
Jason Fong
William Durley

4-11-01

VLSI Final Project: Alarm Clock

Functional Overview
The goal of this project was the design of a 24-hour alarm clock. Our chip

consists of two major sections. The first of these is the register file, which stores and

updates the time. The other section consists of a seven-segment display output decoder, a

comparator, and the input signal processing circuits.

The basic functionality of the chip consists of storing, updating, and displaying

the hours and minutes of the current time, as well as allowing the user to change these

values at will. In addition to this basic functionality, the chip stores a second set of hour

and minute values, to be used as an alarm. The chip takes as input two non-overlapping

clocks and the user input signals, and provides as output the necessary signals to drive

four digits of a seven-segment display, as well as one bit to signal that the alarm should

activate. A summary of input and output signals is provided below.

Table 1: summary of input and output pins

The register file section of the chip contains six base-ten, synchronous counters,

designed to reset at 60. These counters store the hour and minute for the alarm, and the

hour, minute, second, and 1/60 of a second for the clock. It is necessary to keep track of

Signal Name Type Function

Phi_1, Phi_2 Input 2 non-overlapping clock phases

Hour, Min, Select Input User input (sets the time/alarm time)

AlarmStop Input Deactivates Alarm

SegA_H – SegG_H Output Display output for hour

SegA_M – SegG_M Output Display output for miute

Vdd, Gnd Power/Ground Power/Ground

the time in increments smaller than seconds in order to facilitate user input more often

than once per second. The time data is stored and updated in base ten rather than base

two. This is accomplished via the use of one four-bit register for each digit of a base ten

number. Storing the time in base ten is preferable, as it makes output decoding much

simpler. The register file takes the two phase clock and preprocessed inputs as input, and

outputs the hours and minutes of the time and alarm.

The rest of the chip is predominantly occupied by the output decoder, which takes

the base 10 time values from the register file and converts them into seven segment

display outputs. The input processing unit contains a pulser, which takes the user input

signals and sends a one-cycle long pulse to the register file each time a user input turns

on. Without the pulser in place, any attempt on the part of the user at resetting the time

would result in the hours or minutes incrementing 60 times per second, rendering the

inputs useless. Table 2 summarizes the area and design time spent on each facet of the

chip, as well as design verification status of each facet.

Signal
Name

Design Time
(Hours)

Area (λ2) DRC
Pass

ERC
Pass

NCC
Pass

Simulates
Correctly

AND4 1 14356 Yes Yes Yes Yes

Bitslice 3 481632 Yes Yes Yes Yes

AlarmHold 4 78746.875 Yes Yes Yes Yes

And4_2 3 7905 Yes Yes Yes Yes

CarryProc 2 10230 Yes Yes Yes Yes

Counter 7 35200 Yes Yes Yes Yes

Counter10 5 257291 Yes Yes Yes Yes

Counter6 5 209991.5 Yes Yes Yes Yes

Compare 2 46511.5 Yes Yes Yes Yes

Dispdecode 8 423384 Yes Yes Yes Yes

iprocess 7 204877 Yes Yes Yes Yes

Mux2 0 5141 Yes Yes Yes Yes

or9 4 21388.5 Yes Yes Yes Yes

pulser 8 40303.5 Yes Yes Yes Yes

Regfile 40 3383799 Yes Yes Yes No

TopLevel 2 No No No No

XOR 2 7029 Yes Yes Yes Yes

Xor_jf 1 8972.5 Yes Yes Yes Yes

Table 2: summary of facet data

Simulation Results

In order to verify the functionality of the chip, simulations were performed on the
two sections individually. Unfortunately, we were unable to get the register file layout
simulating properly, so top-level simulation of the entire chip was not possible. The
register file’s schematic simulated perfectly, however, and the layout passed the network
consistency check, so we will provide simulation results of the register file schematic.

In order to test the register file, a set of test cases was applied. First, file was
reset, and then allowed to run as the second and minute outputs were monitored. The
schematic performed perfectly for this test, and the result can be seen in figure one. After
this preliminary test, we tested cases that were likely to fail. All rollovers from one
counter to the next were tested, and finally, the large rollover from 23:59 to 00:00 was
tested. All tests were passed, and a selection of the resulting test waveforms is provided
below. At the top of the list of waveforms are six busses, each containing one digit of the
second, minute, or hour. For example, the bus sec_hi stores the tens digit of the seconds.
Clocks and input signals are shown below the outputs.

Figure 1: Operation of second counter with no input. Demonstrates that the seconds
are incremented once per 60 cycles, as desired

Figure 2: Second to Minute Rollover. Demonstrates resetting of seconds at 60, as
well as accumulation of one minute.

Figure 3: Minute input. Demonstrates the functionality of the minute change input.
Also demonstrates rollover from minutes to hours at accumulation of 60 minutes.

Figure 4: Hour input. Demonstrates the functionality of the hour change
input and the reset of the hour at accumulation of 24 hours.

Figure 5: 24-hour rollover. Demonstrates the rollover from 23:59:59 to 00:00:00

Schematics

Below are the schematics for all of the major facets of our chip. Very simple
schematics, consisting of only a few low-level logic gates, have been omitted.

Counter: The basic one-bit synchronous counter used in the register file

Counter10: A four bit synchronous counter that resets and asserts carry out at a value of
10.

Counter6: A 3 bit counter that resets and asserts Cout on 6

Bitslice: a 7-bit, base 10 counter that resets and asserts Cout at a value of 60.

Regfile: The register file. Stores and updates the current hours, minutes, and seconds,
and stores the alarm time.

Alarm Hold: when CompareTrue is high, holds the alarm on until AlarmStop is asserted.

Compare: Compares two 4-bit numbers, and pulls output high if they are the same.

Decoder: Decodes Time for output to 7-segment display

Iprocess: prepares input to be sent to the register file

Pulser: Generates one cycle-long impulse from step input

Layout

Counter: A one bit synchronous counter

Counter10: A 4 bit counter that resets after accumulating 10

Bitslice: A base 10 counter that resets on 60. Contains one Counter10 and one Counter6

Regfile: The register file. Contains 6 bitslices.

AlarmHold: Holds alarm on until AlarmStop becomes high.

Compare: Compares two four digit numbers.

Decoder: Decodes time for seven-segment display output

Iprocess: Prepares input to be sent to the register file. Contains four Pulsers.

