
MAH E158 Lecture 156 1

David Harris

Harvey Mudd College

David_Harris@hmc.edu

Based on EE271 developed by Mark Horowitz, Stanford University

Introduction to CMOS VLSI Design (E158)H
arris

Lecture 16: Datapath Functional Units

MAH E158 Lecture 156 2

Overview

Reading

W&E 8.2.8 Shifters

W&E 8.2.7 Multiplication

Introduction

This lecture continues to discuss how to build functions that are used in
datapaths. It begins by talking about shifters, and then briefly describes
multiplication. After describing these two functions, we take a step back, and
look at how datapaths are put together, and how the control for the datapath is
generated.

MAH E158 Lecture 156 3

Shifters

There are many different kinds of shifters.

• Simple Shifter

Shift the number to the right or left and fill-in with zeros

• Arithmetic Shifter

Left shifts are the same as simple shifter, but on right shifts use the sign bit to
fill-in the new blank spaces (-2 shifted right by 1 gives -1)1

• Barrel Shifter

Wrap the number onto a circle. The shift amount indicates where the new MSB
will be. (Useful for rotating the bytes in a 32-bit word)

1. Need to be careful about arithmetic right shifts. ‘1’ right shifted by 1 is 0. ‘-1’ right shifted by 1 is -1

31
0 choose new start

MAH E158 Lecture 156 4

Funnel Shifter

Is the most general kind of shifter

• Can do all the other shifts.

• Concatenates two n-bit words together and then selects any contiguous n-bit
subfield.

• If A=B get a barrel shifter

• If A = sign bit, get arithmetic shifts

• If A = 0, get simple shifts.

• Can implement this shifter using a
cross-bar switch, where the inputs are
vertical and the output are horizontal

A B

Result

MAH E158 Lecture 156 5

Shifter Design

Can think of a shifter as a large fanin multiplexer

• Connect the correct input to the output

For a completely general Funnel Shifter there are 2n inputs

This is 64 inputs for a 32 bit machine

• Clearly, we don’t want full CMOS transmission gates

Reduce the number of control lines by using nMOS only gates

Use precharging - the input will selectively discharge the output.

? ?shift0_q1

in0_s1

In31_s1 out0_v1

MAH E158 Lecture 156 6

Shifter Layout

It is a little tricky, but is not very bad:

Inputs are driven from both sides, and then run diagonally through the array.
Control runs vertically, and the output runs horizontally.

control

src1

src2

output

MAH E158 Lecture 156 7

Bitslice Shifter Works Well

Even though there are many wires that flow between bits, this data is regular and
can easily be embedded in the cell. In our system we do not have diagonal wires,
so we make them stair steps

Cells don’t use Vdd, Gnd, but need to route them for the other cells. The shift cells
should not be mirrored (all nMOS so there is no need), but can fit in with a
mirrored datapath (just change Vdd Gnd names)

Vdd
Out_v1

Shift_q1

In_s1

Gnd

MAH E158 Lecture 156 8

Shifter Layout

Diagonal dataflow mapped into a regular manhattan layout.

Using M2 data, M1 control. (cell is rotated so data flows vertically)

MAH E158 Lecture 156 9

Multiplication

In binary it is pretty simple.

• The bit multiplication is just an AND gate

• All you need to do is add up the partial products

multiplicand: 1 1 0 0 12
multiplier: 0 1 0 1 5
 1 1 0 0
 0 0 0 0
 1 1 0 0
 0 0 0 0
 0 1 1 1 1 0 0 60

4 partial products

compute partial product; shift; add

repeat n times:

MAH E158 Lecture 156 10

Multiplier Implementation

Two approaches

• Shift and Add

• Parallel Multipliers

Shift and Add

• Use a standard adder, and multiple cycles to add up all the partial products.

• Use the LSB of the multiplier to decide whether to add the multiplicand this
cycle

• Then shift both the multiplier and the partial result right by one, and repeat.

MAH E158 Lecture 156 11

Serial Multiplier

This hardware generates a 2n bit result, so you need to catch the bits that shift off
the end of the register. If you only wanted to generate an n bit result, then it would
be better to shift the multiplicand to the left.1

1. There are many techniques to make this faster. One is to have some hardware find the ‘1’s in the multiplier since, the
zeros don’t do much. For this we need to shift the result by the number of zeros skipped plus one. There is also a way
to recode the multiplier (Booth Coding) to reduce the number of steps, but it is outside the scope of this class.

Adder

Multiplicand

Register

LSB of
Multiplier
(controls
adder)

MAH E158 Lecture 156 12

Parallel Multipliers

Idea is to generate all the partial products in parallel, and then add them together
by using lots of adders, rather than lots of cycles:

1 1 0

011

1 1 0

000

1

1

0

LSB

LSB

MAH E158 Lecture 156 13

Adding the Partial Products

• Use a ripple adder in each row (carry ripple right to left)

• Sums ripple diagonally (down and to the right)

LSB

LSB

0 0 0
0

0

0

worst-case is 2n
(n for carry chain and
then n through sums)

A B

CinCout

S

Full Adder

Worst-case delay ~ 3n

• n along top row

• n through the rows

• n along bottom row

(creates 2n result)

MAH E158 Lecture 156 14

A Better Way

There are a number of better ways to do parallel multiplication.

• Look at a full adder again

Takes three inputs of equal weight, and adds
them together

Produces two outputs of different weights

So a row of FAs could add three partial
products and produce two outputs (one is
shifted by one)

Next row could add one more partial product

Need Carry Propagate Adder at the end to
reduce the final two partial products into a
single sum. This can be a simple ripple
adder, or a more complex Carry Look Ahead
Adder for better performance.

CP Adder

3 Partial Products

MAH E158 Lecture 156 15

Carry Save Adder Array

LSB

LSB
0 0 0

0 0 0

0

0

CLA

A B Cin

Cout S

Full Adder

MAH E158 Lecture 156 16

+ Multiplier Trees

Can reduce the number of series carry-save adders, by adding more of the partial
products in parallel. Use a tree of adders. First proposed by Wallace (Wallace
Trees)

3:23:23:2

3:2 3:2

3:2

3:2

CPA

PP8 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0

MAH E158 Lecture 156 17

+ Multiplier Tree Slices

An n X n bit multiplier requires 2n slices to produce the complete product. Some
bits from one slice must go to the adjacent slice further complicating the wiring.

8 Input 4-2
Tree

2

8 Input 4-2
Tree

2

8 Input 4-2
Tree

2

8 Input 4-2
Tree

2

M
S
B

L
S
B

8 Input 4-2
Tree

2

8 Input 4-2
Tree

2

8 Input 4-2
Tree

2

Tree Slice

2

MAH E158 Lecture 156 18

+ Multiplier Trees

• Multiplier trees are pretty fast.

• Time is proportional to the Log(n)

• Can pipeline the levels in the tree to increase the data rate

BUT

• Takes a lot of hardware

• Wiring is a mess

While you draw a tree, the adders must be layed out in a linear array
(Each adder is n-bits wide already).

This means that there are number of wiring tracks that need to allocated
to each bit slice.

And unlike arrays, some wires in a tree are not very short.

Use only when you need the speed (or have a program to layout the tree.

MAH E158 Lecture 156 19

Datapath Summary

• Composed of register files, latches, ALUs, latches, Shifter, latches, other
functional units, latches

• Uses a bitsliced layout organization. Wordslices often pipelined.

• Uses a bused based communication protocol

• Wiring in the datapath is regular.

• Problem is that all cells must have the same height -- means you need to
estimate which cell is the tallest, and use that to set bit pitch.

32

register file shifter ALU I / O

control signals
must direct the
flow of data
between data
path elements
and busses

a bit-slice ñ a structure that when repeated n times forms an n-bit data path

MAH E158 Lecture 156 20

Bit Slice Design

if all busses are 32 bits
this is a nightmare to
interconnect (note: ALU
inputs need to be
interleaved)

A(reg)

C(alu)

B(reg)

D(shift)

A
B

Mux

C

D

1 2

3

45

6

1 2

3

45

6

7

7

leave room for
busses even in
cells that don't
need them

order of cells
can minimize
bus lengths

MAH E158 Lecture 156 21

Datapath Control

So far we have talked about what goes into the datapath. These function units /
latches / muxes manipulate the data itself. But this logic is only part of the whole
chip. Something needs to tell the datapath elements what to do. And this is the
function of the control.

When the datapath is pipelined (multiple parts of operations in progress
simultaneously), the control keeps track of the status of all of the pieces.

statuscontrol

inputs

outputs
Control

Datapath

MAH E158 Lecture 156 22

Control

It is usually an FSM since some operations that the chip performs take multiple
clock cycles, and the controller must know where it is in the instruction.

In pipelined microprocessors, each instruction may take n cycles to complete, but
the next instructions are started before previous ones have finished. The
controller must track which instruction is at each function in each cycle.
Complexity explodes with pipeline depth.

state

control

inputs

status FSM

outputs

MAH E158 Lecture 156 23

Control Implementation

In an ideal world:

• Write HDL (Verilog) of the control

Define the inputs / outputs / states of the controller

• Use synthesis tools to convert it into logic

• Use place and routing tools to convert logic into layout

But the world is never so ideal:

• The automated-tool-only approach is both too big and too slow

• Need to help the tools along

MAH E158 Lecture 156 24

Real Controller Design Flow

1. Write a description of the controller in Verilog

Simulate it to get it to work

Think up hard cases to try to break it

2. Use synthesis tools to generate the logic

Look at the critical paths

If (where) they are too slow,

Try to figure out why the tool generated the logic it did

Change the section in the Verilog that generated the slow logic

Goto 1.

3. Use standard cell place and route system to generate the layout

Look at area, make sure aspect ratio is ok, and total area is ok

Look at speed. If slow, try to change the placement. If that doesn’t work then
change the Verilog and goto 1.

MAH E158 Lecture 156 25

Local Control

Don’t want to generate all the control signals in the controller.

• Too many wires needed between sections

• Poor control of datapath timing

Use a pitch-matched local control section aligned on top of datapath

• Generate true/complement pairs, buffered-up versions, and clock-
qualification here.

2 Decodend

Data Path
Things like
register spec,
ALU op
and other things that don't effect the sequencer.

Controller

MAH E158 Lecture 156 26

Local Control

Run a track on top of the datapath for control drivers for the data path.

• Create true and complement control when needed.

• Do buffering and clock qualification (when needed)

On top of this track place local decoders to reduce # of control wires.

ALUShiftRegfile

CtrlDrv

Decoder
Decoder

Shift Amount Decoder

