
1

nford University

n (E158)
MAH E158 Lecture 5

David Harris

Harvey Mudd College

David_Harris@hmc.edu

Based on EE271 developed by Mark Horowitz, Sta

Introduction to CMOS VLSI DesigH
arris

Lecture 5: Logic

2

s a gate, switch logic, or some
MAH E158 Lecture 5

Overview

Reading

Review logic design (Patterson & Hennessy Appendix B)

Introduction

We could design at the level of a switch-level simulator

- Think about transistors as switches

- Build collections of switches that do useful stuff

- Don’t much care whether the collection of transistors i
combination. It is a collection of switches.

But this is pretty complicated

- Switches are bidirectional, charge-sharing,

- Need to worry about series resistance…

3

ly (not an input)

 transistors
MAH E158 Lecture 5

Logic Gates

Constrain the problem to simplify it.

• Constrain how one can connect transistors

- Create a collection of transistors where the

Output is always driven by a switch-network to a supp

And the inputs to this unit only connect the gate of the

• Model this collection of transistors by a simpler abstraction

Units are unidirectional

Function is modelled by boolean operations

Capacitance only affects speed and not functionality

Delay through network is sum of delays of elements

This abstract model is one we have used already.

• It is a logic gate

4

ch input to the output.

ave different collections.
OI, and OAI gates) and

rge number of gates.

etwork that is connected to the
other connected to Gnd.
MAH E158 Lecture 5

Logic Gates

Come in various forms and sizes

In CMOS, all of the primitive gates1 have one inversion from ea

There are many versions of primitive gates. Different libraries h
In general, most libraries have all 3 input gates (NAND, NOR, A
some 4 input gates. Most libraries are much richer, and have a la

1. A primitive gate is one where all the inputs directly drive the gate of a transistor in a switch-n
output. This means that the gate consists of two switch networks, one connected to Vdd and the

5

 inversion structures.
ll as more complex

y are:

SelA

Out

M
ux
MAH E158 Lecture 5

Logic Gates

Many systems provide more complex logic gates than just single
These usually include non-inverting gates (AND and OR) as we
functions like XOR and Mux.

The logic gates provided in the E158 library is very limited. The

inv, nand2, nand3, nor2, nor3, aoi

latch

A

B

6

ts as the specification.

 problem.
MAH E158 Lecture 5

Logic Design Problem

Given a functional specification (or description)

Find an interconnection of gates that generates the same outpu

Clearly there are many ‘correct’ solution to the logic design

For example look at a 6 input NAND gate

And there are many more …

Inv, NOR3,NAND2; Inv, NOR2, NAND3

7

e)

he inputs are active high,
the inputs are active low
d be used.

rstand (see previous

ted.
MAH E158 Lecture 5

Bubble Conventions (Asid

Every gate has two representations depending on its use. When t
the symbol with the bubble on the output should be used. When
(negative true) the symbols with the bubbles on the inputs shoul

For example a NOR gate can be drawn like1:

Goal is to make the bubbles line up so the intent is easier to unde
slide)

Always used the active low symbol when all the inputs are inver

1. This is just Demorgan’s Law.

8

mbol that represents how

iss, you might use the

e schematic to show an

r schematics much easier
signed 6 months ago to

OK
MAH E158 Lecture 5

- Bubbles

When some inputs are inverted and others are not, choose the sy
you think about the function.

For example if you wanted to create a signal that was Clock∗M
following circuit

Since the intent is a logical AND function, you should draw th
AND gate, rather than a NOR gate.

While this might not seem like a big deal to you, it will make you
to read and understand when you need to look at a circuit you de
fix a newly found bug.

Clock

Miss
Clock
Miss

WRONG

9

d some are better than
ressions:

idem

comm

assoc

distrib

absorp

compl

ident

se are duals
MAH E158 Lecture 5

Logic Minimization

There are many ways to implement a functional specification, an
others. Can use the rules of boolean algebra to minimize the exp

Some of the boolean equalities:

a + a = a a ∗ a = a

a + b = b + a a ∗ b = b ∗ a

a +(b+c) =(a+b)+c a∗(b∗c) = (a∗b)∗c

a∗(b+c) = a∗b + a∗c a+(b∗c) = (a+b)∗(a+c)

a+(a∗b) = a a ∗ (a+b) = a

a+a = 1 a ∗ a = 0

0+a = a 1∗ a = a

The

10

n

presentation of the

 a product

 terms, and the number of
olean subcubes that ‘cover’ the
MAH E158 Lecture 5

2-Level Logic Minimizatio

Called 2-level since it works on minimizing a sum of products re
function:

f = () + () + () + …

in each () is a AND of input terms, called

Example:

f = a b + b c + c a

f = a b c + c

Logic can be simplified by reducing the number of product
inputs in each product by finding the smallest number of bo
function

Basic Idea:

A (B + B) = A

11

:

ver 1s

aps the 0s

tion is 1

cube

0 01 11 10
MAH E158 Lecture 5

Karnaugh Maps

Are a way to view a boolean n-cube:

Create a table where adjacent entries differ by only one variable

Find a small number of large faces (large regions in map) that co

• Or if the function is mostly 1, invert it, and the function that m

yz

= func

this is a sub-

x

0

00 01 11 10
0
1

00
01

11
10

AB
C

12
MAH E158 Lecture 5

- Karnaugh Map Example

For a function, f

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

AB
CD

13

nd OR)
MAH E158 Lecture 5

- Karnaugh Map Example

For a function, f

The min sum of products is

f = C + B D + A B D

But sum of products leads to gates with large fanin (both AND a

Good to see some simplifications

Not necessarily what you want to implement in CMOS

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

AB
CD

14

ion

)

n)
MAH E158 Lecture 5

Logic Minimization

CMOS logic is often minimized with multi-level logic optimizat

Logic represented by:

sum of products of sums of products of sums …

More levels of logic traded for reduced fanin.

Example:

Sum of Products = adf + aef + bdf + bef + cdf + cef + g

6 3input AND gates (x6)

3 3input OR (to implement the 7 input OR

Multi-level = (a + b + c) (d + e) f + g (factored versio

1 3 input OR

2 2 input OR

1 3 input AND

15

tion1
MAH E158 Lecture 5

+ Example of Logic Minimiza

1. Taken from Prof William Dally’s lecture notes

16

le

iddle two columns).
h entry that doesn’t matter (these are
t the logic outputs.
MAH E158 Lecture 5

+ Direct Synthesis Examp

The dark lines on the outside of the table indicate where that input is true (i.e. d0 is true in the m
Place a ‘a’ ‘b’ ‘c’ ‘d’ in each square where that segment should be 0. Enter an X for eac
numbers greater than 9, which are not legal input). For the ‘X’ inputs you don’t care wha

17
MAH E158 Lecture 5

+ Implicants

OR all the squares where the output must be 0. Some of the squares (implicants) will be shared

The cost is the sum of all the inputs (called literals) used

18

levels of NOR gates)
MAH E158 Lecture 5

+ Resulting Logic

Note that the resulting logic is built from two levels of NAND gates (or could be built from two

19

gates
MAH E158 Lecture 5

+ PLA

Are a way of directly implementing sum of product designs

• These might have large fanin gates, so use nMOS NOR style

- The AND plane is a decoder. The
horizontal line rises if all the inputs are
low. Each AND symbol represents a
pulldown transistor in an nMOS style
NOR gate.

- The OR plane combines the outputs of
the AND plane. The horizontal lines
become the inputs, and the vertical line
falls if any of the inputs are high. Each
OR symbol represents a pulldown
device

- Very regular wiring

More about this structure later in the class

20

metric!

R problem
MAH E158 Lecture 5

Something is Wrong

Be careful when you talk about optimization

• Make sure you know what you are optimizing

• Make sure you are optimizing something you care about

We have been talking about logic optimization without defining

• There are many logic minimization methods

Often hard (requires lots of computer time)

Might not provide you with a better solution for YOU

Often less logic is not a better solution

What are some possible metrics?

21

 verify that the circuit

nough? This depends on

nough?

e?
MAH E158 Lecture 5

Objective Functions

Here are some issues a logic designer might try to improve:

1. Correctness/Simplicity

Does it implement the correct function? How hard will it be to
really works? How hard will it be to test the chip?

2. Area

How much space does it take to build this circuit. Is it small e
the implementation technology (board / std cell / custom)

3. Speed

How fast will the circuit run. Is the maximum clock rate fast e

4. Design Time

How long have you been working on it. Is it time to call it don

5. Power

22

n on your design time.

ood enough
MAH E158 Lecture 5

Simplicity

Cleverness is often overrated

• Don’t be over clever and under smart

• You are responsible for creating a correct implementation

Make sure you understand how it works

Make sure it works under all cases

Generate test vectors that demonstrate that it works

A simple solution is always the easiest to understand

• Sometimes simple circuits don’t meet the other specs

Need to innovate on these circuits

Try to find the places that give you the most retur

Doing function in software is a great solution when it is g

23

chip space can hold 1-

el designs

h memory cell uses a few
rays have the ability to
he best for memory, and

s, and datapaths can save
s more effort to create

t necessarily better
MAH E158 Lecture 5

Area Objective

Size metric depends heavily on implementation technology

• In a board level design, memory is very cheap, since a 28-pin
4Mbits of SRAM and 256Mbits of DRAM.

Very area efficient to use lots of memory for board lev

• For a gate array solution, memory is quite expensive, since eac
gate positions. In fact the situation is so bad that many gate ar
contain embedded memories. Even so, the technology is not t
so you get a few memory cells / logic gate

• Custom layout, which can use custom designed memory array
a large amount of area for some regular structures, but require
(need to watch design time)

• Chips sometimes have minimum allowable area. Smaller is no

24

 (for a gate array / std cell
y 3 (for a 2-layer metal
e design.

 answer usually requires

.

MAH E158 Lecture 5

Area Estimation

Using Standard Cells

Most libraries will give you the area of each cell you are using
based approach). You should take the cell area and multiply b
design, about 2 for 3-layer metal) to get an area estimate of th

Custom Layout

This depends much more on the layout style used. To find the
lots of work (you need to do the layout). Rules of thumb:

Standard Cells: 1000 λ2 / transistor

Datapath: 500 λ2 / transistor

SRAM: 1000 λ2 / bit

DRAM: 100 λ2 / bit

ROM: 100 λ2 / bit

Bottom Line

Fewer gates, and fewer inputs (less wires) mean smaller areas

25

 and cap

d # in series.

less gates in series.
MAH E158 Lecture 5

Performance Issues

Also heavily depends on implementation technologies

• Board-level design

Number of package crossings is the key

10ns 256kbit SRAM, and 6ns inverter/ buffers

Logic in a single PAL 10ns, two PALs 20ns

• Chip Design

Gate speed depends on two factors — resistance

Resistance is set by size of driving transistors, an

Capacitance is set by the wiring and the fanout.

Faster circuits

Shorter wires, lower fanin, lower fanout, and

26

.

wait for all the outputs to

outputs
MAH E158 Lecture 5

Critical Paths

There are many signal paths through a set of combinational logic

Not all the paths have the same delay

• Path from input to latest output is called the critical path

It is this path that will slow down machine, since clock has to
be valid.

CL

inputs

paths through logic

critical path

27

}

critical path
MAH E158 Lecture 5

Critical Paths

Look at the function

(a b + c) (d + e) f + g

If all the inputs change at the same time

Worst-case path will probably be from the inputs {a, b

Speeding up g won’t help much

a
b

c

d
e

f g

28

chine must run at the
lance the delays through

r signals

 inputs arrive at the same
ize the delay for the

inimizing the delay of a
MAH E158 Lecture 5

Critical Paths

There are many paths from the inputs to the outputs, and the ma
speed of the slowest path. In a good design you want to try to ba
all the paths, so no paths are much slower than the rest.

Say the function you were implementing was a decoder

Out = A0 A1 A2 A3 A4 RegRead

where RegRead was generated elsewhere, but is

MemStall + Istall + Exception

and exception can be generated from a number of othe

While the function you need is a 6 input AND gate, not all the
time. One of the inputs will be later than the others. To minim
critical path, will lead to a different implementation than just m
6 input AND gate

29

put

 on the left, while the gate

his circuit is better because it
ecreases the delay from the slow input
o the output. To decrease this delay,
he circuit actually increases the delay
rom all the other inputs (since the
elay of the NAND gate is slower than
he final inverter. As long as these
ther inputs arrive early enough, it is a
in.
MAH E158 Lecture 5

6 Input NAND with Late In

The design that minimizes the delay through the gate is shown
on the right will have a smaller critical path

Faster circuits

better balanced paths

slow input

better

RegRead

T
d
t
t
f
d
t
o
w

30

h model

In the design shown,
the output resistance of
the mux, is equal to the
resistance of the
transmission gate
PLUS the resistance of
the gate driving the A
(or B) input. Thus you
would not want to
cascade these gates
since the resistance
would get too large
MAH E158 Lecture 5

+ Switch Logic

Sometimes you get a great advantage by going back to the switc

• Switch logic has it place

Compare a 2 input mux

Out = SelA * A + SelA *B

Often encapsulated inside of ‘logic gates’

A

SelA

B

SelA

A

B

31

e available to improve

ng

ard
MAH E158 Lecture 5

Gate Design Summary

Moved up a level in abstraction. More tools (boolean algebra) ar
circuits.

• Need to understand what we want to improve before optimizi

• CAD tools are available to help with this level of optimization

Espresso for 2-level; Synopsys for multilevel

Yet we are still working at a pretty low level

• Average gate has 6ish transistors

• Still need to design stuff with 100K gates

• Writing equations / drawing schematics for all these gates is h

Want to work at a higher level first

• Work at level of adders, registerfiles, control sections

• Need to check function / algorithm before polish logic gates

32

ion

some functional

 the starting point of the
MAH E158 Lecture 5

Generating Initial Specificat

The whole logic design problem is to create a circuit that meets
specification.

• How was this spec given to you?

• How do you know what it means?

• How do you know that it works? (does the desired function)

Maybe the functional spec should be executable, and should form
logic design.

• Not a new thought

• Languages have been developed to do this, called HDL

Hardware Description Languages

• Tools can take subsets of HDLs and generate logic

Talk about these languages in the next lecture

	David Harris
	Harvey Mudd College
	David_Harris@hmc.edu
	Based on EE271 developed by Mark Horowitz, Stanford University
	Overview
	Reading
	Review logic design (Patterson & Hennessy Appendix B)

	Introduction
	We could design at the level of a switch-level simulator
	- Think about transistors as switches
	- Build collections of switches that do useful stuff
	- Don’t much care whether the collection of transistors is a gate, switch logic, or some combinat...

	But this is pretty complicated
	- Switches are bidirectional, charge-sharing,
	- Need to worry about series resistance…

	Logic Gates
	Constrain the problem to simplify it.
	• Constrain how one can connect transistors
	- Create a collection of transistors where the
	Output is always driven by a switch-network to a supply (not an input)
	And the inputs to this unit only connect the gate of the transistors

	• Model this collection of transistors by a simpler abstraction
	Units are unidirectional
	Function is modelled by boolean operations
	Capacitance only affects speed and not functionality
	Delay through network is sum of delays of elements

	This abstract model is one we have used already.
	• It is a logic gate

	Logic Gates
	Come in various forms and sizes
	In CMOS, all of the primitive gates have one inversion from each input to the output.
	There are many versions of primitive gates. Different libraries have different collections. In ge...

	Logic Gates
	Many systems provide more complex logic gates than just single inversion structures. These usuall...
	The logic gates provided in the E158 library is very limited. They are:
	inv, nand2, nand3, nor2, nor3, aoi
	latch

	Logic Design Problem
	Given a functional specification (or description)
	Find an interconnection of gates that generates the same outputs as the specification.

	Clearly there are many ‘correct’ solution to the logic design problem.
	For example look at a 6 input NAND gate
	And there are many more …
	Inv, NOR3,NAND2; Inv, NOR2, NAND3

	Bubble Conventions (Aside)
	Every gate has two representations depending on its use. When the inputs are active high, the sym...
	For example a NOR gate can be drawn like:
	Goal is to make the bubbles line up so the intent is easier to understand (see previous slide)
	Always used the active low symbol when all the inputs are inverted.

	- Bubbles
	When some inputs are inverted and others are not, choose the symbol that represents how you think...
	For example if you wanted to create a signal that was Clock*Miss, you might use the following cir...
	Since the intent is a logical AND function, you should draw the schematic to show an AND gate, ra...

	While this might not seem like a big deal to you, it will make your schematics much easier to rea...

	Logic Minimization
	There are many ways to implement a functional specification, and some are better than others. Can...
	Some of the boolean equalities:
	a + a = a a * a = a idem
	a + b = b + a a * b = b * a comm
	a +(b+c) =(a+b)+c a*(b*c) = (a*b)*c assoc
	a*(b+c) = a*b + a*c a+(b*c) = (a+b)*(a+c) distrib
	a+(a*b) = a a * (a+b) = a absorp
	a+a = 1 a * a = 0 compl
	0+a = a 1* a = a ident

	2-Level Logic Minimization
	Called 2-level since it works on minimizing a sum of products representation of the function:
	f = () + () + () + …
	in each () is a AND of input terms, called a product
	Example:
	f = a b + b c + c a
	f = a b c + c

	Logic can be simplified by reducing the number of product terms, and the number of inputs in each...
	Basic Idea:
	A (B + B) = A

	Karnaugh Maps
	Are a way to view a boolean n-cube:
	Create a table where adjacent entries differ by only one variable:
	Find a small number of large faces (large regions in map) that cover 1s
	• Or if the function is mostly 1, invert it, and the function that maps the 0s

	- Karnaugh Map Example
	For a function, f
	00
	1
	0
	0
	1
	01
	0
	1
	0
	0
	11
	1
	1
	1
	1
	10
	1
	1
	1
	1

	- Karnaugh Map Example
	For a function, f
	00
	1
	0
	0
	1
	01
	0
	1
	0
	0
	11
	1
	1
	1
	1
	10
	1
	1
	1
	1
	The min sum of products is
	f = C + B D + A B D

	But sum of products leads to gates with large fanin (both AND and OR)
	Good to see some simplifications
	Not necessarily what you want to implement in CMOS

	Logic Minimization
	CMOS logic is often minimized with multi-level logic optimization
	Logic represented by:
	sum of products of sums of products of sums …
	More levels of logic traded for reduced fanin.

	Example:
	Sum of Products = adf + aef + bdf + bef + cdf + cef + g
	6 3input AND gates (x6)
	3 3input OR (to implement the 7 input OR)

	Multi-level = (a + b + c) (d + e) f + g�������� (factored version)
	1 3 input OR
	2 2 input OR
	1 3 input AND

	+ Example of Logic Minimization
	+ Direct Synthesis Example
	+ Implicants
	+ Resulting Logic
	+ PLA
	Are a way of directly implementing sum of product designs
	• These might have large fanin gates, so use nMOS NOR style gates
	- The AND plane is a decoder. The horizontal line rises if all the inputs are low. Each AND symbo...
	- The OR plane combines the outputs of the AND plane. The horizontal lines become the inputs, and...
	- Very regular wiring

	More about this structure later in the class

	Something is Wrong
	Be careful when you talk about optimization
	• Make sure you know what you are optimizing
	• Make sure you are optimizing something you care about

	We have been talking about logic optimization without defining metric!
	• There are many logic minimization methods
	Often hard (requires lots of computer time)
	Might not provide you with a better solution for YOUR problem
	Often less logic is not a better solution

	What are some possible metrics?

	Objective Functions
	Here are some issues a logic designer might try to improve:
	1. Correctness/Simplicity
	Does it implement the correct function? How hard will it be to verify that the circuit really wor...

	2. Area
	How much space does it take to build this circuit. Is it small enough? This depends on the implem...

	3. Speed
	How fast will the circuit run. Is the maximum clock rate fast enough?

	4. Design Time
	How long have you been working on it. Is it time to call it done?

	5. Power

	Simplicity
	Cleverness is often overrated
	• Don’t be over clever and under smart
	• You are responsible for creating a correct implementation
	Make sure you understand how it works
	Make sure it works under all cases
	Generate test vectors that demonstrate that it works

	A simple solution is always the easiest to understand
	• Sometimes simple circuits don’t meet the other specs
	Need to innovate on these circuits
	Try to find the places that give you the most return on your design time.

	Doing function in software is a great solution when it is good enough

	Area Objective
	Size metric depends heavily on implementation technology
	• In a board level design, memory is very cheap, since a 28-pin chip space can hold 1- 4Mbits of ...
	Very area efficient to use lots of memory for board level designs

	• For a gate array solution, memory is quite expensive, since each memory cell uses a few gate po...
	• Custom layout, which can use custom designed memory arrays, and datapaths can save a large amou...
	• Chips sometimes have minimum allowable area. Smaller is not necessarily better

	Area Estimation
	Using Standard Cells
	Most libraries will give you the area of each cell you are using (for a gate array / std cell bas...

	Custom Layout
	This depends much more on the layout style used. To find the answer usually requires lots of work...
	Standard Cells: 1000 l2 / transistor
	Datapath: 500 l2 / transistor
	SRAM: 1000 l2 / bit
	DRAM: 100 l2 / bit
	ROM: 100 l2 / bit

	Bottom Line
	Fewer gates, and fewer inputs (less wires) mean smaller areas.

	Performance Issues
	Also heavily depends on implementation technologies
	• Board-level design
	Number of package crossings is the key
	10ns 256kbit SRAM, and 6ns inverter/ buffers
	Logic in a single PAL 10ns, two PALs 20ns

	• Chip Design
	Gate speed depends on two factors — resistance and cap
	Resistance is set by size of driving transistors, and # in series.
	Capacitance is set by the wiring and the fanout.
	Faster circuits
	Shorter wires, lower fanin, lower fanout, and less gates in series.

	Critical Paths
	There are many signal paths through a set of combinational logic.
	Not all the paths have the same delay
	• Path from input to latest output is called the critical path
	It is this path that will slow down machine, since clock has to wait for all the outputs to be va...

	Critical Paths
	Look at the function
	(a b + c) (d + e) f + g
	If all the inputs change at the same time
	Worst-case path will probably be from the inputs {a, b}
	Speeding up g won’t help much

	Critical Paths
	There are many paths from the inputs to the outputs, and the machine must run at the speed of the...
	Say the function you were implementing was a decoder
	Out = A0 A1 A2 A3 A4 RegRead
	where RegRead was generated elsewhere, but is
	MemStall + Istall + Exception
	and exception can be generated from a number of other signals

	While the function you need is a 6 input AND gate, not all the inputs arrive at the same time. On...

	6 Input NAND with Late Input
	The design that minimizes the delay through the gate is shown on the left, while the gate on the ...
	Faster circuits
	better balanced paths

	+ Switch Logic
	Sometimes you get a great advantage by going back to the switch model
	• Switch logic has it place
	Compare a 2 input mux
	Out = SelA * A + SelA *B

	Often encapsulated inside of ‘logic gates’

	Gate Design Summary
	Moved up a level in abstraction. More tools (boolean algebra) are available to improve circuits.
	• Need to understand what we want to improve before optimizing
	• CAD tools are available to help with this level of optimization
	Espresso for 2-level; Synopsys for multilevel

	Yet we are still working at a pretty low level
	• Average gate has 6ish transistors
	• Still need to design stuff with 100K gates
	• Writing equations / drawing schematics for all these gates is hard

	Want to work at a higher level first
	• Work at level of adders, registerfiles, control sections
	• Need to check function / algorithm before polish logic gates

	Generating Initial Specification
	The whole logic design problem is to create a circuit that meets some functional specification.
	• How was this spec given to you?
	• How do you know what it means?
	• How do you know that it works? (does the desired function)

	Maybe the functional spec should be executable, and should form the starting point of the logic d...
	• Not a new thought
	• Languages have been developed to do this, called HDL
	Hardware Description Languages

	• Tools can take subsets of HDLs and generate logic
	Talk about these languages in the next lecture

