P B s O s s R s s WA s O s B
Introduction to CMOS VLSl Design (E158)

SlieH

Lab 3: Datapath and Zipper Assembly
N 5 s Qe v 5 Qe 5 i

An n-bit datapath consists of n identical horizontal bitsices’. Data signals travel
horizontally along the bitslice. Control signals run vertically to all n bits of the datapath.
Often, a small amount of logic is required to generate the control signals. For example, a
multiplexer in the datapath requires true and complementary select signals. Rather than
provide a local inverter in each of the n bitslices, the inverter could be placed on top of
the datapath in a zipper to drive the complementary signal to all the bitslices.

Most of the processor datapath has been provided for you, but the ALU is missing from
each bitslice. In this lab, you will add your ALU to the bitslice and wire it in to the
system. You will then place necessary inverters in the zipper and connect them to the
datapath.

Although the total amount of layout to do in this lab is modest, you will find Electric has
a learning curve before you become proficient editing large designs like the MIPS
datapath.

1. Changesfor 2001

Before you begin, please patch up some junk that was incorrectly left in the €158 library.
Open your lab2 xx.elib. Look at the datapath{lay} facet. In the far right side are a
bunch of parallel metal2 lines with vias at the right ends. Near the upper right corner of
these lines sits a lonely via. Delete the lines, the vias they attach to, and the lonely via
Then look at zipper{lay}. At the right end are three buf4x circuits connected to vertical
metall signals alubinvin, aluopin[0], and aluopin[l]. These were supposed to be
missing from your lab, but were left in the zipper inadvertently. When you get to the
section editing the zipper where you are supposed to add these buffers, you can instead
just move them around to the appropriate positions.

2. Bitdlice Assembly

Copy your lab2_xx.elib to lab3 xx.elib and open the new library. Look at the datapath
bitslice schematic dpbitslice{sch}. It is complete. Zoom in so that you can read the

! In genera, the bits of the datapath might vary slightly. For example, a carry lookahead adder requires
different logic in different bits. And of course, the horizontal/vertical distinction is arbitrary and a datapath
could be rotated.

labels on each icon. Match the hardware in the schematic to the MIPS datapath in Figure
1of Lab 1.

The processor has no on-chip memory; instead, it provides an interface to external
SRAM. Theinterface consists of 3 8-bit busses. Two are outputs containing the address
and data to write to the memory. The third is an input carrying the data read from the
external memory.

On the left side of the datapath is the address multiplexer (adrmux) selecting the address
for the external memory. The 32-bit instruction is stored in four 8-bit instruction
registers, so four flip-flops named ir3...ir0 are required in each bitslice. The memory
dataregister isnamed mdr. Next comes the interface to the register file. This consists of
the write data multiplexer wdmux, the 8-word register file itself (drawn below the
datapath to keep the entire schematic on one page), and the A and B registers.
Interdigitated with the A and B registers are the Source 1 and Source 2 multiplexers
choosing the operands for the ALU and the ALUOLUt register. The program counter logic
consists of the multiplexer to choose the next value of the program counter, an AND gate
to reset the program counter to 0 on startup, and the program counter flop itself. At the
very right end of the bitslice isthe ALU.

The dpbitslice{lay} is complete except for the ALU that you designed in Lab 2. Look a
the layout and relate the cells in the layout to the cells in the schematic. Double-click on
each cell to view its name. At the very left end, you again find the adrmux. Double-
click on the other cells and verify that their names match the schematic. VDD and GND
run along the top and bottom of the datapath, respectively. Notice how metal2 bitlines on
an 8\ pitch are used to connect the cells together. For example, adr, memdata, and
writedata exit the bitslice to the left. These signals will ultimately connect to the
external memory. Notice how memdata runs over the top of the adrmux and to the
inputs of the four instruction registers.

Now that you are familiar with the layout, add your ALU layout to the right end of the
dpbitslice layout. Zero-detect logic will eventually go between the ALU and the
remainder of the dpbitslice, so place your ALU at least 60A right of the existing circuitry.
Connect VDD and GND to the adjacent flip-flop. Notethat these ports are on the left end
of the flip-flop. As shown in the schematic, make three connections to the rest of the
datapath: inputs A and B come from srcl and src2, and output result goes to the
aluresult signal. In the datapath layout style, these connections should occur using
mostly horizontal metal2 lines. The lines must run over the top of the cells, not above
VDD or below GND.

Here are afew hints while drawing the layout:
» Use Facet « Expand Facet I nstances to view the contents of a cell.

» Unexpand the facet instances to make it easier to see exports on facets
* UseWindows« Alignment Options to set a 0.5 lambda grid when necessary.

» Citrl-click to cycle through various different layers when you have lines drawn on top
of facets.

* The layout already has some large pure-layer nodes for the N and P wells. Y ou may
need to double-click on the wells and resize them to fit your design.

* Use Info « List Exports on Network to get the name of the export on a selected
network.

* Use metall or metal2 pins from the palette to give yourself a destination to connect to
when Electric gets confused about snapping a connection to an undesired destination.

» Use the red boxes in the palette window to choose which layer will be drawn in the
event of ambiguity. For example, when connecting two vias, select either the blue or
purple lines to indicate metall or metal2 for the connection.

» Expect to spend some time playing around with Electric to come to understand how it
makes connections when there are many layers of stuff.

Add exports to the signals emerging from the top and bottom of the ALU. These include
inputs alubinv, alubinvb, aluop[0], aluopb|0], aluop[l], aluopb[l], set, and cin, and
outputs less and cout.

When your changes are complete, use DRC, ERC, and NCC to verify your layout.
3. Zipper Modifications

Recall that the ALU requires true and complementary versions of alubinv, aluop[0], and
aluop[1]. The controller that you will design in Lab 4 only produces the true version of
each signal. Therefore, we must locally invert the signal. Moreover, each signal must
drive eight bits of the datapath. For good performance, we would like to drive these bits
with something larger than a minimum-sized inverter. Thus, in the zipper we provide
buf4x drivers for each control signal. These accept the inputs from the controller and use
inverters with 4 times the usual transistor widths to drive true and complementary control
signals across the datapath.

Look at the datapath{lay}. You will see eight rows of the dpbitslice that you have just
completed. Above the bit slices is the zipper that generates the control signals for al the
bits of the datapath. Look at the zipper{lay}. The center portion contains the decoder for
the register file. Theright portion contains a bunch of buf4x cells to drive control signals
across the datapath. It is missing three buf4x drivers for alubinv, aluop[0], and
aluop[1], as shown in the zipper schematics. Add these three buffers. Align the buffers
above the datapath so the outputs of the zipper are properly located to drive the
multiplexer control lines that you exported from the dpbitslice. Be sure the port names
match the zipper schematics.

Run DRC, ERC, and NCC to verify the zipper.

4. Datapath Assembly and Verification

Y our final task isto assemble and verify the datapath. Vertical metall control lines tie the
bitslices together. Mot are already complete, but you must add the ones for the ALU.

First add the six lines for alubinv, aluop|0], aluop[l], and their complements. These
lines should connect the zipper outputsto each of the eight bitslices.

Next, connect the carry chain. As shown in datapath{sch}, the carry into the least
significant bit should be tied to binv so it is 1 for subtractions and O for adds. This bit is
the bottom bitslice in the datapath. Y ou will have to run a metal2 line carrying ground all
the way from the left end of the bottom bitslice to reach this carry input. For each of the
remaining bits, cin should be connected to cout of the bit below. This is easiest if the
carry in and carry out signals are located in the same vertical column, as you were
instructed to do in Lab 2.

Finally, connect the Less signal used for the set on less than (sl t) instruction. Recall
that sl t produces a 1 if input A is less than input B and a O otherwise. This can be
accomplished by computing A-B. If the result is negative, indicated by a 1 in the most
significant bit of the subtraction, set the output to 1. Otherwise, set it to 0. In other
words, the least significant bit of the output should equal the most significant bit of the
subtraction result. All other bits should be 0. As shown in the datapath schematic and in
Figure 4.18 of the text, the least significant Less input connects to the set output of the
most significant bit. Remember that the least significant bit is the bottom row of the
datapath and the most significant bit is the top row. All other Less inputs should be tied
to ground.

Run DRC, ERC, and NCC to verify the datapath. For a design this large, tracking down
errors is very difficult. Therefore, be sure you know what you are doing and are
confident that you made the correct connections rather than relying on the tools for
feedback to catch problems.

5.WhattoTurn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for the future.

2. What was unclear in this lab writeup? How would you change it to run more
smoothly next time?

3. For each of the following facets, did your design pass DRC? ERC? NCC?

* dphitslice

* Zipper

* datapath
Extra Credit

As you are probably aware by now, Electric has plenty of bugs and idiosyncrasies. A
major goal of this class is to improve the stability and ease-of-use of Electric. Please
email your bug reportsdirectly to Prof. Harris in the format described in Lab Manual 1.

