
MAH E158 Lecture 15 1

David Harris

Harvey Mudd College

David_Harris@hmc.edu

Based on EE271 developed by Mark Horowitz, Stanford University

Introduction to CMOS VLSI Design (E158)H
arris

Lecture 15: Adders



MAH E158 Lecture 15 2

Overview

Reading

W&E 8.2.1 - Adders

References

Hennessy and Patterson Computer Architecture a Quantitative Approach 
Appendix A (written by David Goldberg)

Introduction

Somewhat surprisingly datapaths often contain many simple cells: D-latches to 
stage data (especially in a pipelined machine) and tristate drivers to drive the 
bus lines. But these cells are pretty simple. Since these units implement the 
dataflow portion of an algorithm, they tend to operate on numbers. This lecture 
will explore some methods of building datapath functional units that add. After 
talking about adders, we turn to two related topics, ALUs and counters.



MAH E158 Lecture 15 3

Numbers

Numbers are represented by n-bit binary strings. 

- n is the datapath width 

Numbers are represented in two forms:

• Fixed Point (Integer)

There are two forms here, signed and unsigned

Unsigned - Numbers range from 0 to 2n -1

Signed - Numbers are in two’s complement form

Range from -2n-1 to 2n-1 -1

-1 is 11...11 (it is 0 -1)

• Floating Point 

Even more complicated, contains an exponent field and a mantissa, which give 
it even more dynamic range. 

We will stick to integers



MAH E158 Lecture 15 4

Addition

The MSB output can depend on the LSB bits because of the carry:

A full adder (FA) has three inputs and two outputs

Sum = A XOR B XOR Cin = A B Cin + A B Cin + A B Cin + A B Cin

COut = AB + BCin + CinA

In this organization the critical path is from Cin to Cout

Cin
FA

B0A0

S0

FA

B1A1

S1

FA

Bn-3An-3

Sn-3

FA

Bn-2An-2

Sn-2

FA

Bn-1An-1

Sn-1

Cout



MAH E158 Lecture 15 5

Full Adder Implementation

Use two complex gates, and two inverters:

Cout = A B + C (A + B)

Sum = Cout (A + B + C) + A B C

Critical path goes through two gates per stage. 

Notice that the implementation of the two gates is not 
standard -- the pMOS devices are not the dual of the 
nMOS, they have the same topology. This is VERY 
unusual. The reason for this is that XOR and Majority 
functions are self duals -- complementing the inputs and 
the output leaves the function unchanged, XNOR(x_b, 
y_b) = XOR(x,y). This is not in general true. The designer 
of this gate took advantage of this fact to reduce the 
maximum number of series devices in each gate.

CCout'
Cout'SumSum'

A B C

A B C

A

B

C

C

B

A

A

B

B

A
A B

A B

+5V

+5V+5V+5V
+5V

+5V+5V



MAH E158 Lecture 15 6

Datapath Layout of Adder

Base cell is a full adder

Layout complexity depends if the bitcells are mirrored

• They usually are to save area, which makes the carry chain hard

• Need to plan if the cells will be mirrored

bitslice

Not Mirrored

This cell with
2 FAs in it is what
is arrayed

Mirrored



MAH E158 Lecture 15 7

Faster Ripple Adder

The critical path through each bit goes through two gates

• Complex gate to generate Cout, and then an Inv to generate Cout

Inverter serves to functions:

• Complements the output (generates Cout in its true form)

• Isolates the load capacitance of the next bit from the output of the gate with 
series devices.(Remember this inverter should be sized so the complex gate 
and the inverter has similar delays)

Could let each stage invert, since Sum and Carry functions are self duals:

Sum = A XOR B XOR Cin = ~(A XOR B XOR Cin)

COut = AB + BCin + CinA = ~(A B + B Cin + Cin A)

So if I use the same hardware I get the true values out if I input the complements, 
and get the complements if I input the true inputs.



MAH E158 Lecture 15 8

Inverting Full Adder Ripple

Assume that you removed the inverters in the previous full adder

CAUTION:

For this to be faster than the version with the inverter, the dominant load on 
Cout, must be just from the two transistors in the following Cout gate. Leads to 
interesting transistor sizing.

B_b

SumSum_b

Cout _b

A B

Cout

A_b

Cin

These represent the same cell:

This is a legal carry chain



MAH E158 Lecture 15 9

Adder Sizing

The transistors in the grey oval are on the critical path. The rest are not

• To reduce the loading on the critical signal, the other transistors should be small 
(at least much smaller than the transistors on the critical path)

• Since C will be late, the transistors connected to A,B should be large

• The adder layout in Weste does this. 

CCout'
Cout'SumSum'

A B C

A B C

A

B

C

C

B

A

A

B

B

A
A B

A B

+5V

+5V+5V+5V
+5V

+5V+5V

Sum CoutCout



MAH E158 Lecture 15 10

Faster Adders

We have looked at reducing the number of gates in the critical path of a ripple 
adder, and to try to make those gates fast. But there are much better methods of 
speeding up adders. These take a more global view of the problem, and try to 
reduce the length of carry chain by doing things in parallel.

We will briefly look a number techniques for speeding up adders. The first is still a 
ripple adder, but the ripple is done with pass transistors. Then we will look at 
some techniques of using parallelism to reduce the adder delay.

These techniques include:

• Switch logic carry chains

• Carry bypass (carry skip)

• Carry look-ahead

• Carry select (conditional sum)



MAH E158 Lecture 15 11

Carry Chain

This is the critical path of the adder so we will focus our attention here.

Look at carry gate:

C
Cout'Sum

A

B

B

A
A B

A B

+5V
+5V+5V

Kill - A * B

Generate - A * B

Propagate - A XOR B (or A OR B)



MAH E158 Lecture 15 12

Switch-Logic Carry Chains

Switch-Logic:

• Implement propagate with pass gate

• Implement kill with a pull down transistor

• Implement generate with a pull up transistor

To reduce the logic needed, and the capacitance on 
the carry chain use precharge switch logic. Precharge 
the output high, and pull it low if needed. The inputs to 
the gate can be outputs from other domino gates 
(Carry is a monotonic function of P, C, K1

1.  Need to be careful, since we will use a inverter to buffer the output before we use it. That is the reason that the switch 
logic is generating C_b and not C. Switching G and K will generate C directly.

KP

G

Cin Cout

? ?P_pv1

G_pv1



MAH E158 Lecture 15 13

Adders Using Carry Chains

The carry chain is only part of the adder. You need to generate the P, G signals 
that the adder needs and to generate the sum at the end. In addition to the carry 
chain, each bit cell needs the following gates:

• The gates that generate P, G, K can be precharge gates, since the inputs are 
usually stable signals. This means that P, G, K can be domino _v signals, and 
can drive the domino carry chain

• The final XOR must be a static gate since it is not a monotonic function of its 
inputs, and its inputs will be _v signals.

SumP
CinA

B

A
B

K

G

A
B

P

might not be needed



MAH E158 Lecture 15 14

Timing of Manchester Carry Chains

The good news is there is not a gate between stages. 

The bad news is that the number of series transistors increases with the number 
of stages, so the delay will grow like n2

• Capacitance per stage (assuming all 4:2 devices, no diff sharing)

3 ndiff + pdiff + Cg + inv + bit-width of wire = 12fF + 4fF + 4fF + 8fF + 8fF (30µ) 
= 36fF

• Resistance per-stage is 6.5K, so the delay is approximately .12ns * n2, (RCn2/
2) where n is the number of stages directly tied together.

? ?P1_pv1

G1_pv1

? ?P0_pv1

G0_pv1

? ?P2_pv1

G2_pv1



MAH E158 Lecture 15 15

Sizing Manchester Carry Chains

Critical path is through the pass chain. Try to reduce this delay:

• Make P and G transistors 4x larger, and share diffusion1

• Capacitance per stage: 

2ndiff (16? ) +?pdiff + Cg + inv + bit-width of wire = 32fF + 4fF + 16fF + 8fF + 8fF 
(30µ) = 68fF

• Resistance per-stage is 1.6K, delay is 0.054ns * n2.

1.  Make G larger since it does not hurt (diffusion is shared, and since it will be important in faster adders)

? ?P1_pv1

G1_pv1

? ?P0_pv1

G0_pv1

? ?P2_pv1

G2_pv1
4x

4x
4x

4x
4x

4x



MAH E158 Lecture 15 16

Manchester Carry Chains

To limit the effect of the n2 term, break carry chain into sections.

• Each section is about 4 stages long (3 stages might be better)

• Between sections the carry is buffered.

• The buffering makes the delay linear with the number of bits

• But the carry stills needs to flow through all the carry chains.

Cin Carry Carry Carry Carry

C0 C1 C2 C3

Cout



MAH E158 Lecture 15 17

Timing of Buffered Carry Chains

What is the right number of stages?

Assume first transistor is 8x min, and final inverter is minimum

Delay is the inverter delay (Cout rising) plus the delay of the chain including the 
resistance of the initial 8x transistor.

Inverter delay = 13KpMOS * (8fFdiff + 32fFgate) = 0.5ns

Chain = 0.8K * (68fF*n) + 0.054*n2 ns = 0.054n(n+1)ns1

1.  I have taken some short cuts here, but suggest you go through the long way if your are confused

Cin Carry Carry

C0 Cn-1

Cout
8x



MAH E158 Lecture 15 18

Timing of Carry Chains

So for these sizing, the optimal number in a stage is around 4, and the average 
delay per bit is around 0.4 ns. This is not optimally sized (pMOS in final inverter 
should be larger) but it is probably close.

Stages Total
Delay

Delay
per bit

1 0.61 0.61
2 0.82 0.42
3 1.15 0.38
4 1.58 0.39
5 2.12 0.42
6 2.77 0.46

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 2 4 6 8



MAH E158 Lecture 15 19

Layout of Carry Chain

Layout of a Manchester adder is not too bad, even with groups:

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

C

C

C

C*

C

C

C

C*

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

Cout

? ?P_pv1

G_pv1

C

C
C*



MAH E158 Lecture 15 20

Final XOR

The final XOR of the adder needs to be a static gate. 

• While this XOR works in silicon it gives IRSIM problems, so we won’t use it:

• This other version is a little safer

B

A
A XOR B

P
C

Out



MAH E158 Lecture 15 21

Carry Bypass Adders

Since we have divided the bits in the word into a number of groups. 

• For each group check to see if all the P are true

• If so, then bypass the Cin to Cout of that group

• Otherwise, do the normal thing.

Cin Cout

Pg

Carry Carry Carry Carry

C0 C1 C2 C3



MAH E158 Lecture 15 22

Why Carry Bypass is Faster

All groups can calculate Pg at the same time (in parallel)

Worse-case is when carry needs to propagate through all bits

• Since we precomputed Pg, that path is now much shorter

Hop around groups, rather than through them

• Critical path is now through one local carry chain, then through a number of 
bypass gates, then back into a final local carry chain.

• This improvement did not cost much hardware.



MAH E158 Lecture 15 23

Layout of Carry Chain

Layout of a bypass adder is almost the same, C* gets a more stuff:

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P,G gen

P
g gen

P
g gen

C

C

C

C*

C

C

C

C*

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR
Cout

Pg

? ?P_pv1

G_pv1

C

C
C*

Also have a few more wires to route. You need to 
generate Pg (a 4 input NAND gate in the PG gen 
section, and you need to route Cin_b to C*



MAH E158 Lecture 15 24

Building Faster Adders

By using more parallelism, one can build even faster adders

While waiting for the carry input, why not calculate both possible answers 
(answer if Cin is 0 and answer if Cin is 1)

When Cin is known, it is only a Mux delay to get Cout and all the Sums for the 
group.

A[3:0], B[3:0]

Co0

1

2:1 Mux

Sum[7:4] Sum[3:0]

A[7:4], B[7:4]



MAH E158 Lecture 15 25

Carry Select Adder

A larger adder would look something like this:

Notice that the PG logic can be shared with both carry chains

Critical path is first carry chain and then n mux delay

What is the optimal block size for a carry select adder? (Hint they are not all the 
same)

PG
Cin =0
XOR
Cin=1
XOR
Mux



MAH E158 Lecture 15 26

+ Even Faster Adders

These adders do more of the calculation in parallel, by bypassing the bypass. This 
leads to a tree like structure, so these adders are often called tree adders. For 
these adders the add time grows O(ln n) where n is the number of bits.

These adders often build trees to combine both P and G over larger and larger 
groups. The reason that this works, is that both functions can be computed 
hierarchically.

• Since P is just the AND function, it can be computed in any order

P15-0 = P15 P14 P13 P12... P0

= P15-12 P11-8 P7-4 P3-0

• Generate for a group (Gg)

G15-0 = G15 + P15G14 + P15P14G13 + P15P14P13G12 …

= G15-12 + P15-12G11-8 + P15-12P11-8G17-4 + P15-12P11-8P7-4G4-0



MAH E158 Lecture 15 27

+ Tree Adders

Since we can compute P and G in any order, we can compute them mostly in 
parallel by using a tree structure.

• First compute all the two bit groups (for a binary tree), then use these outputs to 
compute all 4 bit groups, then 8 bit groups, etc

• At each stage you do the same function:

- Pg = Pleft * Pright; Gg = Gleft + Pleft * Gright

(less significant bits are on the right)

• Initially, the inputs are P,G from the bits

Then the inputs are the outputs from the previous level in the tree

Once you go up the tree, you need to go back down the tree to generate the 
outputs for all the bits.



MAH E158 Lecture 15 28

+ Tree Adder

??

??

?

?

?

?

?

?

?

?

g8, p8

g7, p7

g6, p6

g5, p5

g4, p4

g3, p3

g2, p2

g1, p1

C8

C7

C6

C5

C4

C3

C2

C1

7-8

5-6

3-4

1-2

1-4

5-8

5-7

1-5

1-3

1-6

1-8

1-7



MAH E158 Lecture 15 29

Adder Design

There are many adder designs

• Simple ones have (2)N gates in critical path

• Can remove gates by using switches, but still have linear delay

• More complex ones add in ln(N) gates

These adders have larger wire loads, and higher fanouts, but still can be 
made very fast (2-3ns 64 bits)

Book and references have more complete description of adders

Added complexity (and area) not worth it for small adders!

• Even though adders are not completely regular, they work nicely in a datapath 
layout



MAH E158 Lecture 15 30

+ Aside - ALU Design

Once you have an adder, making an ALU is very simple

Two approaches:

Build a separate logic unit and mux together the outputs. This is probably 
the fastest solution, since you don’t slow down the add critical path, but it 
will take more area.

Merge the two designs together by changing the definition of P and G. 
Since the output (Sum) is P XOR Cin, if G = 0, and Cin(to adder) = 0 
then Sum will equal P. Can do logical operations by using a general 
function box for the P function.

The first is probably the preferable solution, but I will show the second, because it 
is a little more clever (and the programmable P function unit is a perfect LU for the 
first solution)



MAH E158 Lecture 15 31

+ Input Buffer

• If the input buses are _s1

• Buffer the input to reduce loading on the bus. If this is not needed, then one of 
the inverters can be removed

• If the buses are not stable, then a pass transistor can be added to the inputs of 
the first inverter to make them latches

A

B



MAH E158 Lecture 15 32

+ P Function Block

The block that generates the signal called P must be able to generate any 
Boolean function of two variable. This is easy -- just use a mux. To reduce control 
lines, I will use a precharge mux.

? ?

A

A

B
B

C0_q1 C1_q1C2_q1 C3_q1

By setting the right values 
on the control lines, this 
block can generate any 
logic function

Xor = 0 1 1 0

And = 0 0 0 1

Or = 0 1 1 1

These transistors can be shared
for all the bit slices.



MAH E158 Lecture 15 33

+ G Function Block

This is similar to the P function block, but it does not need to be as complex. If we 
only wanted to do addition and logic functions, then it would only need to generate 
the functions (AND, 0). But we want to be able to do subtraction too.

• A - B = A + B + 1, where B is the ones complement of B, which is just the 
complement of each bit.

• Since after the P, and G function block, no other part of the adder uses A,B, we 
can get subtract by redefining P and G, an setting Cin to be 1

• If we didn’t do this, we would need to add an explicit mux to invert one of the 
inputs to adder in the case of subtraction.

• For addition:

P = A B + B A; G = A B

• For substraction:

P = A B + B A; G = A B



MAH E158 Lecture 15 34

+ Rest of ALU

Is basically the same as an adder:

• Need a fast carry chain

• Final static XOR gate

• Latch to hold the value (since the output of the ALU is _v1)

• Bus driver to drive the output of the latch on bus when the ALU result is needed



MAH E158 Lecture 15 35

Counters

Often you need to build a counter in your design

• Counter must obey two phase clocking

Ripple counters are out

• A synchronous counter is

• It is just an incrementer and a register

Cin

Cout

? ? ? ?



MAH E158 Lecture 15 36

Counters

Incrementers:

• Are just adders, where one input is 0, and Cin=1

B=0 implies P = A, G = 0

So P,G logic is simple (does not exist), but still have carry chain

Can (and must) use any of the fast carry techniques to create fast counters

Also need a way to test counters:

• Need a reset, to get counter to known state

• But also probably don’t want to wait when it counts to check the carry chain. For 
large counters you need to add a way to load the counter and read out its state.


