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Figure 1: Color Chip Layout 
 

 



Functional Overview 
This is the design for a variable 8-bit signal amplifier with overflow 

detection. Upon detecting a positive edge on Start, the amplifier takes in an 8-bit 
signal (Signal_In[7:0]) and multiplies it by the gain indicated by Amp_Level[3:0]. 
The output is also an 8-bit signal (Signal_Out[7:0]) so overflow detection is 
needed. If the signal overflows, this amplifier chip will clip the output to the 
maximum possible 8-bit value (8b’1111_1111) and toggle the Overflow flag high. 
When the unit is done amplifying the signal, the Done flag will toggle high. 
 
Inputs Definitions 
Signal_In[7:0] 8-bit Data signal to be amplified 
Amp_Level[3:0] 4-bit Level of amplification (gain) 
ph1, ph2 Two-phase clock signals 
Start Starts amplifier on posedge Start signal 
Reset Reset 
Outputs 
Signal_Out[7:0] 8-bit Data output of amplified signal 
Overflow High if overflow detected 
Done High when amplifier cycles are 

complete, also High on Reset. 
Table 1: I/O Pins and Definitions 

 
Multiplier  

Our amplifier design is based on the following block diagram as discussed 
in our text. We have scaled it up from a 4x4 multiplier to an 8x4 multiplier and 
added additional logic for the clipping and overflow detection.  

 
Figure 2: A 4x4 bit multiplier. Source: Application-Specific Integrated Circuits           

by Michael John Sebastian Smith. 2001. pg. 387. 
  

Signal bus A in the above diagram corresponds to our Amp_Level and 
Signal B corresponds to our Signal_In. In our design we replaced the ShiftN 



 

block with a 12-bit shift register. The design works by shifting the multiplier to 
the right and multiplicand to the left. If the least significant bit of the Amp_Level 
is a 1, then the multiplier will add the value in Signal_In to the current value in 
the result. Otherwise if the least significant bit of Amp_Level is 0, then we don’t 
need to add anything. 

 

 
Figure 3: A Sample Calculation 

 
 Since the Amp_Level is continuously shifting to the right (with zeros 
shifting at the left), when the bottom four bits of the Amp Level register are all 
zero, then we know we are done with the multiplication. The AllZero block in 
Figure 1 is accomplished using a single NOR4 gate which outputs the signal Stop. 
 Finally instead of having an 8-bit adder, mux and register, we scaled them 
all up to 12-bits. 
 
Controller  

 The SM_1 block in Figure 1 is the controller 
block for the multiplier. The controller is based off 
the following state machine. We coded this state 
machine into Verilog and synthesized it using 
Synopsis tools for the transistor level layout (see 
Appendix A for Verilog code).  
 The state names were changed into longer, 
more descriptive names.  
 I => Initialize_state  
 C => Check_state  

A => Add_state  
 S => Shift_state  
 E => End_state  
 
 
 
 
Figure 4: Controller state machine.                     
Source: Application-Specific Integrated Circuits  
by Michael John Sebastian Smith. 2001. pg. 386. 
 
  



The state machine starts in state End_state with Done = 1. It will remain in that 
state until the user starts the amplification cycles by toggling the Start signal 
high. 
 The initialize state sends Init high for one cycle, then continues on to the 
Check_state cycle.  
 In the Check_state cycle, if the current least significant bit of Amp Level 
register is 1, then we need to do an Add before the next Shift cycle. Otherwise, 
unless the Stop flag is high, the next state goes directly to the Shift_state. If the 
Stop flag is high, then we are done with the calculation and we end in End_state. 
Any Reset signal will also set the state to End_state. 
 
Clipping  
 The final output from the multiplier is sent into an 8-bit mux for clipping. 
If the any of the top four bits of the product register are equal to 1, then the 
result is greater than 8b’1111_1111 and we have an overflow. We are not 
worried about the 13th carryout bit because the largest possible result we can 
have would be 8b’1111_1111 multiplied by 4b’1111 which equals 
12b’1110_1111_0001.  
 Therefore the OR4 of the top four bits of the product register is the 
Overflow signal and also acts as the control signal of the 8-bit mux. If there is 
not an overflow, then the 8-bit mux outputs the bottom 8 bits of the product 
register. If there is an overflow, then the 8-bit mux will output 8b’1111_1111.  
 
Timing Issues 
 We used a two-phase clock in our design.  The clocked components were 
the controller, the product register and the two shift registers.  The registers 
were all based on two stage latches, with the first being clocked by ph1 and the 
second by ph2.  This meant that the inputs of the registers were taken at the 
rising edge of ph1, but that the outputs of the registers did not appear until the 
rising edge of ph2.   The outputs were thus stable_1, which was necessary for 
the shift registers, which needed a stable_1 signal at the input.  The controller 
signals were clocked by ph2, so that they would also be stable_1, and we could 
use those signals to qualify ph1 at the registers. 
 



Chip Floorplan 
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Figure 5: Final Chip Floorplan 

 
 



Area and Design Time 
Leaf Cells Est. AREA (h x w) Actual AREA DESIGN 

TIME 
nor4 80λ x 120λ = 9600λ2 70λ x 50λ = 3500λ2 1 hour 
std_inv 60λ x 20λ = 1200λ2 1200λ2 given 
tri 80λ x 30λ = 2400λ2 2400λ2 given 
fulladder 80λ x 170λ = 13600λ2 13600λ2 given 
nor3 60λ x 40λ = 2400λ2 2400λ2 given 
nand2 60λ x 30λ = 1800λ2 1800λ2 given 
Components    
12 Bit Shift 
Register 

1680λ x 420λ = 
705600λ2 

1270λ x 380λ = 
482600λ2 

12 hours 

12 Bit Adder 1080λ x 170λ = 
183600λ2 

1170λx190λ = 
222300λ2 

5 hours 

12 Bit Mux 1080λ x 60λ =  
64800λ2 

880λ x 100λ = 
88000λ2 

3 hours 

12 Bit Register 1200λ x 240λ = 
288000λ2 

950λ x 310 λ = 
294500λ2 

8 hours 

NOR4 80λ x 120λ = 9600λ2 90λ x 50λ = 4500λ2 1 hour 
Control << 440λ x 1320λ  290λ x 760λ = 

220400λ2 
15 hours 

OR4 80λ x 100λ = 8000λ2 90λ x 70λ = 6300λ2 1 hour 
8 Bit Mux 720λ x 60λ = 43200λ2 600λ x 100λ = 

60000λ2 
2 hours 

Final Layout   20 hours 
TOTAL AREA < 2200λ x 2200λ  68 hours 

Table 2: Area and Design Time Data 
 

total est area (not including controller): 1,302,800 
total actual area (not including controller): 1,158,200 
 

Most of our estimates were pretty close to our actual layout area. We 
tended to slightly underestimate most component sizes. However, our total 
estimated area was still larger than the actual component area.  

The biggest difference between estimate and actual area was in the 12-bit 
Shift Register. We originally estimated the height of one shift register to be 140λ. 
During the design process, we completely redesigned the shift register (mainly to 
include NAND’s instead of MUX2’s) and also came up with less lines running 
horizontally between the registers than we had originally anticipated. The final 
height of one shift register became approximately 100 lambda tall with only one 
signal line running between the registers. The area gained from this size 
reduction was enough to compensate for our other small area underestimates 
and still have a smaller total actual size than estimate size.  
  



Verification Results 
Leaf Cells DRC ERC NCC 
nor4 pass pass pass 
std_inv pass pass pass 
tri pass pass pass 
fulladder pass pass pass 
nor3 pass pass pass 
nand2 pass pass pass 
Components 
12 Bit Shift Register pass pass pass 
12 Bit Adder pass pass pass 
12 Bit Mux pass pass pass 
12 Bit Register pass pass pass 
NOR4 pass pass pass 
Control pass pass pass 
OR4 pass pass pass 
8 Bit Mux pass pass pass 
8-bit Signal 
Amplifier with 
Clipping 

pass pass pass 

Table 3: Verification Results 
 



Chip Pinout 
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Figure 6: Pad Layout 

 
 
  



Test Plan 
Upon getting the chip back, the first step in testing this chip would be to 

test the pins attached to the input and output terminals of an INV gate placed in 
the extra area of the chip. If the output signal is the inverted input then we 
know the pins on the chip are active.  

The amplifier should not perform any calculations until a posedge signal is 
detected on Start. With a constant clock signal, after a reset to clear all registers, 
all outputs except for Done should be low. 

The next step is testing simple operation. The following test vectors can 
be used to check proper amplification. Pulse Start when the data inputs are 
ready and then wait for the Done signal. You should also reset the chip between 
each test to ensure that the registers are empty before testing.  
 
 Signal_In Amp_Level Signal_Out Overflow 
1. 0000 0000 0000 0000 0000 0 
2. 0000 0110 0000 0000 0000 0 
3. 0000 0110 0001 0000 0110 0 
4. 0000 0110 0010 0000 1100 0 
5. 0000 1010 0110 0011 1100 0 
6. 0010 1101 0011 1000 0111 0 
7. 0001 0001 1111 1111 1111 0 
8. 1011 0110 0100 1111 1111 1 
9. 0001 0001 1001 1001 1001 0 
10. 0100 1110 1101 1111 1111 1 

Table 4: Test Vectors 
 

Test vector 7 should result in an answer that is the maximum possible 
value without triggering the overflow detector. Test vectors 8 and 10 should 
cause an overflow and is used to test the clipping detection of the amplifier. 
When the result of the amplification exceeds the range of the 8-bit output, the 
output should be set to the full-scale value and Overflow should be true. 



Appendix A: Verilog Code for Controller 
 
// Tina Wang 
// cewang@hmc.edu 
// March 20, 2001 
// E158: Intro to CMOS VLSI Design 
 
// This is the control module for a 4x8 bit multiplier used in  
// an 8-bit signal amplifier. The multiplier multiplies the two numbers  
// by performing a series of number shifts and additions. However, since  
// this is binary multiplication, we either add the shifted multiplicand 
// or we add nothing.  
 
// This Verilog code is based on a state machine and VHDL code from  
// the text Application-Specific Integrated Circuits by Michael John  
// Sebastian Smith, pg. 386-387. 
 
module SM_2(start, ph1, ph2, LSB, stop, reset, 
            init, shift, add, done); 
 
 input  start;  // toggle high to start amplifier 
 input  stop;  // Stop=NOR4 of the bottom four bits of the 

// Amp level register 
     //  if stop=1, then Amplifier is done 

//     multiplying 
 input  LSB;  // The LSB of the Amp Level Register.  
 input  reset; 
 input  ph1, ph2; // clocks 
 
 output  init;  // clears product registers and reads in 
     //     new data into the input registers 
 output  shift;  // control signal to shift registers 
 output  add;  // control signal to a mux to chose 
     //     result = result + signal in (shifted) 
     //     instead of result = result 
 output  done;  // output to user signaling end of amplifier 
     //     cycles 
 
 // multicycle state machine state definitions 
 parameter Initialize_state = 3'b000; 
 parameter Check_state = 3'b001; 
 parameter Add_state = 3'b010; 
 parameter Shift_state = 3'b011; 
 parameter End_state = 3'b100; 
 
 // parameters 
 reg   [2:0] nextstate_s2; 
 reg   [2:0] state_s1, state_s2; 
 reg   shift, init, add, done; 
 
 // state register 
 always @(ph1 or nextstate_s2)  // master latch 
  if (ph1) state_s1 <= nextstate_s2; 
 always @(ph2 or state_s1)   // slave latch  
  if (ph2) state_s2 <= state_s1; 
  
 // next state logic 
 // state transition diagram given in Figure 2 of E158 Final Report 
 always @(state_s2 or LSB or start or stop or reset) 
  if (reset) nextstate_s2 <= End_state; // synchronous reset 
   else case (state_s2) 
   Initialize_state: nextstate_s2 <= Check_state; 
   Check_state: if (LSB) nextstate_s2 <= Add_state; 



    else if (!stop) nextstate_s2 <= Shift_state; 
    else nextstate_s2 <= End_state; 
    // If LSB=1, then result = result+Signal_In(shifted) 
    // Else (!Stop) just shift Signal_In and Amp_Level 
    // Else Stop, skip to End_state 
   Add_state: nextstate_s2 <= Shift_state; 
   Shift_state: nextstate_s2 <= Check_state; 
   End_state: if (start) nextstate_s2 <= Initialize_state; 
    else nextstate_s2 <= End_state; 
   default: nextstate_s2 <= End_state; 
   endcase 
 
 always @(state_s2) 
  begin 
   // provide default values for signals not specified 
   init <= 0; 
   add <= 0; 
   shift <= 0; 
   done <= 0; 
 
   // specify outputs according to Fig. 2 of E158 Final Report 
   // each value only stays high for one cycle because  
   // of the default values 
   case (state_s2) 
    Initialize_state: init <= 1; 
    Add_state: add <= 1; 
    Shift_state: shift <= 1; 
    End_state: done <= 1; 
    default: begin 
     end 
   endcase 
  end 
endmodule 
 



Appendix B: Simulation Waveforms and Results 
 
Simulation Results 

While designing, we simulated each individual cell and component as they 
were completed, first for the schematics and then for the layout.  

For the schematic simulations, all of components simulated correctly 
except for the controller. Therefore we simulated the circuit without the 
controller, applying signals as we would expect to see output from the controller. 
Eventually both parts of the design were working as expected, and then we 
integrated the controller into the design and did a final simulation.   

For the layout simulations, all of the components simulated correctly, 
including the controller. Upon wiring all the components together in the final 
solution, the final design simulated correctly so there was no need to simulate 
the circuit separate from the controller.  

Some sample waveforms are included in this appendix. On the controller 
simulation from the schematic simulations, you can see that Reset will send all 
the control signals except Done to low. Upon a posedge from Start, Init will 
toggle on and then off for a cycle. Then you should see a series of pulses on 
Shift or Add and Shift as the multiplier cycles through. Since the controller is not 
connected to the rest of the circuit, we must set the values for LSB and Stop by 
hand. Normally we would expect these values as outputs from the logic in the 
circuit. Upon detecting a Stop signal, all values except Done will go low and 
remain in that state until a Start signal is detected.  
 In the final simulation, we are only worried about the top level inputs and 
outputs. We put in a series of different combinations to test if the amplifier 
works or not. There are two simulation waveforms that correspond to the test 
vectors given in Table 4.  We reset before each calculation. Though the 
Signal_Out data changes during the calculation, we are not concerned with that 
because the final answer is read from Signal_Out on the posedge of Done.  



 
Figure 7: Controller simulation 

 

 
Figure 8: Final simulation (test vectors 1-5) 



 
Figure 9: Final simulation (test vectors 6-10) 

 
 
 



Appendix C: Schematics 
 
The following pages contain the complete schematics for our design. 
 

 
Figure 10: 8-bit signal amplifier with clipping 

 
 



 
Figure 11: Shift12 

 

 
Figure 12: ShiftReg 

 

 
Figure 13: fulladder 

 
 

 
Figure 14: Adder12 



 
Figure 15: mux8 

 

 
Figure 16: mux 

 
Figure 17: mux12 



 
Figure 18: reg12 

 

 
Figure 19:reg 

 
 

 
Figure 20: NOR4 

 

 
Figure 21: OR4 

 

 
Figure 22: flop 

 

 
Figure 23: latch 



Appendix D: Layouts 
 
The following pages contain the complete layouts for our design. 
 

 
Figure 24: 8-bit signal amplifier with clipping 



 
Figure 25: shift12 

 

 
Figure 26: shiftreg  

Figure 27: adder12 



 
Figure 28: mux12 

 
Figure 29: mux8 

 

 
Figure 30: mux 



 
Figure 31: reg12 

 

 
Figure 32: reg 

 
Figure 33: NOR4 

 
Figure 34: OR4 

 

 
Figure 35: flop 

 
Figure 36: latch 


