
8-BIT UNSIGNED MULTIPLIER

Charles Hastings
David Hopkins

Charles Hastings

David Hopkins

E158

04/11/01

UNSIGNED 8-BIT MULTIPLIER

Overview

We designed an unsigned 8-bit by 8-bit combinational array multiplier. The chip takes

two 8-bit unsigned values, multiplies them, and outputs a 16-bit result. The chip also

includes zero-detect logic.

The multiplier design requires 64 full adders along with 64 AND gates. These can be

organized in an array fashion, with the nth output from one row of full adders leading to

input n-1 in the next row. When an output is at the beginning of a row, it becomes a

member of the product.

This array of full adders is intertwined with an array of AND gates. The gates serve to

compute the partial products of the multiplication, which are then summed by the

network of full adders. We chose to integrate the AND gate with the fuller adder layout

into a cell called mulcell. This allowed for easy organization of the mulcell into an array

of 64. The array was broken down into eight rows (called MulRow), each of which

contained eight mulcells in a linear array. A 4 by 4 array multiplier is shown below.

This design was used as a model for our implementation.

4-Bit Array Multiplier
From <http://6004.lcs.mit.edu/Spring00/handouts/L09.pdf

Zero detect was accomplished by comparing all output bits of the product. If all are zero,

zero is high, or else zero is low. The zero detect logic used is a tree of 2- input logic

gates. The lowest level of the tree is 8 NOR gates, followed by 4 NAND gates, 2 NOR

gates, and finally a single AND gate.

Padframe for design

Pin Configuration Pin I/O Description

A[7:0] Input Multiplicand

B[7:0] Input Multiplier

Y[15:0] Output Product

ZERO Output Zero detect

 rng Output Ring Oscillator

MULCELL MULROW

Ring Oscillator

Zero Detect

80

440

420

2080
210

1350

80

220

Floor Plan for unsigned 8-bit multiplier

Area Estimates

Shown below is a table listing each cell that the design required, the estimated size of the

cell, and the actual size. Note that the overall size is somewhat larger than estimated

because the area is measure as a rectangle that surrounds the entire design, and much of

the space within that rectangle does not contain any useful components. Otherwise, most

of the cells were only a bit bigger than expected, excluding the zerodetect, which was not

optimized for area.

Cell Est. Width Est. Height Est. Area Width Height Area
mulcell 210 80 16800 220 80 17600
MulRow 1640 80 131200 1900 80 152000
multiplier 1640 960 1574400 2000 900 1800000
zerodetect 730 80 58400 440 420 184800
ring osc. 270 80 21600 220 80 17600
core 1640 1040 1705600 2080 1350 2808000

Design Time Data

Shown below is a table listing each cell that the design required, and the design time

spent on schematics, layout, and design verification for each of the cells. The total design

time spent by the team was approximately 73 hours. Also shown is the number of

transistors in each cell, and a time per transistor in the far right column. This number

may be a bit misleading, as most of the transistors after the first level of the design come

from multiple instantiations of the lower level, not new layouts. The time spent on the

higher levels was primarily focused on routing of interconnections and placement of

cells.

Cell Schematic Layout NCC/ERC/DRC # transistors total time/transistor
mulcell 1 3 1 34 0.147058824
MulRow 1.5 9.5 2.5 272 0.049632353
multiplier 3 13 3.25 2176 0.008846507
zerodetect 1 4 1.5 62 0.10483871
ring osc 0.5 1 0.25 10 0.175
core 1.25 14 4.5 2248 0.008785587
top N/A 7 N/A 2248 0.003113879

total time: 72.75

Simulation Results

Shown on the following two pages are the simulation waveforms for a few selected cases.
We felt that these “corner cases” give substantial proof that the system is operating
correctly.

In addition to these few cases, test scripts were written to facilitate the testing of our
design for all possible inputs (256 * 256 cases). These test scripts are in appendix A.

co
re

W
ed

 A
pr

 1
1

03
:1

2:
06

 2
00

1

tim
e

(n
s) 0.

00
50

.0
0

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30
0.

00
35

0.
00

40
0.

00

a b y

Z
er

o

00
a7

cf

00
a7

00
12

00
00

0e
8e

co
re

W
ed

 A
pr

 1
1

03
:1

2:
39

 2
00

1

tim
e

(n
s)

30
0.

00
35

0.
00

40
0.

00
45

0.
00

50
0.

00
55

0.
00

60
0.

00
65

0.
00

70
0.

00
75

0.
00

80
0.

00
84

3.
12

a b y

Z
er

o

a7
cf

12
fe

ff

00
12

cf
a9

ff

00
00

0e
8e

11
0e

0e
8e

afa
e

a7
ae

f6e
1fe

c1
fe

01

Verification Results
The entire design, including all leaf cells and high- level cells (excluding the pad frame),

passed DRC, ERC, and NCC. For DRC and ERC, Electric was used, while Gemini was

utilized to do a network comparison.

Postfabrication Test Plan

Once the chip is returned for testing we plan to initially hook up the power and ground

pins, and verify with an oscilloscope that the ring oscillator is functioning. Given that the

output of our chip is only dependent on the current inputs, the testing will be much easier

than a system whose output is dependent upon previous inputs. We will verify the

correct operation of the chip using our ‘corner cases’. These will be supplemented by a

series of random tests, utilizing random inputs.

Schematics and Layout

The next few pages contain schematics and layouts for all of the cells used in the design.

fulladder: a standard full adder schematic

mulcell: AND gate computes the partial products, full adder sums them

Eight bit zero-detect

16 bit zero-detect

MulRow: A single row in the array, containing 8 mulcells in a linear array

Multiplier: A column of 8 MulRow’s forms the multiplier cell

Core: Top level schematic containing multiplier, zero detect, and a ring oscillator

Layout of Fulladder cell

Layout of mulcell: fulladder and AND gate

Layout of MulRow: 8 mulcell’s in a linear array

Layout of multiplier: 8 MulRow cells in a vertical array

Layout of zerodetect: 8 bit zero detect cell

Layout of zero_detect: 16 bit zero-detection using 2 – 8 bit detectors

Layout of core: all components excluding pad frame

Appendix A: Test Scripts

#include <iostream.h>
#include <string>
#include <math.h>

string dec2bin(int x);

//
// Generates binary products from 0x00 * 0x00 to 0xff * 0xff.
//

void main() {
 for (int a=0 ; a<=255 ; a++) {
 for(int b=0 ; b<=255 ; b++) {
 cout << dec2bin(a).substr(8)
 << " " << dec2bin(b).substr(8) << " "
 << dec2bin(a*b) << endl;
 }
 }
}

//
// Function returns 16-byte long STL string of 1's and 0's which
// represent the argument dec in binary.
//
// dec2bin(0xff) returns 1111111111111111.
//

string dec2bin(int dec) {
 string bin="0000000000000000";

 for(int x=15;x>=0;x--) {

 if(dec-int(pow(2,x)) >= 0) {
 dec-=int(pow(2,x));
 bin[15-x]='1';
 }
 }

 return bin;
}

#!/usr/bin/perl

Creates IRSIM .cmd-formatted file to test all possible 8-bit binary
products.

Charles Hastings, 2001

open(FILE, "binary.out");

while($temp=<FILE>) {
 $temp=~s/\n//g;

 my ($a, $b, $result)=split(" ", $temp);

 print "set a $a\n";
 print "set b $b\n";
 print "s\n";
 print "d y\n";

}

#!/usr/bin/perl

Compares IRSIM output file to known list of products. Reports
anomalies.

Charles Hastings, 2001

open(REF, "binary.out");
open(TEST, "test_results.out");

while($test=<TEST>) {
 $test=~s/\n//g;

 if(substr($test, 0, 2) eq "y=") {
 $ref=<REF>;
 $ref=~s/\n//g;

 my ($a, $b, $prod)=split(" ", $ref);

 $prodTest=substr($test, 2, 16);

 if($prod ne $prodTest) {
 print "Error! $a * $b != $prodTest (should be
$prod)\n";
 }

 }

}

