
Jerod Meacham
Brooke Bassage-Glock
HMC Eng 158: CMOS VLSI
Final Project: Psuedo-DES Encryption/Decryption TinyChip

Introduction:

In the technology driven world of today many personal and private pieces of data
are being transmitted over the airwaves and cables and are able to be picked up by
anyone. An increased need for privacy has made the use of encryption very necessary.
By implementing a hardware encryption and decryption system, the speed with which
data can be encrypted/decrypted is drastically increased thus allowing for faster data
transmission. We have designed a single chip that does is capable of doing both
encryption and decryption.

Functional Overview:
 The encryption/decryption system will be based on a basic encryption system that
was used in IBM’s LUCIFER encryption systems and is loosely related to the national
Data Encryption Standard used by the government. The system utilizes a series of
alternating substitution and permutation cells through which the twelve bit input travels.
Every cell modifies the data in a specific way – by either permutating all the bits, or by
substituting each of the 4 three bit sets with another 3 bit set, in a specified manner. The
substitution method is based on an eight-bit user supplied key.

Technical Approach:
 We designed an integrated encryptor/decryptor chip. As input data is fed through
the cells, the modification will be determined by the Encode_decode input. If
Encode_decode is HIGH, then the input will be encrypted; if it is low, the input will
decrypted, as long as it was encrypted with this some chip.
 A number of leaf cells were created in order to accomplish the different functions
needed for the encryption of the data. These cells are used to construct the substitution
and permutation cells, which make up the data path.

Substitution Cells:
 The substitution cells operate on a 3-bit input and produce a 3-bit output. The
input to the cells is substituted according to one of two possible combinational logic
circuits. Using this technique, the numbers of ones and zeros may not stay the same, but
will be recoverable, since the substitution is know and can be inverted.
 Two different substitution cells were created for each set of 3-bit inputs. Each
was created from custom-designed combinational logic circuit (see #17 and #19 in the
appendix). The same three inputs goes to both cells (which are wired together, see #16).
The out put used is determined by the selector box. The selector takes the six data inputs
(three from each sub cell) and one select signal from the key logic (see #12 in the
appendix). It uses three MUXes (#13) to pass the appropriate set of data through. The
selectors and both sub cells are together in one sub box (#11). Since each sub box takes
three inputs, four sub boxes are needed in a row to handle the twelve input bits. These
four together are called a sub row (#10 in appendix).

Key Logic:
 The ‘select’ signal is generated by doing a logical XNOR on the Encode_decode
input and each bit of the key input key (see #2 in the appendix for the key logic).

Changing Encode_decode effectively inverts the select signal. The select signal is
distributed to substitution boxes in order. Since it is an 8 bit key, and there are 4 sub
boxes per row, the same four key bits go to every other sub row. Because the data path is
symmetric (starts and ends with a sub row that takes the same select bits as input),
inverting the select signal by inverting Encode_decode changes the functionality of the
whole chip from encryption to decryption, or visa versa.

Permutation Cells:
 Permutation cells simply change the order of the bits in the input. In our case,
there is 12 bits going into each permutation cell and 12 bits out of each permutation cell.
In addition, since only the order of the bits is changing, there will be the same number of
ones and zeros in the input and output data. By making the second three permutation
blocks the inversion of the first three, we can use the same logic to encrypt and decrypt.
The three unique permutations can be seen in #4-6 in the appendix, with their inverses,
#7-9.

Encryptor/Decryptor:
 The Substitution and Permutation cells combine with the key logic to make the
encryption/decryption block. It is constructed from a series of alternating substitution
and permutation cells. The data flows through all these cells and the output is an
encrypted or decrypted version of the input.

Simulation results:

All cells simulated correctly with the exception of the toplevel layout. We were unable to
even write an IRSIM deck for the layout of the toplevel for quite some time.
Consequently we were unable to get a verified simulation for the toplevel layout.
However, all other cells simulate correctly. The toplevel schematic simulates correctly as
seen in the following page. The easiest way to simulate the design is to chose a random
key and input and set encode_decode to high. This will encrypt the data. Then, take the
encrypted output, set that as the input, set encode_decode to low and run it through again
with the same key. It should give the original input. Also, note that the output from the
simulation is unique and encrypted (that is to say, there is no regularity and not
necessarily the same number of 1's and 0's in the input and output).

Postfabrication Test Plan:
We have written a random binary generator to generate keylogic and input data. The data
would have to be run through as given in the simulation results.

Pins:
The following pins will be needed:
Pin Range Function Description
0-6 Vdd/GND Required power and ground

pins
7-18 Inputs Data inputs for operation
19-30 Outputs Data outputs after operation

31-39 Key inputs Encryption Key
40 Select Operation select

(Encryption/decryption)

Verification Results and Area and Design Time Data:

Cell Name Complexity schematic Layout DRC ERC NCC area time
Toplevel 2 X X X X 2193.5 x

2200
5

Keylogic_8bit 3 X X X X X 1704 x 87 4
keyxor 4 X X X X X 74.5 x 78 3

permutator0 1 X X X X X 1661 x 87.5 0.5
permutator1 1 X X X X X 1660.5 x

87.5
0.5

permutator2 1 X X X X X 1661 x 87.5 0.5
permutator0in

v
1 X X X X X 1660 x 87.5 0.5

permutator1in
v

1 X X X X X 1660.5 x
87.5

0.5

permutator2in
v

1 X X X X X 1661 x 87.5 0.5

inv 1 X X X X X 25 x 68.5 0.1
s_block 2 X X X X X 455 x 135 0.5

sub_row 2 X X X X X 1908.25 x
229

2

s+selector_bl
ock

3 X X X X X 465 x 229 2

sub0 3 X X X X X 213 x 113.5 4
sub1 3 X X X X X 251.5 x

113.5
4

c(a+b)+ab.bb.
cb

5 X X X X X 73.5 x 77 6

ab.b+a.bb 4 X X X X X 51.5 x 73 6
selector 3 X X X X X 402 x 113 5

mux2 3 X X X X X 66 x 87 0
tri 3 X X X X X 38 x 87 0

Top Level Layout

Top Level Schematic

Key Logic Layout

Key Logic Schematic

One bit Key XNOR Layout

One bit Key XNOR Schematic

Permutation Block 0 Layout

Permutation Block 0 Schematic

Permutation Block 1 Layout

Permutation Block 1 Schematic

Permutation Block 2 Layout

Permutation Block 2 inverse Layout

Permutation Block 2 inverse Schematic

Permutation Block 1 inverse Layout

Permutation Block 1 inverse Schematic

Permutation Block 0 inverse Layout

Permutation Block 0 inverse Schematic

Sub Row Layout

Sub Row Schematic

Sub Block + Selector Layout

Sub Block + Selector Schematic

Selector Layout

Selector Schematic

MUX Layout

MUX Schematic

Tri-state Layout

Tri-state Schematic

Substitution 0 and Substitution 1 Layout

Substitution 0 and Substitution 1 Schematic

Sub 0 Layout

Sub Zero Schematic

Sub 1 Layout

Sub 1 Schematic

XOR Layout

XOR Schematic

Combinational Logic: a*(b+c) + ab*bb*cb Layout

Combinational Logic: a*(b+c) + ab*bb*cb Schematic

