
Final Project
E158 Introduction to CMOS VLSI Design

April 11, 2001

8-bit Signal Amplifier with Clipping Detection
Jeremy Liu
Tina Wang

Figure 1: Color Chip Layout

Functional Overview
This is the design for a variable 8-bit signal amplifier with overflow

detection. Upon detecting a positive edge on Start, the amplifier takes in an 8-bit
signal (Signal_In[7:0]) and multiplies it by the gain indicated by Amp_Level[3:0].
The output is also an 8-bit signal (Signal_Out[7:0]) so overflow detection is
needed. If the signal overflows, this amplifier chip will clip the output to the
maximum possible 8-bit value (8b’1111_1111) and toggle the Overflow flag high.
When the unit is done amplifying the signal, the Done flag will toggle high.

Inputs Definitions
Signal_In[7:0] 8-bit Data signal to be amplified
Amp_Level[3:0] 4-bit Level of amplification (gain)
ph1, ph2 Two-phase clock signals
Start Starts amplifier on posedge Start signal
Reset Reset
Outputs
Signal_Out[7:0] 8-bit Data output of amplified signal
Overflow High if overflow detected
Done High when amplifier cycles are

complete, also High on Reset.
Table 1: I/O Pins and Definitions

Multiplier

Our amplifier design is based on the following block diagram as discussed
in our text. We have scaled it up from a 4x4 multiplier to an 8x4 multiplier and
added additional logic for the clipping and overflow detection.

Figure 2: A 4x4 bit multiplier. Source: Application-Specific Integrated Circuits

by Michael John Sebastian Smith. 2001. pg. 387.

Signal bus A in the above diagram corresponds to our Amp_Level and
Signal B corresponds to our Signal_In. In our design we replaced the ShiftN

block with a 12-bit shift register. The design works by shifting the multiplier to
the right and multiplicand to the left. If the least significant bit of the Amp_Level
is a 1, then the multiplier will add the value in Signal_In to the current value in
the result. Otherwise if the least significant bit of Amp_Level is 0, then we don’t
need to add anything.

Figure 3: A Sample Calculation

 Since the Amp_Level is continuously shifting to the right (with zeros
shifting at the left), when the bottom four bits of the Amp Level register are all
zero, then we know we are done with the multiplication. The AllZero block in
Figure 1 is accomplished using a single NOR4 gate which outputs the signal Stop.
 Finally instead of having an 8-bit adder, mux and register, we scaled them
all up to 12-bits.

Controller

 The SM_1 block in Figure 1 is the controller
block for the multiplier. The controller is based off
the following state machine. We coded this state
machine into Verilog and synthesized it using
Synopsis tools for the transistor level layout (see
Appendix A for Verilog code).
 The state names were changed into longer,
more descriptive names.
 I => Initialize_state
 C => Check_state

A => Add_state
 S => Shift_state
 E => End_state

Figure 4: Controller state machine.
Source: Application-Specific Integrated Circuits
by Michael John Sebastian Smith. 2001. pg. 386.

The state machine starts in state End_state with Done = 1. It will remain in that
state until the user starts the amplification cycles by toggling the Start signal
high.
 The initialize state sends Init high for one cycle, then continues on to the
Check_state cycle.
 In the Check_state cycle, if the current least significant bit of Amp Level
register is 1, then we need to do an Add before the next Shift cycle. Otherwise,
unless the Stop flag is high, the next state goes directly to the Shift_state. If the
Stop flag is high, then we are done with the calculation and we end in End_state.
Any Reset signal will also set the state to End_state.

Clipping
 The final output from the multiplier is sent into an 8-bit mux for clipping.
If the any of the top four bits of the product register are equal to 1, then the
result is greater than 8b’1111_1111 and we have an overflow. We are not
worried about the 13th carryout bit because the largest possible result we can
have would be 8b’1111_1111 multiplied by 4b’1111 which equals
12b’1110_1111_0001.
 Therefore the OR4 of the top four bits of the product register is the
Overflow signal and also acts as the control signal of the 8-bit mux. If there is
not an overflow, then the 8-bit mux outputs the bottom 8 bits of the product
register. If there is an overflow, then the 8-bit mux will output 8b’1111_1111.

Timing Issues
 We used a two-phase clock in our design. The clocked components were
the controller, the product register and the two shift registers. The registers
were all based on two stage latches, with the first being clocked by ph1 and the
second by ph2. This meant that the inputs of the registers were taken at the
rising edge of ph1, but that the outputs of the registers did not appear until the
rising edge of ph2. The outputs were thus stable_1, which was necessary for
the shift registers, which needed a stable_1 signal at the input. The controller
signals were clocked by ph2, so that they would also be stable_1, and we could
use those signals to qualify ph1 at the registers.

Chip Floorplan

12

Bit

Adder

1170λ

X

190λ

12

Bit

Mux

880λ

X

100λ

Prod.

Reg.

950λ

X

310λ

Signal

In

1270λ

X

380λ

Amp

Level

1270λ

X

380λ
8

Bit

Mux

600λ

X

100λ

12 12

12 1212 12

8

4

1

4 Or

90λX70λ

4 Nor

90λX50λ

Control

290λX760λ

4

2200λ

2200λ

1

Signal In

12

Amp Level

4

Shift

Init

Ph1/Ph2

Shift

Init

Ph1/Ph2

Add

Ph1/Ph2

Reset

Reset

Reset

Stop

Output

8

Overflow

LSB

Start

Ph1/Ph2

Done

Shift Add Init

Figure 5: Final Chip Floorplan

Area and Design Time
Leaf Cells Est. AREA (h x w) Actual AREA DESIGN

TIME
nor4 80λ x 120λ = 9600λ2 70λ x 50λ = 3500λ2 1 hour
std_inv 60λ x 20λ = 1200λ2 1200λ2 given
tri 80λ x 30λ = 2400λ2 2400λ2 given
fulladder 80λ x 170λ = 13600λ2 13600λ2 given
nor3 60λ x 40λ = 2400λ2 2400λ2 given
nand2 60λ x 30λ = 1800λ2 1800λ2 given
Components
12 Bit Shift
Register

1680λ x 420λ =
705600λ2

1270λ x 380λ =
482600λ2

12 hours

12 Bit Adder 1080λ x 170λ =
183600λ2

1170λx190λ =
222300λ2

5 hours

12 Bit Mux 1080λ x 60λ =
64800λ2

880λ x 100λ =
88000λ2

3 hours

12 Bit Register 1200λ x 240λ =
288000λ2

950λ x 310 λ =
294500λ2

8 hours

NOR4 80λ x 120λ = 9600λ2 90λ x 50λ = 4500λ2 1 hour
Control << 440λ x 1320λ 290λ x 760λ =

220400λ2
15 hours

OR4 80λ x 100λ = 8000λ2 90λ x 70λ = 6300λ2 1 hour
8 Bit Mux 720λ x 60λ = 43200λ2 600λ x 100λ =

60000λ2
2 hours

Final Layout 20 hours
TOTAL AREA < 2200λ x 2200λ 68 hours

Table 2: Area and Design Time Data

total est area (not including controller): 1,302,800
total actual area (not including controller): 1,158,200

Most of our estimates were pretty close to our actual layout area. We
tended to slightly underestimate most component sizes. However, our total
estimated area was still larger than the actual component area.

The biggest difference between estimate and actual area was in the 12-bit
Shift Register. We originally estimated the height of one shift register to be 140λ.
During the design process, we completely redesigned the shift register (mainly to
include NAND’s instead of MUX2’s) and also came up with less lines running
horizontally between the registers than we had originally anticipated. The final
height of one shift register became approximately 100 lambda tall with only one
signal line running between the registers. The area gained from this size
reduction was enough to compensate for our other small area underestimates
and still have a smaller total actual size than estimate size.

Verification Results
Leaf Cells DRC ERC NCC
nor4 pass pass pass
std_inv pass pass pass
tri pass pass pass
fulladder pass pass pass
nor3 pass pass pass
nand2 pass pass pass
Components
12 Bit Shift Register pass pass pass
12 Bit Adder pass pass pass
12 Bit Mux pass pass pass
12 Bit Register pass pass pass
NOR4 pass pass pass
Control pass pass pass
OR4 pass pass pass
8 Bit Mux pass pass pass
8-bit Signal
Amplifier with
Clipping

pass pass pass

Table 3: Verification Results

Chip Pinout

Sig_In3 Sig_In2 Sig_In1

Sig_In4

Sig_In5

Amp_Level0

Sig_In0

Sig_In6

Sig_In7

Amp_Level1

Amp_Level2

Amp_Level3

input

input

input

input

input

input

input

input

input input input input

Gnd

Ground

test_in test_out

input output

Overflow

Sig_out7

Sig_out0

Sig_out6

Sig_out5

Sig_out1

Sig_out2

Sig_out3

Sig_out4

ph2 Start Done Vdd ph1 Reset

output

output

output

output

output

output

output

output

output

input input output Power input input

Figure 6: Pad Layout

Test Plan
Upon getting the chip back, the first step in testing this chip would be to

test the pins attached to the input and output terminals of an INV gate placed in
the extra area of the chip. If the output signal is the inverted input then we
know the pins on the chip are active.

The amplifier should not perform any calculations until a posedge signal is
detected on Start. With a constant clock signal, after a reset to clear all registers,
all outputs except for Done should be low.

The next step is testing simple operation. The following test vectors can
be used to check proper amplification. Pulse Start when the data inputs are
ready and then wait for the Done signal. You should also reset the chip between
each test to ensure that the registers are empty before testing.

 Signal_In Amp_Level Signal_Out Overflow
1. 0000 0000 0000 0000 0000 0
2. 0000 0110 0000 0000 0000 0
3. 0000 0110 0001 0000 0110 0
4. 0000 0110 0010 0000 1100 0
5. 0000 1010 0110 0011 1100 0
6. 0010 1101 0011 1000 0111 0
7. 0001 0001 1111 1111 1111 0
8. 1011 0110 0100 1111 1111 1
9. 0001 0001 1001 1001 1001 0
10. 0100 1110 1101 1111 1111 1

Table 4: Test Vectors

Test vector 7 should result in an answer that is the maximum possible
value without triggering the overflow detector. Test vectors 8 and 10 should
cause an overflow and is used to test the clipping detection of the amplifier.
When the result of the amplification exceeds the range of the 8-bit output, the
output should be set to the full-scale value and Overflow should be true.

Appendix A: Verilog Code for Controller

// Tina Wang
// cewang@hmc.edu
// March 20, 2001
// E158: Intro to CMOS VLSI Design

// This is the control module for a 4x8 bit multiplier used in
// an 8-bit signal amplifier. The multiplier multiplies the two numbers
// by performing a series of number shifts and additions. However, since
// this is binary multiplication, we either add the shifted multiplicand
// or we add nothing.

// This Verilog code is based on a state machine and VHDL code from
// the text Application-Specific Integrated Circuits by Michael John
// Sebastian Smith, pg. 386-387.

module SM_2(start, ph1, ph2, LSB, stop, reset,
 init, shift, add, done);

 input start; // toggle high to start amplifier
 input stop; // Stop=NOR4 of the bottom four bits of the

// Amp level register
 // if stop=1, then Amplifier is done

// multiplying
 input LSB; // The LSB of the Amp Level Register.
 input reset;
 input ph1, ph2; // clocks

 output init; // clears product registers and reads in
 // new data into the input registers
 output shift; // control signal to shift registers
 output add; // control signal to a mux to chose
 // result = result + signal in (shifted)
 // instead of result = result
 output done; // output to user signaling end of amplifier
 // cycles

 // multicycle state machine state definitions
 parameter Initialize_state = 3'b000;
 parameter Check_state = 3'b001;
 parameter Add_state = 3'b010;
 parameter Shift_state = 3'b011;
 parameter End_state = 3'b100;

 // parameters
 reg [2:0] nextstate_s2;
 reg [2:0] state_s1, state_s2;
 reg shift, init, add, done;

 // state register
 always @(ph1 or nextstate_s2) // master latch
 if (ph1) state_s1 <= nextstate_s2;
 always @(ph2 or state_s1) // slave latch
 if (ph2) state_s2 <= state_s1;

 // next state logic
 // state transition diagram given in Figure 2 of E158 Final Report
 always @(state_s2 or LSB or start or stop or reset)
 if (reset) nextstate_s2 <= End_state; // synchronous reset
 else case (state_s2)
 Initialize_state: nextstate_s2 <= Check_state;
 Check_state: if (LSB) nextstate_s2 <= Add_state;

 else if (!stop) nextstate_s2 <= Shift_state;
 else nextstate_s2 <= End_state;
 // If LSB=1, then result = result+Signal_In(shifted)
 // Else (!Stop) just shift Signal_In and Amp_Level
 // Else Stop, skip to End_state
 Add_state: nextstate_s2 <= Shift_state;
 Shift_state: nextstate_s2 <= Check_state;
 End_state: if (start) nextstate_s2 <= Initialize_state;
 else nextstate_s2 <= End_state;
 default: nextstate_s2 <= End_state;
 endcase

 always @(state_s2)
 begin
 // provide default values for signals not specified
 init <= 0;
 add <= 0;
 shift <= 0;
 done <= 0;

 // specify outputs according to Fig. 2 of E158 Final Report
 // each value only stays high for one cycle because
 // of the default values
 case (state_s2)
 Initialize_state: init <= 1;
 Add_state: add <= 1;
 Shift_state: shift <= 1;
 End_state: done <= 1;
 default: begin
 end
 endcase
 end
endmodule

Appendix B: Simulation Waveforms and Results

Simulation Results

While designing, we simulated each individual cell and component as they
were completed, first for the schematics and then for the layout.

For the schematic simulations, all of components simulated correctly
except for the controller. Therefore we simulated the circuit without the
controller, applying signals as we would expect to see output from the controller.
Eventually both parts of the design were working as expected, and then we
integrated the controller into the design and did a final simulation.

For the layout simulations, all of the components simulated correctly,
including the controller. Upon wiring all the components together in the final
solution, the final design simulated correctly so there was no need to simulate
the circuit separate from the controller.

Some sample waveforms are included in this appendix. On the controller
simulation from the schematic simulations, you can see that Reset will send all
the control signals except Done to low. Upon a posedge from Start, Init will
toggle on and then off for a cycle. Then you should see a series of pulses on
Shift or Add and Shift as the multiplier cycles through. Since the controller is not
connected to the rest of the circuit, we must set the values for LSB and Stop by
hand. Normally we would expect these values as outputs from the logic in the
circuit. Upon detecting a Stop signal, all values except Done will go low and
remain in that state until a Start signal is detected.
 In the final simulation, we are only worried about the top level inputs and
outputs. We put in a series of different combinations to test if the amplifier
works or not. There are two simulation waveforms that correspond to the test
vectors given in Table 4. We reset before each calculation. Though the
Signal_Out data changes during the calculation, we are not concerned with that
because the final answer is read from Signal_Out on the posedge of Done.

Figure 7: Controller simulation

Figure 8: Final simulation (test vectors 1-5)

Figure 9: Final simulation (test vectors 6-10)

Appendix C: Schematics

The following pages contain the complete schematics for our design.

Figure 10: 8-bit signal amplifier with clipping

Figure 11: Shift12

Figure 12: ShiftReg

Figure 13: fulladder

Figure 14: Adder12

Figure 15: mux8

Figure 16: mux

Figure 17: mux12

Figure 18: reg12

Figure 19:reg

Figure 20: NOR4

Figure 21: OR4

Figure 22: flop

Figure 23: latch

Appendix D: Layouts

The following pages contain the complete layouts for our design.

Figure 24: 8-bit signal amplifier with clipping

Figure 25: shift12

Figure 26: shiftreg

Figure 27: adder12

Figure 28: mux12

Figure 29: mux8

Figure 30: mux

Figure 31: reg12

Figure 32: reg

Figure 33: NOR4

Figure 34: OR4

Figure 35: flop

Figure 36: latch

