
 
 
 
 
 

DES Encryption Chip 
 
 

Braden Pellett 
May May Wang 

Steve Yan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E158 | VLSI | Professor Harris 
April 11, 2001



Final Project: DES Encryption Chip 
Braden Pellett 

May May Wang 
Steve Yan 

E158 | VLSI | Professor Harris 
April 11, 2001 

 
 
 
I.  Introduction  
 
 The Data Encryption Standard (DES) is a cryptographic algorithm.  The government 
instituted DES as a standard encryption method in July 1977 and last reaffirmed it in 1993.  
When DES was considered secure, it was used regularly in government use for transmission of 
sensitive binary-encoded data between two endpoints on a non-secure medium.  

DES relies on a key system to both encrypt and decrypt information.  The original 
algorithm uses a 64-bit key that consists of a 56-bit randomly generated binary number along 
with 8 bits for parity checking.  The values in this key are used to convert a 64-bit block of input 
data into a 64-bit block of encrypted output data following a specific series of permutations.  The 
encrypted data is deciphered by applying the encryption key and reverse of the DES encryption 
algorithm. 

This project uses the same DES encryption process using a 32-bit key to encode a 32-bit 
block of input data via a VLSI chip package, more specifically a 2.2 x 2.2 mm 40-pin MOSIS 
“TinyChip” fabricated using a 1.5 µm process.  The layout fits in a 2200λ x 2200λ area.  The 
logic on the chip is driven synchronously via a two-phase clock input.   
 
1.1.  Algorithm Overview 
 
 A brief overview of the implemented DES encryption algorithm is as follows. 
 

Standard DES encryption uses a 64-bit key to encrypt a 64-bit data block.  Due to space 
constraints on the Mosis TinyChip, this project implements only 32-bit encryption.  Furthermore, 
DES encryption depends on the strength of the bit swizzle blocks described below.  Since this 
project was a practice in VLSI chip design rather than the mathematical details of encryption, 
randomly chosen swizzle blocks were used.  Therefore the strength of encryption that the chip 
produces is not guaranteed.   
 

The DES encryption algorithm can be divided into two computational paths: a path that handles 
the actual data encryption, which we will call the “datapath”, and a path that takes as input an initial key 
and calculates the series of keys to be used in encrypting the data.  Standard DES uses 16 keys to for 
encryption; this variant of DES uses only 8. 
 
Datapath 
 
The design encrypts data using the following method: 
 

The 32 bits of the input block to be enciphered are first subjected to the following 
permutation, called the initial permutation IP: 



 
IP 

29 25 21 17 13 9 5 1 
31 27 23 19 15 11 7 3 
28 24 20 16 12 8 4 0 
30 26 22 18 2 6 10 14 

 
That is the permuted input has bit 29 of the input as its first bit, bit 50 as its second bit, 

and with 14 as its last bit.  The permuted input block is then the input to a key-dependent 
computation described below.  The output of that computation is then subjected to the following 
permutation which is the inverse of the initial permutation: 
 

IP-1 
8 24 3 16 
9 25 2 17 

10 26 1 18 
11 27 0 19 
12 28 4 20 
13 29 5 21 
14 30 6 22 
15 31 8 23 

 
The permuted input is further scrambled using 8 iterations of modulo arithmetic computations 
defined in terms of a cipher function f which operates on two blocks, one of 16 bits and one of 24 
bits, and produces a block of 16 bits.  Let the 32 bits of the input block to an iteration consist of a 
16-bit block L followed by a 16-bit block R.  Let the 32-bit input block be LR.   

Let K be a block of 24 bits chosen from the 32-bit key, where K is selected using a key 
schedule that takes as input an integer n in the range from 1 to 8 and the 32-bit KEY block.  Then 
the output L’R’ of an iteration with input LR is defined by: 

 
   L’ = R 
   R’ = L ⊕  f(R,K) 

 
where ⊕ denotes bit-by-bit addition modulo 2.  If L’R’ is the output of the 8th iteration then R’L’ 
is what we call the preoutput block.  Since these bit swizzle blocks are permanent, the bits of the 
32-bit bus are hardwired to match the permutations.   

 
 
 
 
 
 
 
 
 
 
 
 
 



The following is a block diagram of the enciphering computation: 
 

INPUT[31:0]

OUTPUT[31:0]

L0

L1 = R1 

L7 = R6

L8 = R7

R0

K1

K2

K8

K2
R1 = L0    f(R0, K1) 

R2 = L1    f(R1, K2) 

R7 = L6    f(R6, K7) 

R8 = L7    f(R7, K8) 

Initial Permutation

Inverse Initial Perm

f

f

ff

f

+

+

+

+

+

+

+

+

+

+

Enciphering computation



Let the 32 bits of the input block to an iteration consist of a 16 bit block L followed by a 32 bit 
block R.  Therefore the input block is LR.  Let K be a block of 24 bits chosen from the 32-bit key 

designed by KEY.  Let Kn designate a function which takes as input the 32-bit key and outputs 
the nth calculated key. 

 
Let E denote a function which takes a block of 16 bits as input and yields a block of 24 

bits as output.  Let E be such that the 24-bits of its output are obtained by selecting the bits in its 
inputs in order according to the following table: 
 

E 
1 2 3 
3 4 5 
5 6 7 
7 8 9 
9 10 11 

11 12 13 
13 14 15 
15 16 1 

   
 

The exclusive OR of the output of E and the value of K are piped through a function block S 
which maps the result to a 16-bit value (see diagram below.) 
 
 

f(R,K) [16:0]

[23:0]

R[15:0] K[23:0]

E

+

S

f(R,K) cipher function  
 
 
 
 
 



 
Keypath 
 

The key schedule is calculated using a series of left shifts preceded and followed by two 
permuted choice blocks, designated PC-1 and PC-2.  This key schedule feeds into the datapath 
by the following values for PC-1 and PC-2 and left shift permutations: 

 
PC-1 

24 16 8 0 
25 17 9 1 
26 18 10 2 
27 19   
30 22 14 6 
29 21 13 5 
28 20 12 4 
11 3   

 
PC-2 

6 11 13 
2 4 5 
1 12 3 
7 9 0 

25 14 19 
23 21 27 
16 22 20 

 
The following computation is performed in the keypath: 
 

C0

C1

D0

D1

KEY [31:0]

PC-1

PC-2

left shift left shift

Key schedule calculation.

K1

 



 
1.2.  Hardware Implementation 
 
1. I/O  

Since the MOSIS package only allows for 40 pins, 6 of which are power and ground 
lines, data is segmented into 8-bit bytes and piped into 8 x 4 arrays of latches that hold the data 
and key bits.  These registers allow the entire message and key to be entered into the process 
before continuing to the next step.  Furthermore, each 32-bit memory array is addressed using 
two address bits controlled externally by the user.  Therefore input and output can be entered and 
extracted from the chip asynchronously. 
 
2.  Initial Permutation 

Both 32-bit outputs from the key and data register must undergo an initial permutation, or 
“bit-swizzling”.  Bit-swizzling means that blocks of wires are swapped, or “swizzled”, to 
permute the data of a 32-bit word as it transitions between logic blocks in the chip.   Not all of 
the bit wires need to be swizzled and retained, or vice versa, some of the bit wires can be 
repeated.  For example, in the case of the 32-bit key, only 28 bits are permutated and sent into 
the barrel shifter, while the permutated message retains all 32 bits. 
 
3.   Initial Components for the 8-iteration Calculation 
 DES relies on an 8-iteration calculation that relies on the sum of two modulo arithmetic 
calculations.  Both summations can be performed by XOR gates.  
 In the initial iteration, the first XOR sums up a 24-bit K derived from the key, and a 
permutated 24-bit E derived from the message.  In order to determine K, the 28-bit permutated 
key is split into two 14-bit sections C, D and each section is left-shifted.  This is implemented by 
two barrel shifters composed of a series of flip-flops that don’t lose their values until after they 
transfer their value to the next register in line.  Each of these barrel shifters includes two 
transmission gates to select between data from the previous flip-flop and initialization data from 
the IP permutation block. 
 
4.  Calculation of f(R,K) 
 The result of the first XOR (the sum of K and E) is a 24-bit solution or eight sections of 
3-bit solutions.  Each of the eight 3-bit solutions behave as address bits to eight S function blocks 
that act as ROM, holding 2 bits of data at each location.  Each S-block is implemented as two 
muxed smaller ROM blocks that use pull-down transistors to instantiate their values.  The eight 
sections of 2-bit retrieved values or 16-bit solution is then summed up with L0 using the second 
XOR.  The result is a 16-bit solution that becomes known as R1. 
  
5.  8-iteration calculation 
 The calculation in the chip is controlled by a synchronous counter (composed of an 
incrementer and a register).  Each iteration depends on the results of the previous iteration.  
Close to the end of the first iteration, values for R1, R0, and L0, were obtained.  In the second 
iteration, the value of R1 becomes the new value for R0.  The value of 
R0 becomes the new value of L1, and the value of L1 will become the value for L0.  Then the first 
XOR repeats its calculation for the second iteration.  At the end of the eighth iteration, the value 
of R1 and L1 enter a final permutation and exit through output registers.  To switch the values of 
R0, L0, R1, and L1 without losing data, four arrays of registers are used in combination with two-



phase clocking.  When the correct phase of the clock goes high, the array of registers release 
their value to the next array. 
 
 
1.3.  I/O Pinout 
 
The  following is the pinout of the chip implemented design.   
 

Input # pins 
NAME Description 

VDD Power (3) 

Gnd Ground (3) 

Clk1 Clock, phase 1 (1) 

Clk2 Clock, phase 2 (1) 

Reset Global reset (1) 

KeyOrData Select either key or data input (1) 

OutSelect[1:0] Output word selection (2) 

InSelect[1:0] Input word selection (2) 

DataInReady Data ready to be read in (1) 

DataIn[7:0] Unencrypted data word in (8) 

23 pins 

Output 
NAME Description 

DataOutReady Goes HI when encrypted data is ready (1) 

DataOut[7:0] Encrypted data out (8) 

9 pins 

 Total 32 pins 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Vdd 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clk1 
 
 
 

Clk2 
 
 
 

Reset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gnd 
Gn

d
Gn

d
DataOut[7

DataOut[6
DataOut[5

DataOut[4
DataOut[3

DataOut[2
DataOut[1

DataOut[0

KeyOr
Data

DataO
ut

Vdd
 
 
 
 
InSelect[1] 
 
 
 
InSelect[0] 
 
 
 
KeyOrData 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OutSelect[1] 
 
 
 
OutSelect[0] 
 
 
 
Gnd 

DataOut[7:0]

DataIn[7:0]

Gnd

Vdd



FLOOR PLAN   
 
2.1.  Introduction 

 
This project implemented a 32-bit version of the DES encryption algorithm onto a 

2200λ2 layout area.  The floor plan demonstrates how the chip components fit within the given 
area.   
 
 
 
 
 

    

Register Block 
 
   Bit-Swizzling Block  
 
   Logic Block 

* not drawn to    
   scale [E, IP] 

2200λλλλ

22
00

λλ λλ

 
 

S_block 
(1095λ x 368λ) 

 
memreg32_and_ 

decoder 
(591λ x 355λ) 

 
 

Barrel  
C0 [27:0]  D0 [56:28] 

(1023λ x 388λ) 

PC-1 
(270λ

x 
220λ)

    E   (980λ x 220λ)* 

PC-2  (980λ x 70λ) 

        R1[0:15]               L1[16:31] 
         (1129λ x 145λ) 

    XOR                        XOR
(1000λ x 137λ) 

 
Memreg32out [31:0] 

(691λ x 454λ) 

IP-1  

 

R0[0:15]               L0[16:31] 
(1147λ x 210λ) 

 
memreg32_and_ 

decoder 
(591λ x 355λ) 

 
 

counter
(295λ x 
411λ) 

IP (1147λ x 160λ)* 



 
2.2.  Layout 
  

As seen above in the diagram, the floor plan consists of three main types of blocks: a 
register block, bit swizzle block, and a logic block.  Register and logic blocks consist of the leaf 
cells discussed in the next section.   

[Note that bit swizzle blocks are simply blocks of wires that are swapped, or “swizzled”, 
to permute the data of a 32-bit word as it transitions between logic blocks in the chip.  Their area 
estimate was calculated by finding the area that the wires required to change directions from the 
output bus to the changed inputs designated for those bits.]   
 

Below is a listing of the facet-by-facet area.   
 

Leaf Cell Name Layout Size 
(W x H) Area (λλλλ2) Notes 

memreg32_and_decoder 591 x 355 209805 
Accepts and holds 8-bit segments of 
the input until the full 32-bits are 
received.   

L0R0  1147 x 210 240870 

L1R1 1129 x 145 163705 

Holds data until correct clock phase, 
then delivers values to another array 
of registers  

Memreg32out 691 x 454 313714 
Accepts the full 32-bits of the output, 
and allows it to leave the chip in 8-bit 
segments.  

Barrel 1023 x 388 396924 Left-shifts the two halves of the 
permutated key with each iteration. 

Counter 296.5 x 118 34987 
Calculates the number of iterations 
that the encryption process has 
undergone. 

S_block [7:0] 1095 x 368 402960 Takes in a 3-bit address and delivers a 
2-bit output. 

IP and IP-1 (swizzle 32 bits) 1147 x 160 183520 
PC-1 (swizzle 32 bits) 270 x 220 59400 
PC-2 (swizzle 32 bits) 980 x 70 68600 
 E (swizzle 16 bits) 980 x 220 215600 

Bit-swizzles the input so that a 
permutated output is sent. 

 
 



FACET PERFORMANCES 
 
 
3.1.  Leaf Cells 
 

Leaf Cell Name Layout Size 
(W x H) 

Design Time 
(hrs) DRC ERC NCC 

xor2 46 x 60 11 Pass Pass  
std_latch_mirror_mux 132 x 209.5 6 Pass Pass Pass 

std_latch_mirror 80 x 240 3 Pass Pass Pass 
std_latch_mirror_2 80 x 120 3 Pass Pass Pass 

register 150.5 x 103 5 Pass Pass Pass 
counter 296.5 x 118 9 Pass Pass Pass 

s_block [7:0] 131 x 110.5 16 Pass Pass Pass 
decoder24_en 96.5 x 265 5 Pass Pass Pass 

 
 
 
3.2.  Higher Level Cells 
 

Leaf Cell Name Layout Size 
(W x H) 

Design Time 
(hrs) DRC ERC NCC 

mem[31:0] 591 x 355 5 Pass Pass Pass 
L0R0 [31:0] 1147 x 210 3 Pass Pass Pass 
L1R1 [31:0] 1129 x 145 3 Pass Pass Pass 
Memreg32out [31:0] 691 x 454 3 Pass Pass Pass 
CoDo (barrel shifters) 1023 x 388 6 Pass Pass Pass 
IP and IP-1 (swizzle 32 bits) 1147 x 160 1 Pass Pass Pass 
PC-1 (swizzle 32 bits) 270 x 220 1 Pass Pass Pass 
PC-2 (swizzle 32 bits) 980 x 70 1 Pass Pass Pass 
 E (swizzle 16 bits) 980 x 220 1 Pass Pass Pass 
Keypath 2185 x 2210 10 Pass Pass Fail 
Datapath 1579 x 1755 10 Pass Pass Fail 
 
 



 
 3.3.  Simulation Results 
 

Our design works in schematic form as verified by our encryption test program.  However, the 
top-level layout facet does not simulate correctly, nor does it NCC check correctly with the 
accompanying schematic.  However, each of the layout cells one layer below the top level do 
simulate correctly and NCC check.  These working layout blocks and a working top-level 
schematic lead us to believe that our design is sound. 
 
Below are simulation waveforms of the top-level schematic and each of the main sub-blocks 
contained in the top-level layout. 
 
1.  Top Level schematic simulation.  The output vector out was verified by the included 
encryption verification program.   
 
Vectors: 
a[1:0] address selection for 32-bit memory registers
d[7:0] 8-bit input bus
enL0, enR0, enL1, enR1 Clock signals for latches in facet LoRo{lay}
ph1, ph2 Two phase clocks
reset Counter reset
s Selects between previous value and output of IP permutation block in

facet compute_mem{lay}
s_key Selects between output of PC-1 permutation block previous flip-flop

in facet fullbarrel{lay}
counter[2:0] 3-bit counter
IP[31:0] Output value of IP permutation block
out[31:0] Output value of facet compute_mem{lay} from subfacet L1R1{lay}

 

 
 



 
2.  XOR Layout simulation 

 
 
 
 
3.  Full 32-bit barrel shifter layout simulation 

 
 
 
 
4.  32-bit memory register layout simulation 



POSTFABRICATION TEST PLAN 
 
4.1.  Procedure 
 

Should this design be sent to fabrication, note that a ring oscillator, an odd-numbered circular ring 
of inverters, should be included in the design.  The ring oscillator should be included in order to verify 
that electrical behavior is present on the chip.  Testing of the chip can be performed using a functional 
chip tester that reads IRSIM .cmd files.  The .cmd file can be used to assert values on the input pins and 
verify that the correct output is received on the output pins.  A tester of the chip will not have to take on a 
“big bang” approach.  The design allows for all latches to be made transparent as a simple first step.  This 
will allow one of the input pins to be asserted and, with all latches transparent, should immediately 
generate a valid output signal.   Appendix B shows the contents of a .cmd that that successfully simulates 
the schematic of the design.   
In addition to the IRSIM file, in the process of designing our chip we wrote a simple 32-bit DES 
encryption program to verify the validity of our testing results.  This program is included in 
Appendix A at the end of this document.   
 
des32.cmd (IRSIM command file)

stepsize 100

|
| Tester for the big kahuna, part I
|

|
| Select which of the 4 parts of the 32 bits we are
| inputting.
|
vector a a1 a0

|
| The 8-bit input bus
|
vector d d[{7:0}]

|
| Allows memory register to receive data
|
| en_b

|
| Allows key register to receive data
|
| en_b_key

|
| enable the previous state latch
|
| enL0, enR0

|
| enable the current state latch
|
| enL1, enR1



|
| The clock phases
|
| ph1, ph2

|
| Reset the chip
|
| reset

|
| Tell the previous state latch to select the
| new input (0) or the next input (1).
|
| s

|
| Tell the barrell shifter to select the new key
| (0) or to keep on shiftin' (1).
|
| s_key

|
| The counter [output]
|
vector counter counter[{2:0}]

|
| The output of IP
|
vector IP IP[{31:0}]

|
| The output of L1R1, right before IP^-1
|
vector out out[{31:0}]
vector finout finout[{7:0}]

|
| The output of the PC1
|

vector pc1 pc[{27:0}]

|vector barrel barrelnode18[{27:0}]

vector key_out key_outnode18[{23:0}]

vector xor_out xor_outnode18[{23:0}]

vector sOut sOut[{15:0}]

|**********

ana a d en_b en_b_key enL0 enR0 enL1 enR1 ph1 ph2 reset s s_key counter IP out finout

ana a1_out a0_out output_en

ana pc1
|ana barrel
ana key_out
ana xor_out
ana sOut



l a0_out a1_out
h output_en

l reset s ph1 ph2
h s_key
l enL0 enR0 enL1 enR1

h en_b en_b_key

|***********
| INPUT KEY
| (ASCII Value = "1^g$")
|

l en_b_key

set a 00
set d 10001100
s
set a 01
s
set d 01111010
s
set a 10
s
set d 11100110
s
set a 11
s
set d 00100100
s

h en_b_key

s

|
| END INPUT KEY
|***************

|***********
| INPUT DATA
| (ASCII value = "ooga")
|

l en_b

set a 11
set d 10000110
s
set a 10
s
set d 11100110
s
set a 01
s
set d 11110110
s
set a 00
s
set d 11110110
s

h en_b



|
| END INPUT DATA
|***************

s
s
s
s
s
s
s
s
s

clock ph1 0 0 1 0
clock enL1 0 0 1 0
clock enR1 0 0 1 0

clock ph2 1 0 0 0
clock enL0 1 0 0 0
clock enR0 1 0 0 0

h reset

c

l s_key
h s
l reset

c
c
c
c
c
c
c

 
 
 



SCHEMATICS 
 
5.1.  DES Chip Schematic (des32) 
 



Keypath 
 
 
 



Requires one register for each of the 32 information bits to be held and a decoder to distinguish between the segments.  The decoder 
is 2-bit binary to 4-bit mutually exclusive lines.  When one of the four decoder outputs goes high, eight latches become transparent, 
allowing the value to be carried by the registers.  Each of the four decoder outputs correspond to one of the (4) 8-bit segments of the 
32-bit key. 

memreg32_and_decoder 
uses decoder24_en and memreg32 
 

 
 

 
 
 
 
decoder24_en    memreg32   - uses std_latch_mirror 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
fullbarrel 
uses flipflop_mirror_2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

barrel – uses flipflop_mirror_2 

 

The fullbarrel divides the 28-
bit permutated key and sends  
each half into a barrel shifter, 
which left shifts the 14-bit 
section with every two phases 
of the clock. 



flipflop_mirror_2  - uses std_latch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
xor2          xor2_mirror_24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The XOR gate serves as the main computation unit 
for the encryption chip.  32 XORs are used to 
compute bitwise modulo 2 addition on two 32-bit 
words.  The XOR gate layout is 46λ x 60λ, with a 
16x2 array not exceeding 736λ x 120λ.  Due to the 
multiple connections of each XOR gate, ready 
accessibility requires the full XOR array to not 
exceed a total width of 1100λ (1/2 of the available 
chip length). 



 
 
S_block 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
  
    
    
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
S_blocks are ROM modules with a 2-bit output 
with a set of 4 lines and a set of 2 lines, where 
selecting one line from each set will select one of 
the 2-bit outputs.  This represents a table of width 
4 and height 2 filled with 2-bit outputs.  There are 
eight S-block designs corresponding to the eight 
different functions. 

(s_block_0) - uses transmission_gate_2,  
        ROM_block_0132, ROM_block_1203  



 
 
           
(s_block_1)  - uses transmission_gate_2,    

  ROM_block_1023, ROM_block_2130  
 

 
 
 
 
Same Design, (different ROM blocks)                 

 
(s_block_2) - uses transmission_gate_2, 

               ROM_block_3021, ROM_block_0213
 

(s_block_3) - uses transmission_gate_2,  
    ROM_block_3102, ROM_block_2013    
        
             

  (s_block_4)   - uses transmission_gate_2, 
                 ROM_block_1302, ROM_block_2031 
 
 

  (s_block_5)   - uses transmission_gate_2, 
                  ROM_block_1320, ROM_block_0231 

 
  (s_block_6)   - uses transmission_gate_2, 

                  ROM_block_0312, ROM_block_3120 
 

  (s_block_7)  - uses transmission_gate_2, 
                  ROM_block_2310, ROM_block_3201 
 
  
 
 
 
 
 
 
 
                                                                                          transmission_gate_2) 

                          



ROM_blocks 
 

 
Rom_block_sm_0132            Rom_block_sm_0213 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_0231            Rom_block_sm_0312 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_1023            Rom_block_sm_1203 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_1302            Rom_block_sm_1320 

 

The ROM is implemented as two-mux’ed smaller ROM blocks with 4 inputs and a 2-bit output.  Each 
smaller ROM block uses a pull-down transistor to instantiate a value. 



Rom_block_sm_2013            Rom_block_sm_2031 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_2130                  Rom_block_sm_2310 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_3021            Rom_block_sm_3102 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_3120            Rom_block_sm_3201 
 



 
 
 
datapath 
 
 
 
 
  



fullcounter - uses counter 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

counter - uses register 
 
 
 
 
 

A synchronous counter consisting of an incrementer (XOR and AND) and a register.  A 3-bit 
counter is used to count the number of calculation iterations during encryption. 



compute_mem  – major components are L0R0 and L1R1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     L0R0 (L0R0) - uses std_latch_mirror_mux 

     
 
     L0R0 (L0R0) - uses std_latch_mirror_2 

     

Registers retain the 
value of L0R0 and 
L1R1 until the clock 
phase enables the 
switching of values. 

 



Various latch designs used 
 
std_latch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
register -  uses std_latch   
    
 
 
 
 
 
 
 
 

  
 

Arrays of latch cells serve as registers in the chip to hold input, 
key, and output data.  Furthermore, a set of intermediate registers is used 
to store data as it proceeds through the 8-iteration calculation cycle.  It is 
necessary that the process be able to read from all the bits in a given 
register at once, since the computation requires calculating all bits at once 
for a given data block.   

Excluding wiring, latch cells take up the most space in this chip 
design.  Since the latches used were always grouped in large arrays to 
handle batches of 8 to 32 bits of data, the density of their arrangement was 
optimized.  Three distinct latch designs were created.   

 
A regular flip-flop (two latches) with two transmission gates.  The 
flip-flops form two 16-bit barrel shifters used to left shift the 
encryption key data.  The flip-flops must be able to select between 
initial key data and the neighboring flip-flop. 



std_latch_mirror -  uses std_latch      
 
 
 
 
 
 
 
 
 
std_latch_mirror_2 -  uses std_latch     
 
 

            
 

 
 
 
 
 
 
std_latch_mirror_mux  -  uses std_latch    
  

A mirrored, 1x2 array of latches.  Each latch is fitted with two 
transmission gates at the top to select between two possible inputs 
to the latch.  This leaf cell is used to form the 16x2 array of latches 
that are used to store data during encryption.  These latches must 
have the ability to choose between initial input data or data 
computed during computation. 

 
 
A mirrored, 1x4 array of latches.  These latches form a larger 8x4 
array of latches that are used to store the 28-bit encryption key and 
32-bit word for encryption. 

 
 
A mirrored, 1x2 array of latches.  These latches need only be able 
to store data.  These latches form a larger 16x2 array of latches 
that are used to store data during encryption. 



memreg32out -  uses transmission_gate, std_latch_mirror 
 
    

Transmission_gate 

Similar to the input register, 
memreg32out takes in 32 bits 
of the output and partitions it 
into 8-bit segments. 



LAYOUT 
 
6.1.  DES Chip Layout (des 32) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

memreg32_and_decoder 

Key path 

Datapath 

memreg32_and_decoder)

Memreg32out 



keypath

fullbarrel 

xor2

  S_block 

ROM_block[7:0] 

memreg32_and_decoder 



memreg32_and_decoder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



fullbarrel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xor2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S_block 
 
 



(s_block_0)        (s_block_1)  
 

 
 
(s_block_2)        (s_block_3)  
 

                      
 



 
(s_block_4)        (s_block_5)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(s_block_6)        (s_block_7)  
 
 
 
 
 



ROM_blocks 
 
Rom_block_sm_0132            Rom_block_sm_0213 
 
 
 
 
 
 
 
 
 
 
 
 

Rom_block_sm_0231            Rom_block_sm_0312 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rom_block_sm_1023            Rom_block_sm_1203 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_1302            Rom_block_sm_1320 



Rom_block_sm_2013            Rom_block_sm_2031 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_2130            Rom_block_sm_2310 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_3021            Rom_block_sm_3102 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rom_block_sm_3120            Rom_block_sm_3201 
 



datapath 
 
 
  
 
 
 
 
 
 fullcounter 

L0R0

Std_latch_mirror2 

compute_mem 

L1R1

Std_latch_mirror_mux 



fullcounter 
 
 
 
 
 
 



 
 
 
 
compute_mem 
 
 
 
 
 
 
 
 
 

 



L0R0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L1R1  
 
 
 
 
 
 
 
 
 
 
 

 

 



std_latch (latch modified in all latch designs above) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
register               

 
 



std_latch_mirror2 (latch associated with L0R0)                     std_latch_mirror_mux (latch associated with L1R1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Memreg32out 
 
                     



7.1  References 
 
“Data Encryption Standard: Federal Information Processing Standards Publication.”  Gaithersburg, MD: 
Computer Systems Laboratory, National Institute of Standards and Technology, 1993. 
 
Appendix A | 32-bit DES Encryption verification program

/*
* Input file specs:
*
* IP[0:31]
* IPInv[0:31]
* PC-1[0:27]
* PC-2[0:23]
* E[0:23]
* P[0:15]
* S_1[0:1][0:3]
* S_2[0:1][0:3]
* ...
* S_8[0:1][0:3]
*
*/

#include <iostream>
#include <fstream>

/*
* Parameters
*/
#define CMP_WID 32
#define READ_WRDS 4
#define ITERS 8
#define CD_WID 28
#define S_IN_WID 24
#define S_OUT_WID 16

#define S_NUM 8 // number of tables
#define S_TAB_H 2 // number of rows
#define S_TAB_W 4 // number of columns
#define S_TAB_OUT_W 2 // bits of output

void permute(bool* input, bool** output, istream &p, int length);
void barrelShiftsLeft(bool* input, int length, int times);
void bitwiseXOR_ptr(bool* input1, bool** input2, bool* output, int length);
void makeSBlocks(bool**** &s, istream &paramFile);
int fileRead(bool* word, istream &file, int bytes);
char boolToChar(bool** word_ptr);

int main(int argc, char** argv)
{
ifstream paramFile(argv[2]);
ifstream keyFile(argv[3]);

bool* key = new bool[CMP_WID];
bool* CD = new bool[CD_WID];
bool* input = new bool[CMP_WID];
bool* cmpPrev = new bool[CMP_WID];
bool* cmpCurr = new bool[CMP_WID];
bool* sIn = new bool[S_IN_WID];
bool* sOut = new bool[S_OUT_WID];

bool** IP = new bool*[CMP_WID];
bool** IPInv = new bool*[CMP_WID];
bool** PC1 = new bool*[CD_WID];



bool** PC2 = new bool*[S_IN_WID];
bool** E = new bool*[S_IN_WID];
bool** P = new bool*[S_OUT_WID];

bool** K;

bool**** s;

/***************************
* Create permutation blocks
*/

/*
* Make IP permutation block
*/
permute(input, IP, paramFile, CMP_WID);

/*
* Make IPInv permutation block
*/
permute(cmpPrev, IPInv, paramFile, CMP_WID);

/*
* Make PC-1 permutation block
*/
permute(key, PC1, paramFile, CD_WID);

/*
* Make PC-2 permutation block
*/
permute(CD, PC2, paramFile, S_IN_WID);

/*
* Make E permutation block
*/
permute(cmpPrev, E, paramFile, S_IN_WID);

/*
* Make P permutation block
*/
permute(sOut, P, paramFile, S_OUT_WID);

/*
* Make S-function blocks
*/
makeSBlocks(s, paramFile);

/*
* Read in key and init CD
*/
fileRead(key, keyFile, READ_WRDS);
for (int i=0; i<CD_WID; i++)
CD[i] = *(PC1[i]);

cerr << "The key is:\n";
for (int i=CMP_WID-1; i>=0; i--)
cerr << key[i];

cerr << endl << endl;

// cerr << "After PC1, it is:\n";
// for (int i=27; i>=0; i--)
// cerr << *(PC1[i]);
// cerr << endl << endl;

/*
* Generate the keys



*/
K = new bool*[ITERS];
for (int i=0; i<ITERS; i++)
{
K[i] = new bool[S_IN_WID];

for (int j=0; j<S_IN_WID; j++)
K[i][j] = *(PC2[j]);

// cerr << "Key[" << i << "] is:\n";
// for (int j=23; j>=0; j--)
// cerr << K[i][j];
// cerr << endl;

barrelShiftsLeft(CD, (CD_WID/2), 1);
barrelShiftsLeft(&(CD[CD_WID/2]), (CD_WID/2), 1);

}

/*
* Read in input word
*/
fileRead(input, cin, READ_WRDS);
for (int i=0; i<CMP_WID; i++)
cmpPrev[i] = *(IP[i]);

cerr << "Data word is:\n";
for (int j=31; j>=0; j--)
cerr << input[j];

cerr << endl;

// cerr << "Data word after IP:\n";
// for (int j=31; j>=0; j--)
// cerr << cmpPrev[j];
// cerr << endl;

for (int iteration=0; iteration<ITERS; iteration++)
{

// cerr << "*** ITERATION " << iteration << " ***\n";

// cerr << "Input into E --> \n ";
// for (int j=15; j>=0; j--)
// cerr << cmpPrev[j];
// cerr << endl;

bitwiseXOR_ptr(K[argv[1][0]=='e'?iteration:(ITERS-iteration-1)],
E, sIn, S_IN_WID);

// cerr << "Input into sblock --> \n ";
// for (int j=23; j>=0; j--)
// cerr << sIn[j];
// cerr << endl;

/*
* Pass through S-function block
* (Note: Things are a bit reversed with the S-lookup



* because we hooked up the S-lookup table in hardware
* in reverse.)
*/
for (int i=0; i<S_NUM; i++)
for (int j=0; j<S_TAB_OUT_W; j++)
sOut[i*S_TAB_OUT_W+j] = s[i]

[ sIn[2+i*3] ]
[ sIn[1+i*3] + (sIn[0+i*3] * 2) ]
[S_TAB_OUT_W-j-1];

// cerr << "Output of sblock --> \n ";
// for (int j=15; j>=0; j--)
// cerr << sOut[j];
// cerr << endl;

/*
* Get left half of current computation
*/
for (int i=0; i<(CMP_WID/2); i++)
cmpCurr[i+(CMP_WID/2)] = cmpPrev[i];

/*
* Get right half of current computation
*/
bitwiseXOR_ptr(&(cmpPrev[CMP_WID/2]), P, cmpCurr, CMP_WID/2);

/*
* Copy current computation to previous computation
*/
for (int i=0; i<CMP_WID; i++)
cmpPrev[i] = cmpCurr[i];

}

cerr << "Word output right before IP^-1 -->\n ";
for (int j=31; j>=0; j--)
cerr << cmpCurr[j];

cerr << endl;

for (int i=0; i<(CMP_WID/2); i++)
{
cmpPrev[i] = cmpCurr[i+(CMP_WID/2)];
cmpPrev[i+(CMP_WID/2)] = cmpCurr[i];

}

cerr << "Word output (binary) -->\n ";
for (int j=31; j>=0; j--)
cerr << *(IPInv[j]);

cerr << endl;

/*
* Convert back from binary to base-256 (i.e. ASCII)
*/
for (int i=0; i<READ_WRDS; i++)
cout << boolToChar(&(IPInv[i*8]));

/*
for (int i=0; i<CMP_WID; i++)
cout << *(IPInv[i]);

cout << endl;
*/

}



void permute(bool* input, bool** output, istream &p, int length)
{
int index;

for (int i=0; i<length; i++)
{
p >> index;
output[i]=&(input[index-1]);

}
}

/*
void barrelShiftsLeft(bool* input, int length, int times)
{
bool* temp = new bool[length];

for (int i=0; i<times; i++)
temp[i] = input[i];

for (int i=times; i<length; i++)
input[i-times] = input[i];

for (int i=0; i<times; i++)
input[length-times + i] = temp[i];

}
*/

void barrelShiftsLeft(bool* input, int length, int times)
{
bool* temp = new bool[times];

for (int i=0; i<times; i++)
temp[i] = input[i+length-times];

for (int i=length-1; i>=times; i--)
input[i] = input[i-times];

for (int i=0; i<times; i++)
input[i] = temp[i];

}

void bitwiseXOR_ptr(bool* input1, bool** input2, bool* output, int length)
{
for (int i=0; i<length; i++)
// output[i] = ((input1[i]) & *(input2[i]));
output[i] = ((input1[i]) | *(input2[i])) & !((input1[i]) & *(input2[i]));

}

void makeSBlocks(bool**** &s, istream &paramFile)
{
int out;

s = new bool***[S_NUM];

for (int i=0; i<S_NUM; i++)
{
s[i] = new bool**[S_TAB_H];
for (int j=0; j<S_TAB_H; j++)
{
s[i][j] = new bool*[S_TAB_W];
for (int k=0; k<S_TAB_W; k++)
{
s[i][j][k] = new bool[S_TAB_OUT_W];
paramFile >> out;
for (int l=(S_TAB_OUT_W-1); l>=0; l--)
{
s[i][j][k][l] = out%2;
out /= 2;



}
}

}
}

}

int fileRead(bool* word, istream &file, int bytes)
{
char in;

for (int i=0; i<bytes; i++)
{
if (!file.eof())
in = file.get();

else
in = '\0';

cerr << in;

for (int j=7; j>=0; j--)
{
word[i*8+j] = (in%2);
in /= 2;

}
}

cerr << endl;

return file.eof();
}

char boolToChar(bool** word_ptr)
{
char c=0;
int bit = 1;

for (int i=7; i>=0; i--)
{
c += *(word_ptr[i]) * bit;
bit *= 2;

}

return c;
}

 


