

E158 VLSI Final Project: The Carry Look-Ahead Adder
Jason Yelinek
Jeff Miller
April 11, 2001

E158 Intro to VLSI
Prof. Harris

 1

Jason Yelinek

Jeff Miller

April 10, 2001

1. FUNCTIONAL OVERVIEW

This chip is a 32-bit adder that uses carry look-ahead logic to speed up execution.

It functions just the same as any other adder: it takes in two

32-bit numbers and returns their sum. Since we are

restricted to 40 pins, the chip takes the input in chunks of 8

bits (per number) over four clock cycles and it returns the

result over the same four clock cycles. This means that we

have 16 pins dedicated to input (8 for each number) and 8

pins dedicated to output.

In order to control the different states needed to add

the numbers in 8 bit chunks, we used a finite state machine

to keep track of the current state. Essentially, this is a

counter that counts to 4, and when it reaches 4 it restarts.

When in the first state (i.e. the first cycle) it sets the carry

in to 0 since we shouldn’t have a carry before we start

adding. In states 2, 3, and 4, it takes the carry out from the previous cycle and sends it

along as the carry in to the next cycle. The FSM also allows for a restart button if need

be.

The main reason to use a carry look-ahead adder (CLA) as opposed to a ripple

carry adder is increased speed. Rather than wait through all the carries in the ripple chain

0 = c8

00110101 Y

00110010 = B

00000010 =A

1 = C0

cycle4th

1 = c8

 0011000 Y

10010000 = B

10011000 =A

0 = C0

cycle 3rd

0 = c8

 10110100 Y

01011010 = B

01011010 =A

0 = C0

cycle 2nd

0. = c8

10011010 Y

01000011 = B

01010111 =A

0 = C0

:cycle1st

0011 0100 1010 0101 10010000 0010 0011

0111 0101 1010 0101 1000 1001 0010 0000

 do to wanted weif So Ex.

=

=

=

=

+

 2

to propagate through, the CLA uses a couple basic equations to precompute the carry out

for every bit. The idea is that for the nth bit we will give a carry to the n+1th bit based on

the equation:

iiiiii CBABAC)(1 ⊕+=+ (1)

This is fundamentally composed of two ideas. We will carry regardless of the

carry in if both of our inputs are 1. We will carry if the carry in was 1 and at least one of

our inputs is high. The former is called the propogate term, and the latter the generate

term. So using equation (1) and assuming that we know C0 we can calculate C1, C2, C3,

and C4 :

000001)(CBABAC ⊕+=

))()((0000011112 CBABABABAC ⊕+⊕+=

)))()(()((00000111122223 CBABABABABABAC ⊕+⊕+⊕+=

))))()(()(()((000001111222233334 CBABABABABABABABAC ⊕+⊕+⊕+⊕+=

Simplifying with a substitution for the two aforementioned terms we get:

0012301231232334

00120121223

0010112

0001

CGGGGPGGGPGGPGPC
CGGGPGGPGPC

CGGPGPC
CGPC

BAG

BAP

iii

iii

++++=
+++=

++=
+=
⊕=

=

The Pi and Gi terms can be calculated in parallel because we have the inputs available

when we take in the 8 bits of a and b. Thus we extracted them out into a preprocessing

 3

unit that computed all 8 P’s and all 8 G’s. This allowed us to compute each carry bit

independently of the others for the most part.

 The carry look-ahead logic gets quite large after 4 bits, so in order to keep the

chip at a reasonable size, we did only 4 bits of carry look-ahead at a time. To finish off 8

bits in the cycle, we took the carry out of the first four bits and tied it into another carry

look-ahead logic block to compute the second 4 bits.

 The chip then delays the outputs through a set of 8 latches and ultimately off the

chip on 8 output pins.

 4

2. CHIP PINOUT

a0

b0

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7 a7
q7

q6

q5

q4

q3

q2

q1

q0

phi2

reset

phi1

Ti0

To0

Ti1

To1

 5

Inputs:

a[7:0] – the first number to be added

b[7:0] – the second number to be added

reset – should be set for one cycle at startup to make sure the FSM is in the correct state

phi1, phi2 – two phase clocks. The clocks must never be high at the same time.

Outputs

q[7:0] – the sum of the inputs

Test Structures

Ti0, To0 – the input and output of a nand ring oscillator minus the final inverter

Ti1, To1 – the input and output of a simple inverter

 6

3. CHIP FLOORPLAN

FSM
412x352

C3bit
243x90

C3bit
243x90

C4bit
238.5x98

C4bit
238.5x98

8
Pr

ep
ro

ce
ss

 fa
ce

ts
 a

t
15

0x
10

1.
5

ea
ch

Cla4bit
113.5x150

Cla4bit
113.5x150

L
at

ch
pa

d
12

6.
5x

51
0

4 xor2 facets at
84x77.5 each

4 xor2 facets at
84x77.5 each

4. AREA AND DESIGN TIME DATA

Cell Dimensions Area Transistors N-Type P-Type
Area /

Transistor
Design

Time (hrs)
aoi145{lay} 136.5x79 10784 14 7 7 770 4
aoi32{lay} 52.5x89 4673 10 5 5 467 2
c3bit{lay} 243x90 21870 28 14 14 781 2
c4bit{lay} 238.5x98 23373 28 14 14 835 5

cla4bit{lay} 113.5x150 17025 26 13 13 655 2
fsm{lay} 412x352 145024 114 57 57 1272 6

fullpath4{lay} 577x416 240032 210 105 105 1143 7
fullpath8{lay} 577x839 484103 420 210 210 1153 3
latchpad{lay} 126.5x510 64515 96 48 48 672 3

preprocess{lay} 150x101.5 15225 20 10 10 761 3
toplevel{lay} 1125x922.5 1037813 630 315 315 1647 3

xor2{lay} 84x77.5 6510 12 6 6 543 2

total design time: 42

 7

 8

5. SIMULATION RESULTS

We used IRSIM to test our chip using the following instructions. We exported

the IRSIM deck from Electric by opening our toplevel{lay} facet, going to “Simulation

Interface”->”Write IRSIM Deck.” Then, we uploaded that file to the Unix server. We

wrote a special C++ utility to generate IRSIM batch files, and used it to create 5 batch

files. Each was run on our IRSIM deck, and the output was logged. Then, we used a

second C++ utility to check the results by parsing the output log and comparing it to

expected values. We used this method to check 36,880 test vectors. We had a 100%

success rate, so our chip works.

The test vectors were chosen as follows:

Test 1: 9472 test vectors, 100% success

Every value of ‘a’ from 0 to FF in increments of 7 added to every value of ‘b’

from 0 to FF.

Test 2: 6656 test vectors, 100% success

Every value of ‘a’ from 0 to FF00 in increments of A00 added to every value of

‘b’ from 0 to FF00 in increments of 100.

Test 3: 13312 test vectors, 100% success

Every value of ‘a’ from 0 to FF0000 in increments of 50000 added to every value

of ‘b’ from 0 to FF0000 in increments of 10000.

 9

Test 4: 7424 test vectors, 100% success

Every value of ‘a’ from 0 to FF000000 in increments of 9000000 added to every

value of ‘b’ from 0 to FF000000 in increments of 1000000.

Test 5: 16 test vectors, 100% success

Hand selected group of tests:

Input ‘a’ Input ‘b’ Output ‘y’
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFE
0x00000000 0xFFFFFFFF 0xFFFFFFFF
0x0000FFFF 0xFFFFFFFF 0x0000FFFE
0xFFFFFFFF 0x00000001 0x00000000
0xFFFFFFFE 0x00000001 0xFFFFFFFF
0xFF0000FF 0xFFFFFFFF 0xFF0000FE
0xFF00FFFF 0xFFFFFFFF 0xFF00FFFE
0x00000000 0x00000000 0x00000000
0x00000001 0x000000FF 0x00000100
0x000000AF 0xFFFFFFFF 0x000000AE
0x0000FFFF 0x00001111 0x00011110
0xF0000000 0x10000000 0x00000000
0x0000e000 0xFFFF2FFF 0x00000FFF
0xaaaaaaaa 0xaaaaaaaa 0x55555554
0xafde6382 0x00025678 0xAFE0B9FA
0xFFFFFFFF 0x11111111 0x11111110

We feel that this set of vectors cover all of the reasonable situations in which our

chip could fail. Since this is a four-cycle processor, it is important to make sure that the 8

bit adder component works correctly for all reasonable 8 bit inputs. We tested about half

of all the possible combinations of inputs ‘a’ and ‘b’, and they cover the entire range and

weren’t related in any special way. Therefore, we are certain that the adder works. The

only other part of the project is the finite state machine that controls the 4-cycle 32-bit

add. It has four states, and the carry can be 0 or 1, so there are 8 possible cases. We

tested this circuit more than 1000 times for each of the 8 possible cases with a 100%

 10

success rate. Therefore, we are sure the finite state machine works. Since the finite state

machine and the adder were thoroughly tested by our selection of test vectors, we can be

sure that we would have found a bug if it existed.

6. VERIFICATION RESULTS

Cell Name Function Complexity DRC ERC NCC
AOI145 OR(AND5,AND4,1) 4 Pass Pass Pass
AOI32 OR(AND3,AND2) 3 Pass Pass Pass
c3bit carry lookahead for bit 3 2 Pass Pass Pass
c4bit carry lookahead for bit 4 3 Pass Pass Pass
cla4bit 2 bit carry lookahead 3 Pass Pass Pass
FSM 4 state FSM for 32 bit addition 5 Pass Pass Pass
fullpath4 4 bit CLA 4 Pass Pass Pass
fullpath8 8 bit CLA 2 Pass Pass Pass
latchpad 8 latches 3 Pass Pass Pass
preprocess xor2 and and2 3 Pass Pass Pass
toplevel pinouts, buses, full layout 3 Pass Pass Pass
xor2 xor2 2 Pass Pass Pass

 11

 12

7. POSTFABRICATION TEST PLAN

First, test the pads to make sure the fab didn’t short power and ground or make a

faulty padframe. Test the resistance between power and ground to make sure there isn’t a

short. Next, verify that the test structures work properly. We included a nand ring

oscillator minus the output inverter, and a simple inverter. Here we want to make sure

we get the correct results out of both. An inverter will invert the input. Our nand ring

oscillator will give an inverter input when it starts low. Then on a rising edge it will

begin to oscillate, and it only stops after a falling edge. It will start oscillating again on

another rising edge and so on.

If the test structures work, then the chip came out of the fab at least partially

functional. However, to make sure there aren’t errors on the chip in places other than the

test structures, use the test vectors from Test 5 (see section 5) to verify that the chip

works as expected. If the testing process is not automated, then it is practical to test the

sixteen vectors plus a few from each of the other test groups.

When testing the chip, the clock must be carefully managed. If phi1 and phi2 are

high at the same time, even briefly, the chip will not function. They must be separated by

a short time to allow the latches to settle before their inputs are changed. Before any

input is given, set the reset bit to high for one cycle. In the next cycle, give the 8 lowest

bits of each input on the appropriate pins (least significant bits on a0 and b0 up to most

significant a7 and b7). The inputs should be constant for the entire clock cycle, and

should be changed during the break between phi2 and phi1. On the next cycle, read and

record the output vector (q7-q0), and send the next 8 bits of each operand to the chip.

Repeat this until 32 bits of input have been sent, and 32 bits of result have been received.

 13

When the chip has finished receiving each number, it is immediately ready for the next

32 bit number, so the chip only needs to be reset once.

 14

8. SCHEMATICS AND LAYOUT

aoi145{sch}

 15

aoi145{lay}

 16

aoi32{sch}

 17

aoi32{lay}

 18

c3bit{sch}

 19

c3bit{lay}

 20

c4bit{sch}

 21

c4bit{lay}

 22

cla4bit{sch}

 23

cla4bit{lay}

 24

fsm{sch}

 25

fsm{lay}

 26

fullpath4{sch}

 27

fullpath4{lay}

 28

fullpath8{sch}

 29

fullpath8{lay}

 30

latchpad{sch}

 31

latchpad{lay}

 32

preprocess{sch}

 33

preprocess{lay}

 34

toplevel{sch}

 35

toplevel{lay}

 36

xor2{sch}

 37

xor2{lay}

 38

top{lay}

	1. Functional Overview
	2. Chip Pinout
	3. Chip Floorplan
	4. Area and Design Time Data
	5. Simulation Results
	6. Verification Results
	7. Postfabrication Test Plan
	8. Schematics and Layout

