

M emr eg32out

keypath

memreg32_and_decoder

fullbarrel

S block

ROM_block[7:0]

memreg32_and_decoder

fullbarrd

xor2

S block

(s_block_0) (s_block_1)

(s_block_2) (s_block_3)

(s_block_4) (s_block_5)

(s_block_6) (s_block_7)

ROM_blocks

Rom block sm 0132

Rom_block_sm_0231

Rom_block_sm_1023

Rom_block_sm_1302

Rom block sm 0213

Rom_block _sm_0312

Rom_block_sm_1203

Rom_block_sm_1320

Rom_block_sm_2013 Rom_block _sm_2031

Rom_block_sm_2130 Rom_block_sm_ 2310

Rom_block_sm_3021 Rom_block_sm_3102

Rom_block_sm_3120 Rom_block_sm_3201

datapath

fullcounter

[ORO

Std _latch_mirror2

compute_mem

fullcounter

compute_mem

LORO

SRR LY
o E -_:___p;|_|r_r,LI
R

..:'L:...

i, ILI' =3

L_.IJ |

std_latch (latch modified in all latch designs above)

register

Memr eg32out

7.1 References

“Data Encryption Standard: Federal Information Processing Standards Publication.” Gaithersburg, MD:
Computer Systems Laboratory, National Institute of Standards and Technology, 1993.

Appendi x A | 32-bit DES Encryption verification program

/
Input file specs:

I P[0: 31]

I Pl nv[0: 31]
PC- 1[0: 27]
PC-2[0: 23]

E[0: 23]

P[0: 15]

S 1[0:1][0: 3]
S 2[0:1][0: 3]

S 8[0: 1] 0: 3]

EE R I I T

/

#i ncl ude <i ostreanp
#i ncl ude <fstreanpr

/*

* Paraneters

*/
#define CMP_WD 32
#defi ne READ_WRDS 4
#defi ne | TERS 8
#define CD_WD 28
#define S IN WD 24

#define S_OUT_WD 16

#define S_NUM 8 // nunber of tables
#define S _TAB H 2 /] nunber of rows
#define S_TAB W 4 /] nunber of colums
#define S TAB QUT_W 2 // bits of output

voi d pernute(bool * input, bool** output, istream&p, int |ength);

voi d barrel ShiftsLeft(bool* input, int length, int tines);

voi d bitwi seXOR ptr(bool* inputl, bool** input2, bool* output, int |ength);
voi d nakeSBl ocks(bool **** &s, istream ¶n¥ile);

int fileRead(bool* word, istream&ile, int bytes);

char bool ToChar (bool ** word_ptr);

int main(int argc, char** argv)

i fstream paranfil e(argv[2]);
ifstream keyFil e(argv[3]);

bool * key
bool * CD
bool * i nput
bool * cnpPrev
bool * cmpCurr

new bool [CMP_W D] ;
new bool [CD WD ;

new bool [CVP_W D] ;
new bool [CMP_W D] ;
new bool [CMP_W D] ;

bool * sln new bool [S_IN WD ;
bool * sQut new bool [S_ QUT_WD;
bool ** | P = new bool *[CVP_W D ;
bool ** | PInv = new bool *[CMP_W D) ;
bool ** PCl = new bool *[CD_ WD ;

bool ** PC2 = new bool *[S INWD];
bool ** E = new bool *[S INWD];
bool ** P = new bool *[S_ QUT_WD];
bool ** K;

bool **** s;

/***************************

* Create pernutation bl ocks
*/

/*
* Make | P permutation bl ock
*/
pernmute(input, IP, paranFile, CMP_WD);

/*
* Make | Plnv permutation bl ock
*/
pernmut e(cnpPrev, |Plnv, paranFile, CVWP_WD);

/*

* Make PC-1 pernutation bl ock

*/

per mut e(key, PCl, paranfFile, CD WD);

/*

* Make PC-2 pernutation bl ock

*/

permute(CD, PC2, paranFile, S INWD);

/*
* Make E permutation bl ock
*/
pernmute(cnpPrev, E, paranFile, S INWD);

/*
* Make P pernutation bl ock
*/
pernute(sQut, P, paranFile, S OQUT_WD);

/*
* Make S-function bl ocks
*/
makeSBl ocks(s, paranFile);

/*

* Read in key and init CD

*/

fil eRead(key, keyFile, READ WRDS);

for (int i=0; i<CD WD; i++)
Coyi] = *(PCL[i]);

cerr << "The key is:\n";

for (int i=CMP_WD-1; i>=0; i--)
cerr << key[i];

cerr << endl << endl;

/Il cerr << "After PC1, it is:\n";
/1 for (int i=27; i>=0; i--)

/1 cerr << *(PC1[i]);

/1 cerr << endl << endl;

/*
* Cenerate the keys

*/
K = new bool *[| TERS] ;
for (int i=0; i<ITERS; i++)

K[i] = new bool [S_INWD;

for (int j=0; j<S_INWD; j++)
KIiT[il = *(PC2[j]1);

11 cerr << "Key[" << i << "] is:\n";
/1 for (int j=23; j>=0; j--)

11 cerr << K[i][j];

11 cerr << endl;

barrel ShiftsLeft(CD, (CDWD 2), 1);
barrel shiftsLeft(& CO{CD WD/ 2]), (CDWD/2), 1);

}

/*

* Read in input word

*/

fileRead(input, cin, READ WRDS);

for (int i=0; i<CWP_WD; i++)
cnpPrev[i] = *(1P[i]);

cerr << "Data word is:\n";

for (int j=31; j>=0; j--)
cerr << input[j];

cerr << endl;

/1l cerr << "Data word after IP:\n";
/1 for (int j=31; j>=0; j--)

/1 cerr << cnpPrev[j];

/Il cerr << endl;

for (int iteration=0; iteration<lITERS; iteration++)

{

/1 cerr << "*** | TERATION " << iteration << " ***\p";
/1 cerr << "lnput into E -->\n

11 for (int j=15; j>=0; j--)

11 cerr << cnmpPrev[j];

/1 cerr << endl;

bitwi seXOR ptr(Klargv[1][0]=="e' ?iteration: (| TERS-iteration-1)],
E, sln, SINWD);

11 cerr << "lInput into sblock -->\n ";
/1 for (int j=23; j>=0; j--)

11 cerr << sln[j];

/1 cerr << endl;

/*

* Pass through S-function bl ock
* (Note: Things are a bit reversed with the S-|ookup

* because we hooked up the S-1ookup table in hardware

* in reverse.)

*/

for (int i=0; i<S_NUM i++)

for (int j=0; j<S_TAB OUT_W | ++)
sQut[i*S TAB_OQUT_WH] = s[i]

[sIn[2+i*3]]
[sIn[1+i*3] + (sIn[0+i*3] * 2)]
[S_TAB OUT_Wj-1];

/1 cerr << "Qutput of sblock -->\n
/1 for (int j=15; j>=0; j--)

11 cerr << sQut[j];

/1 cerr << endl;

/*

* Get left half of current conputation
*/

for (int i=0; i<(CMP_WD2); i++)
cmpCurr[i+(CVWP_WD 2)] = cnpPrev[i];

/*

* Get right half of current conputation

*/

bi t wi seXOR ptr (& cnpPrev[CMP_W D/ 2]), P, cnpCurr, CMP_WD 2);

/*
* Copy current computation to previous conputation
*/
for (int i=0; i<CWP_WD; i++)
cmpPrev[i] = cmpCQurr[i];

cerr << "Word output right before IP*-1 -->\n ";
for (int j=31; j>=0; j--)

cerr << cmpCQurr[j];
cerr << endl;

for (int i=0; i<(CMP_WD2); i++)

cmpPrev[i] = cmpCurr[i+(CWVP_WD 2)];
cmpPrev[i +(CVP_WD/2)] = cmpCurr[i];

cerr << "Word output (binary) -->\n
for (int j=31; j>=0; j--)

cerr << *(IPInv[j]);
cerr << endl;

/*
* Convert back frombinary to base-256 (i.e. ASCII)
*/
for (int i=0; i<READ WRDS; i ++)
cout << bool ToChar (& I PInv[i*8]));

/*

for (int i=0; i<CVMP_WD; i++)
cout << *(IPInv[i]);

cout << endl;

*/

voi d permute(bool * input, bool** output, istream &, int |ength)
int index;

for (int i=0; i<length; i++)

{
p >> index;
output[i]=&Cinput[index-1]);

}
/*
voi d barrel ShiftsLeft(bool* input, int length, int tinmes)
{
bool * tenp = new bool [l ength];
for (int i=0; i<times; i++)
tenp[i] = input[i];
for (int i=times; i<length; i++)
input[i-times] = input[i];
for (int i=0; i<times; i++)
input[length-times + i] = tenp[i];
*/

voi d barrel ShiftsLeft(bool* input, int length, int tinmes)

{
bool * tenp = new bool [tines];
for (int i=0; i<times; i++)
tenp[i] = input[i+l ength-tines];
for (int i=length-1; i>=tinmes; i--)
input[i] = input[i-tinmes];
for (int i=0; i<times; i++)
input[i] = temp[i];
}

voi d bitw seXOR ptr(bool* inputl, bool** input2, bool* output, int |ength)

for (int i=0; i<length; i++)
11 output[i] = ((inputl[i]) & *(input2[i]));
output[i] = ((inputd[i]) | *(input2[i])) & !'((inputl[i]) & *(input2[i]));

voi d nmakeSBl ocks(bool **** &s, istream ¶nfFil e)

{
int out;
s = new bool ***[S_NUM ;
for (int i=0; i<S_NUM i++)

s[i] = new bool **[S_TAB H|;
for (int j=0; j<S_TAB_H, j++)

s[i][j] = new bool *[S_ TAB W ;
for (int k=0; k<S TAB W Kk++)

s[i][j][k] = new bool [S_TAB OUT_W;
parantile >> out;
for (int I=(S_TAB_QUT_W1); |>=0; |--)

s[i1[j]1[KI[I] = out%;
out /= 2;

int fileRead(bool* word, istream&file,

{

char in;
for (int i=0; i<bytes; i++)

if (!file.eof())
in="file.get();

el se
in="\0";

cerr << in;

for (int j=7; j>=0; j--)
word[i*8+j] = (inWR);
in/=2;

}

}

cerr << endl;

return file.eof();

}

char bool ToChar (bool ** word_ptr)

char c=0;
int bit = 1;

for (int i=7; i>=0; i--)

{
c += *(word_ptr[i]) * bit;
bit *= 2;

}

return c;

int bytes)

