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1. FUNCTIONAL OVERVIEW 

This chip is a 32-bit adder that uses carry look-ahead logic to speed up execution.  

It functions just the same as any other adder: it takes in two 

32-bit numbers and returns their sum.  Since we are 

restricted to 40 pins, the chip takes the input in chunks of 8 

bits (per number) over four clock cycles and it returns the 

result over the same four clock cycles.  This means that we 

have 16 pins dedicated to input (8 for each number) and 8 

pins dedicated to output.   

In order to control the different states needed to add 

the numbers in 8 bit chunks, we used a finite state machine 

to keep track of the current state.  Essentially, this is a 

counter that counts to 4, and when it reaches 4 it restarts.  

When in the first state (i.e. the first cycle) it sets the carry 

in to 0 since we shouldn’t have a carry before we start 

adding.  In states 2, 3, and 4, it takes the carry out from the previous cycle and sends it 

along as the carry in to the next cycle.  The FSM also allows for a restart button if need 

be. 

The main reason to use a carry look-ahead adder (CLA) as opposed to a ripple 

carry adder is increased speed.  Rather than wait through all the carries in the ripple chain 
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to propagate through, the CLA uses a couple basic equations to precompute the carry out 

for every bit.  The idea is that for the nth bit we will give a carry to the n+1th bit based on 

the equation:  

iiiiii CBABAC )(1 ⊕+=+  (1) 

This is fundamentally composed of two ideas.  We will carry regardless of the 

carry in if both of our inputs are 1.  We will carry if the carry in was 1 and at least one of 

our inputs is high.  The former is called the propogate term, and the latter the generate 

term.  So using equation (1) and assuming that we know C0 we can calculate C1, C2, C3, 

and C4 : 
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))()(( 0000011112 CBABABABAC ⊕+⊕+=  
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Simplifying with a substitution for the two aforementioned terms we get: 
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The Pi and Gi terms can be calculated in parallel because we have the inputs available 

when we take in the 8 bits of a and b.  Thus we extracted them out into a preprocessing 
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unit that computed all 8 P’s and all 8 G’s.  This allowed us to compute each carry bit 

independently of the others for the most part. 

 The carry look-ahead logic gets quite large after 4 bits, so in order to keep the 

chip at a reasonable size, we did only 4 bits of carry look-ahead at a time. To finish off 8 

bits in the cycle, we took the carry out of the first four bits and tied it into another carry 

look-ahead logic block to compute the second 4 bits. 

 The chip then delays the outputs through a set of 8 latches and ultimately off the 

chip on 8 output pins. 
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2. CHIP PINOUT 
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Inputs: 

a[7:0] – the first number to be added 

b[7:0] – the second number to be added 

reset – should be set for one cycle at startup to make sure the FSM is in the correct state 

phi1, phi2 – two phase clocks.  The clocks must never be high at the same time. 

 

Outputs 

q[7:0] – the sum of the inputs 

 

Test Structures 

Ti0, To0 – the input and output of a nand ring oscillator minus the final inverter 

Ti1, To1 – the input and output of a simple inverter 
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3. CHIP FLOORPLAN 
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4. AREA AND DESIGN TIME DATA

Cell Dimensions Area Transistors N-Type P-Type
Area / 

Transistor
Design 

Time (hrs)
aoi145{lay} 136.5x79 10784 14 7 7 770 4
aoi32{lay} 52.5x89 4673 10 5 5 467 2
c3bit{lay} 243x90 21870 28 14 14 781 2
c4bit{lay} 238.5x98 23373 28 14 14 835 5

cla4bit{lay} 113.5x150 17025 26 13 13 655 2
fsm{lay} 412x352 145024 114 57 57 1272 6

fullpath4{lay}  577x416 240032 210 105 105 1143 7
fullpath8{lay}  577x839 484103 420 210 210 1153 3
latchpad{lay} 126.5x510 64515 96 48 48 672 3

preprocess{lay} 150x101.5 15225 20 10 10 761 3
toplevel{lay} 1125x922.5 1037813 630 315 315 1647 3

xor2{lay} 84x77.5 6510 12 6 6 543 2

total design time: 42

 7



 8

5. SIMULATION RESULTS 

We used IRSIM to test our chip using the following instructions.  We exported 

the IRSIM deck from Electric by opening our toplevel{lay} facet, going to “Simulation 

Interface”->”Write IRSIM Deck.”  Then, we uploaded that file to the Unix server.  We 

wrote a special C++ utility to generate IRSIM batch files, and used it to create 5 batch 

files.  Each was run on our IRSIM deck, and the output was logged.  Then, we used a 

second C++ utility to check the results by parsing the output log and comparing it to 

expected values.  We used this method to check 36,880 test vectors.  We had a 100% 

success rate, so our chip works. 

 

The test vectors were chosen as follows: 

Test 1: 9472 test vectors, 100% success 

Every value of ‘a’ from 0 to FF in increments of 7 added to every value of ‘b’ 

from 0 to FF. 

 

Test 2: 6656 test vectors, 100% success 

Every value of ‘a’ from 0 to FF00 in increments of A00 added to every value of 

‘b’ from 0 to FF00 in increments of 100. 

 

Test 3: 13312 test vectors, 100% success 

Every value of ‘a’ from 0 to FF0000 in increments of 50000 added to every value 

of ‘b’ from 0 to FF0000 in increments of 10000. 
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Test 4: 7424 test vectors, 100% success 

Every value of ‘a’ from 0 to FF000000 in increments of 9000000 added to every 

value of ‘b’ from 0 to FF000000 in increments of 1000000. 

  

Test 5: 16 test vectors, 100% success 

Hand selected group of tests: 

Input ‘a’ Input ‘b’ Output ‘y’ 
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFE 
0x00000000 0xFFFFFFFF 0xFFFFFFFF 
0x0000FFFF 0xFFFFFFFF 0x0000FFFE 
0xFFFFFFFF 0x00000001 0x00000000 
0xFFFFFFFE 0x00000001 0xFFFFFFFF 
0xFF0000FF 0xFFFFFFFF 0xFF0000FE 
0xFF00FFFF 0xFFFFFFFF 0xFF00FFFE 
0x00000000 0x00000000 0x00000000 
0x00000001 0x000000FF 0x00000100 
0x000000AF 0xFFFFFFFF 0x000000AE 
0x0000FFFF 0x00001111 0x00011110 
0xF0000000 0x10000000 0x00000000 
0x0000e000 0xFFFF2FFF 0x00000FFF 
0xaaaaaaaa 0xaaaaaaaa 0x55555554 
0xafde6382 0x00025678 0xAFE0B9FA 
0xFFFFFFFF 0x11111111 0x11111110 

 

We feel that this set of vectors cover all of the reasonable situations in which our 

chip could fail.  Since this is a four-cycle processor, it is important to make sure that the 8 

bit adder component works correctly for all reasonable 8 bit inputs.  We tested about half 

of all the possible combinations of inputs ‘a’ and ‘b’, and they cover the entire range and 

weren’t related in any special way.  Therefore, we are certain that the adder works.  The 

only other part of the project is the finite state machine that controls the 4-cycle 32-bit 

add.  It has four states, and the carry can be 0 or 1, so there are 8 possible cases.  We 

tested this circuit more than 1000 times for each of the 8 possible cases with a 100% 
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success rate.  Therefore, we are sure the finite state machine works.  Since the finite state 

machine and the adder were thoroughly tested by our selection of test vectors, we can be 

sure that we would have found a bug if it existed. 



6. VERIFICATION RESULTS

Cell Name Function Complexity DRC ERC NCC
AOI145 OR(AND5,AND4,1) 4 Pass Pass Pass
AOI32 OR(AND3,AND2) 3 Pass Pass Pass
c3bit carry lookahead for bit 3 2 Pass Pass Pass
c4bit carry lookahead for bit 4 3 Pass Pass Pass
cla4bit 2 bit carry lookahead 3 Pass Pass Pass
FSM 4 state FSM for 32 bit addition 5 Pass Pass Pass
fullpath4 4 bit CLA 4 Pass Pass Pass
fullpath8 8 bit CLA 2 Pass Pass Pass
latchpad 8 latches 3 Pass Pass Pass
preprocess xor2 and and2 3 Pass Pass Pass
toplevel pinouts, buses, full layout 3 Pass Pass Pass
xor2 xor2 2 Pass Pass Pass
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7. POSTFABRICATION TEST PLAN 

First, test the pads to make sure the fab didn’t short power and ground or make a 

faulty padframe.  Test the resistance between power and ground to make sure there isn’t a 

short.  Next, verify that the test structures work properly.    We included a nand ring 

oscillator minus the output inverter, and a simple inverter.  Here we want to make sure 

we get the correct results out of both.  An inverter will invert the input.  Our nand ring 

oscillator will give an inverter input when it starts low.  Then on a rising edge it will 

begin to oscillate, and it only stops after a falling edge.  It will start oscillating again on 

another rising edge and so on. 

If the test structures work, then the chip came out of the fab at least partially 

functional.  However, to make sure there aren’t errors on the chip in places other than the 

test structures, use the test vectors from Test 5 (see section 5) to verify that the chip 

works as expected.  If the testing process is not automated, then it is practical to test the 

sixteen vectors plus a few from each of the other test groups. 

When testing the chip, the clock must be carefully managed.  If phi1 and phi2 are 

high at the same time, even briefly, the chip will not function.  They must be separated by 

a short time to allow the latches to settle before their inputs are changed.  Before any 

input is given, set the reset bit to high for one cycle.  In the next cycle, give the 8 lowest 

bits of each input on the appropriate pins (least significant bits on a0 and b0 up to most 

significant a7 and b7).  The inputs should be constant for the entire clock cycle, and 

should be changed during the break between phi2 and phi1.  On the next cycle, read and 

record the output vector (q7-q0), and send the next 8 bits of each operand to the chip.  

Repeat this until 32 bits of input have been sent, and 32 bits of result have been received.  
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When the chip has finished receiving each number, it is immediately ready for the next 

32 bit number, so the chip only needs to be reset once. 
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8. SCHEMATICS AND LAYOUT 
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