
1

Introduction to CMOS VLSI Design (E158)H
arris

Lab 1: Gate Design

The only way to become a good chip designer is to design chips. The hands-on portion of
this class is divided into two segments. In the first six formal labs, you will use the
Electric VLSI Design System to design an 8-bit subset of a MIPS processor. These labs
will guide you through mastering schematic entry, layout, simulation, and verification of
a complex system. Chip design is a very time-consuming activity, so certain portions of
the processor will be provided for you to reduce the tedious work and to illustrate good
design style. The design you do in each lab will form a component of the microprocessor,
so careful work each week will save you time at the end. In the second portion of the
class, you and a partner will design a chip of your own choosing, putting into practice
what you have learned.

This lab begins with a review of the MIPS processor microarchitecture that you will be
implementing. It then guides you through the design of a 2-input NAND gate. You’ll
draw schematics and simulate them. Then you’ll draw the layout and verify it satisfies
design rules and matches the layout. Using your NAND gate and an inverter, you’ll
design a 2-input AND gate. Finally, you’ll design your own 2-input NOR and OR gates.

As these are new labs, you will be asked in each lab how much time you spent on the lab
and how you would modify the lab manual to make it more clear for students next year.
These questions do not impact your grade but are much appreciated to improve the labs
for the future.

1. MIPS Processor Overview

Your ultimate goal in this series of labs is to construct a MIPS microprocessor. In the
interest of simplicity, your processor will only be responsible for the following
instructions:

ADD, SUB, AND, OR, SLT, ADDI, BEQ, J, LB, SB

The MIPS architecture is a 32-bit architecture, meaning that registers and busses are 32-
bits wide. This would involve much repetitive drawing, so we will construct an 8-bit
subset. All datapaths and registers except the instruction register will be 8 bits wide. The
instruction still must be 32-bits wide to contain a complete opcode, but it will be fetched
from an 8-bit wide memory using four successive fetch cycles. Nevertheless, the memory
address is only 8 bits so the design will support only 28 = 256 bytes of memory. Finally,
the MIPS architecture defines 32 registers. Again, to save drawing, we will use only 8.
Register 0 is still hardwired to the value 0.

2

We will construct a multicycle implementation of the MIPS processor, as defined in
section 5.4-5.5 of Patterson & Hennessy, Computer Organization and Design (2nd Ed.). If
you are feeling rusty on the microarchitecture, you should review that section of the
book.

There are a few changes between the design in Figure 5.33 of the book and the design
you will be constructing. The book assumes a 32-bit path to memory, so instructions can
be loaded in a single cycle. You will have only an 8-bit path to memory, so instructions
will be loaded in four successive cycles with four separate IRWrite controls. Sign
extension is not necessary because only the bottom 8-bits of constants are used. The book
shows datapaths for the lw and sw instructions. You will be implementing lb and sb so
the shift left 2 block is unnecessary. The modified datapath is shown in Figure 1 below.
Finally, the control microsequencer of Figure 5.46 will be modified to handle the four-
cycle instruction fetch and the addi instruction not in the textbook design.

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[7– 0]

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite[3:0]

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outpu ts

Op
[5–0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
addressInstruction [5–0] 6 8

Shift
left 2

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Figure 1: 8-bit MIPS Datapath

2. The Electric VLSI Design System

Integrated circuits have become sufficiently complex that Computer-Aided Design
(CAD) tools are essential; nobody could design a 100-million transistor chip by hand on a
schedule that would complete the chip while it was still interesting. We will use CAD
tools in this class for schematic entry, layout, simulation, and verification. Unfortunately,
no CAD tools are perfect.

The industry-standard tool is made by Cadence. It normally sells for six figures per seat,
but is available at extremely generous discounts to universities. However, it runs only on

3

Unix and is nearly a full-time job to setup and maintain. The Tanner tools run on NT and
are easier to support, but cost more than Cadence for universities! The freely available
Magic and Sue tools are popular at some schools, but Magic again is limited to Unix and
has a primitive, albeit powerful, user interface. All of these tools have their fair share of
bugs.

The Electric VLSI Design System is a computer-aided design tool developed by Steve
Rubin. It has powerful notions of connectivity, runs on all major operating systems, and
is very well integrated. It is also GNU-licensed so you may freely download your own
personal copy and even modify the source code. The drawback is that many features of
Electric are still in development, so the tool crashes often and sometimes does unintuitive
things. Steve Rubin and Harvey Mudd College have agreed to help each other develop
Electric into an outstanding, freely available tool. In Fall 2000, freshmen in a chip design
seminar submitted over 90 requests for bug fixes and feature enhancements and over two
thirds of the requests have been incorporated into the tool. One of the major goals in this
class is to find more problems with Electric and improve the tool until it is a very stable
and productive design environment. You will certainly run into frustrations along the
way; this is typical of almost any cutting-edge field in which the tools have not caught up
with design practices. You can help by submitting detailed reports of the problems you
encounter so that Dr. Rubin can isolate the problem. You will receive extra credit for
your reports if they are reproducible.

To submit a bug report, email Prof. Harris with the following information:

Your name:
Date:
Facet:

A facet demonstrating the problem: list the library name, facet name, and facet
view and attach the library to the email.

Description:
A detailed description of the problem, including the exact steps necessary to
reproduce the problem.

Thank you for your patience with the tool. Your work submitting bug reports will make
the tool better for the entire design community!

3. Getting Started

The latest version of the Electric CAD tools is kept on Kato at
home\Eng\Classes\E158\Electric. You may work from any Windows NT machine. Your
personal PC or the Engineering Design Center computers are good choices. Electric is
also available for the Mac and Unix. However, we will only be receiving frequent bug
fixes for the NT version, so that is the recommended platform this semester. You may
wish to map the Eng\Class directory as a network drive for convenient access.

4

Copy the e158.elib library to your account and rename it to lab1_xx where xx are your
initials. This library contains some parts of the MIPS processor that are provided to you.
You will add your new designs to the library as you work through the labs.

Double-click on Electric to start the program. Dismiss the splash screen. Choose Info ∑
See Manual from the menu to bring up the Electric manual in a web browser. Read
through the following sections:

Chapter I: 1-2, 6-9
Chapter II: 1-6
Chapter III: 1-12

Don’t worry if it doesn’t all make sense yet. After you complete this lab, go back and
skim over the sections that you initially found confusing. Refer back to the other chapters
of the manual as you need help with specific features of Electric.

4. Schematic Entry

Your first task is to create a schematic for a 2-input NAND gate. Recall that each design
is kept in a facet; for example, your schematic will be in the nand2{sch} facet, while
your layout will eventually go in the nand2{lay} facet and your AND gate will go in the
and2{sch} facet. Choose File ∑ Open Library to open your lab1_xx library. Then choose
Facet ∑ Edit Facet to bring up the Facet dialog. Click New Facet. Enter nand2 as the
facet name and schematic as the view. A new editing window will appear with the title
lab1_xx:nand2{sch} indicating the library, facet name, and view.

Electric defines various technologies for schematics and layout. To draw transistor-level
schematics, you will need to select the Analog Schematic technology by choosing
Technology ∑ Change Current Technology and selecting the schematic, analog
technology. This technology file contains basic circuit elements such as transistors,
resistors, capacitors, and power and ground.

Transistors are labeled (“annotated”) with their length and width. Unfortunately, this
label sits on top of the transistor and by default tends to get selected when you really
want something else. To avoid this problem, choose Edit ∑ Selection ∑ Selection Options
and make sure the “Easy selection of annotation text” box is unchecked.

Your goal is to draw a gate like the one shown in Figure 2. Choose Windows ∑ Toggle
Grid to turn on a grid to help you align objects. Left-click on an NMOS transistor symbol
in the components menu on the left side of the screen. Left-click on your layout to drop
the transistor into your layout. Repeat until you have two NMOS transistors, two PMOS
transistors, the circular power symbol, and the triangular ground symbol arranged on the
page. You may move the objects around by right-clicking and dragging. The transistors
default to a width/length value of 2/2. We will ignore this for now, but will need
appropriate sizes in layout.

5

Figure 2: nand2{sch}

Now, make the connections. Left-click on a port such as the gate, source, or drain of a
transistor. Right-click on another port to create a wire connecting the ports. Continue
until all the blue wiring is completed.

Finally, you will need to provide exports defining inputs and outputs of the facet. Left
click on the end of a wire where you need to create the export for input a. You should see
a small square box highlighted at the end of the wire. If the entire wire is highlighted, you
clicked on the middle of the wire instead of the end, so try again. Once you have selected
the end of the wire, choose Export ∑ Create Export. Give your export the name a. Give it
the characteristic Input. Repeat with the other input b. Export y as an Output.

Use File ∑ Save to save your library. Get into the habit of saving often because Electric
crashes fairly often.

5. Switch-Level Simulation

Our next step is to simulate the schematic to ensure it is correct. Electric has a built-in
switch-level simulator. Such a simulator treats transistors as switches that may be ON or
OFF. It assigns unit delays between events. The simulator lacks the detailed timing
information one would get from an analog simulation, but is fast and easy to use.

Start the simulation by selecting Tools ∑ Simulation ∑ Simulate. A waveform window will
appear listing each of the nets in your design. If you created your exports properly, you
will see nets for A, B, and Y, as shown in Figure 3. You will also see unnamed nets for
VDD, GND, and the node between the series NMOS transistors. In this simulation, we
can tell NET1 is power (VDD) and NET4 is ground because they are strongly driven high
and low as indicated by the black lines. Thus, NET3 must be the node between the two
NMOS transistors. The time scale at the bottom of the simulator is arbitrary and bears no
relation to actual circuit performance.

6

The simulator has two vertical red cursors. The primary cursor with no x is used to create
stimulus. Click and drag the cursor to about 40 ns. Click on the A input in the simulation
window and press h or 1 to drive the input high. Drag the cursor to some later time. Click
on the B input and press h to drive it high. Use the l or 0 key sometime later to drive A
and B back low, as shown in the figure. Check that the Y output matches the behavior
you would expect for a NAND2 gate. If it does not, fix the bug in your schematic and
resimulate. The secondary cursor with an x is only used to measure delays relative to the
first cursor. You will have no reason to use it because the delays are arbitrary anyway.

If you position the simulation and schematic window so that you can see both
simultaneously, you can watch the color coding of the wires in the schematic change as
you drag the primary cursor back and forth. These colors correspond to the voltage levels
on the wires, with blue indicating low and magenta high. Beware that this is not
consistent with the color coding of the waveform window! Watching the voltage levels
change on the schematic is helpful for debugging problems. Study your simulation and
determine why NET3 behaves as it does.

Figure 3: Simulation of nand2{sch}

When you request a simulation, the schematic is translated into a VHDL netlist. VHDL
stands for VHSIC Hardware Description Language, and VHSIC in turn was a
Department of Defense project on Very High Speed Integrated Circuits. VHDL is similar
to Verilog, though somewhat more verbose. The VHDL in turn is translated into an
internal text netlist format called net-als. Use the Facet ∑ Edit Facet command to view the
nand2{vhdl} facet. You should see something like this:

7

-- VHDL automatically generated from facet nand2{sch}
entity nand2 is port(b, a: in BIT; y: out BIT);
 end nand2;
architecture nand2_BODY of nand2 is
 component PMOStran port(g: in BIT; s, d: inout BIT);
 end component;
 component ground port(gnd: out BIT);
 end component;
 component power port(pwr: out BIT);
 end component;
 component nMOStran port(g: in BIT; s, d: inout BIT);
 end component;
 signal net3, net4, net1: BIT;
begin
 node7_1_1: PMOStran port map(b, y, net1);
 node3: ground port map(net4);
 node5: power port map(net1);
 node7: PMOStran port map(a, y, net1);
 node8: nMOStran port map(b, net3, y);
 node9: nMOStran port map(a, net4, net3);
end nand2_BODY;

A VHDL file is divided into entity and architecture descriptions of each cell. The opening
entity line defines the inputs and outputs. The architecture describes the components used
by the NAND gate (NMOS and PMOS transistors and power and ground) and how these
components are connected. Study the file and see how it relates to the schematic you have
drawn. Do the same for the net-als file. If you have simulation problems, it is sometimes
helpful to examine the vhdl or net-als files to ensure that the input to the simulator
matches what you’d expect.

Get in the habit of simulating each facet after you draw it so you catch errors while the
design is fresh in your mind.

6. Layout

Now that you have a schematic simulating correctly, it is time to draw the layout. Choose
Facet ∑ Edit Facet to bring up the Facet dialog. Click New Facet. Enter nand2 as the
facet name and layout as the view. We will be targeting the AMI 1.5 µm process but
using MOSIS submicron scalable rules so we could easily adapt to the AMI 0.5 µm
process. To setup the technology file, choose Technology ∑ Change Current Technology
and select mocmossub, the MOSIS submicron CMOS technology. Then choose
Technology ∑ Change Units and set Lambda for mocmossub to 1600 half-milimicrons,
i.e. 0.8 µm. Use the Info ∑ New Arc Options to set the default width for Metal-1 to 4 and
for Metal-2 to 4 for convenience of layout. Finally, choose Technology ∑ Technology
Options and select 2 metal layers, submicron rules, and disallow stacked vias so that the
design rule checker will forbid vias placed on top of contacts. Note that the AMI 1.5 um
process has two polysilicon layers, but the AMI 0.5 um process has only one. The
mocmossub technology shows two polysilicon in the palette. In the interests of being able
to target either process, do not use the orange Polysilicon-2 layer.

8

Your goal is to draw a layout like the one shown in Figure 4. It is important to choose a
consistent layout style so that various cells can “snap together.” In this project’s style,
power and ground run horizontally in metal2 at the top and bottom of the cell,
respectively. The spacing between power and ground is 60λ center to center. No other
metal2 is used in the cell, allowing the designer to connect cells with metal 2 over the top
later on. NMOS transistors occupy the bottom half of the cell and PMOS transistors
occupy the top half. Each cell has at least one well and substrate contact. Inputs and
outputs are given metal1 ports within the cell.

Figure 4: nand2{lay}

You may find it convenient to have another sample of layout visible on the screen while
you draw your gate. Use the Edit ∑ New Facet Instance command and select inv{lay}, then
click to drop this inverter in the layout window. Study the inverter until you understand
what each piece represents.

Start by drawing your NMOS transistors. Recall that an NMOS transistor is formed when
polysilicon crosses N-diffusion. N-diffusion is represented in Electric as green diffusion
surrounded by a dotted yellow N-select layer all within a hashed black P-well
background. This set of layers is conveniently provided as a 3-terminal transistor node in
Electric. Move the mouse to the components menu on the left side of the screen. As you
move the mouse over various objects, the node name will appear on the status line next to
the word NODE near the bottom left corner of the screen. Left click on the N-transistor,

9

shown in Figure 5, and click again in the layout window to drop the transistor in place.
Use the Edit ∑ Rotate ∑ 90 Degrees Counterclockwise command to rotate the transistor so
that the red polysilicon gate is oriented vertically. There are two NMOS transistors in
series in a 2-input NAND gate, so we would like to make each wider to compensate.
Double-click on the transistor. In the node information dialog, adjust the width to 12.

Figure 5: NMOS transistor before and after rotation and sizing

We need two transistors in series, so copy and paste the transistor you have drawn or use
the Edit ∑ Duplicate command. Drag the two transistors along side each other so they are
not quite touching. Left click the diffusion (source/drain) of one of the transistors and
right click on the diffusion of the other transistor to connect the two. Then drag the two
transistors until the polysilicon gates are 3λ apart, looking like they do in Figure 4. You
will probably find it helpful to turn on the grid using the Windows ∑ Toggle Grid
command. The grid defaults to small dots every lambda and large dots every 10λ. You
can change this with the Windows ∑ Grid Options command. Also by default, objects
snap to a 1-λ grid. You may occasionally need to snap to a 0.5-λ grid instead; if so, use
the Windows ∑ Alignment Options to change the alignment of the cursor to 0.5 rather
than 1.

Electric has an interactive design rule checker (DRC). If you place elements too closely
together, it will report errors in the Electric Messages window. Try dragging one of the
transistors until its gate is only 2λ from the other. Observe the DRC error. Then drag the
transistors back to proper spacing. When you are in doubt about spacing, use the Tools ∑
DRC ∑ Hierarchical Check command to ask Electric to recheck the entire facet and any
subfacets it might contain.

An Aside on Design Rules

The definitive design rules are available on the MOSIS web page. MOSIS
is a service that collects small orders for designs and combines them into
an order large enough to interest a semiconductor manufacturing facility.
For best density, one could optimize for a particular fabrication process
and design in units of microns rather than lambda. MOSIS has developed
a set of Scalable CMOS design rules that are sufficiently conservative to

10

work for virtually all processes. The original rules, SCMOS, apply to older
processes. We will be using the SUBM submicron rules that are even more
conservative and suffice for more advanced processes. They are adequate
for both the AMI 0.5 and 1.5 micron processes. Finally, the DEEP deep
submicron rules are slightly more conservative and are necessary for best
performance in the 0.25 µm and below processes. For historical reasons,
all three sets of rules are selected in Electric by choosing the scmossub
process, then using the Technology Options dialog. Tables 3 and 4 on the
MOSIS web page list the differences between these design rules.

http://www.mosis.org/Technical/Designrules/scmos/scmos-main.html

We will be fabricating using the SCNE technology code defined in Table
5 of the web page. SCNE means Scalable CMOS with N-wells and an
Electrode layer, i.e. polysilcon 2. Click on each of the layers in the table to
see the design rules. For example, the Metal1 rules are shown in Figure 6
below. We will follow the SUBM rule set, requiring metal width and
spacing of 3λ.

SCMOS Layout Rules - Metal1

Description LambdaRule SCMOS SUBM DEEP
7.1 Minimum width 3 3 3
7.2 Minimum spacing 2 3 3
7.3 Minimum overlap of any contact 1 1 1

7.4 Minimum spacing when either metal
line is wider than 10 lambda 4 6 6

Figure 6: SCMOS Metal1 Rules

Next we will create the contacts from the N-diffusion to metal1. Diffusion is also refered
to as active area. Drop a square of Metal-1-N-Active-Contact in the layout window and
double-click to change the properties to a Y size of 12. You will need a second contact

11

for the other end of the series stack of NMOS transistors, so duplicate the contact you
have drawn. Move the contacts near each end of the transistor stack and draw diffusion
lines to connect the transistors. Then move the contacts even closer; you only need a gap
of 1λ between the metal and polysilicon. Use the design rule checker to ensure you are as
close as possible but no closer. Using similar steps, create contacts from the P-diffusion
to metal1. At this point, your layout should look something like Figure 7:

Figure 7: Contacted transistors for nand2 layout

Draw wires to connect the polysilicon gates, forming inputs a and b, and the metal1
output node y. Then add metal2 power and ground lines. Use the grid to ensure they are
60λ apart from the center of each line. This is the same spacing as the power/ground lines
of the inverter. Place metal-1-metal-1-contacts, also known as vias, on the power lines. In
Electric, you must explicitly draw a line from the via to the metal2 to form a connection.
Otherwise you will be confused when you appear to have the via sitting on the metal2
line but discover in simulation there is no connection. Therefore, it is often easiest to
place the via some distance away from the metal2, draw a wire to connect, then drag the
via to its desired location over the metal2. Add more metal lines to connect power and
ground to the transistors.

Recall that well contacts are required to keep the diodes between the wells and
source/drain diffusion reverse biased. We will place an N-well contact and a P-well
contact in each cell. Place the P-well contact under the ground rail and connect it to the
ground via with metal1. Place the N-well contact under the power rail and connect it to
VDD with metal1.

In our datapath design style, we will be connecting gates with horizontal metal2 lines.
Metal2 cannot connect directly to the polysilicon gates. Therefore, we will add contacts
from the polysilicon gate inputs to metal1 to facilitate connections later in our design.
Place a metal-1-polysilicon-1-contact near the left polysilicon gate. Connect it to the
polysilicon gate and drag it near the gate. You will find a 3λ separation requirement from
the metal1 in the contact to the metal forming the output y. Add a short strip of metal1

12

near the contact to give yourself a landing pad for a via later in the design. You may find
Electric wants to draw your strip from the contact in polysilicon rather than metal1. To
tell Electric explicitly which layer you want, move the mouse over the palette until it is
over the blue Metal-1 arc square and click. Then draw your wire.

If you would like to make your layout somewhat cleaner, double-click on the metal lines
and change their width to 4. This is a particularly good idea for the power and ground
lines because it provides more metal area to carry supply current.

Finally, define exports for the cell. Click near the end of the short metal1 input lines that
you just drew on the left gate. You will see a small white box highlighted, corresponding
to the pin at the end of the cell. If you accidentally selected the entire line instead, click
elsewhere in space to deselect the line, then try again to find the pin. You may also try
holding the ctrl key while clicking to cycle through selections. Add an input export called
a. Repeat for input b. Export output y from the metal line connecting the NMOS and
PMOS transistors. Also export vdd and gnd from the metal 2 lines; these should be of
type power and ground, respectively.

Your design should now resemble Figure 4 and should pass DRC. When you are done
drawing the nand2 layout, click on the inverter and press delete to remove it from the
facet. Save the library.

Electric has a fun feature to show a 3D rendition of your layout. Use the Windows ∑ 3D
Display ∑ View in 3 Dimensions command. Click and drag with the mouse to rotate the
layout. You will see the layer stack from diffusion on the bottom through polysilicon,
metal1 and metal2. Vias are shown in white and contacts from metal1 to poly or diffusion
in black. Does the 3-D visualization match your mental picture of the layout? When you
are done, use Windows ∑ 2D Display ∑ View in 2 Dimensions to restore normal viewing.

7. Layout Verification

Layout verification involves more checks than schematic verification. The checks include
Design Rule Checks (DRC), Electrical Rule Checks (ERC), Network Consistency
Checking (NCC), and simulation.

You will likely find yourself invoking these menu options often and may wish to give
yourself keyboard shortcuts. For example, you might use the Info ∑ User Interface ∑ Quick
Key Options dialog to map the Tools ∑ DRC ∑ Hierarchical Check command to the F1
function key, Tools ∑ Network ∑ Network Options to F2, and Tools ∑ Network ∑ Network
Consistency Check to F3.

First, be sure the design satisfies the layout design rules by running a hierarchical DRC.
This checks the layout and any facets it might incorporate; in this case the nand2 is a leaf
cell and has no subfacets. Correct any DRC violations that might remain.

13

Next, run Tools ∑ Electrical Rules ∑ Analyze Substrate and Wells. This check ensures that
every nwell has a contact to VDD and every psubstrate/pwell has a contact to GND
reasonably close by. ERC will report the number of transistors found Check that this
matches your expectation; it should be 2 NMOS and 2 PMOS for the nand2. It also
reports the farthest distance of any part of the layout from a well or substrate contact; if
this is greater than 100, consider adding more contacts to avoid latchup risks. If any
errors are reported, fix them.

Next, simulate the layout. Apply a complete set of stimulus to the two inputs to convince
yourself that the gate is working correctly.

Electric includes a powerful tool called a network consistency checker that checks that
the schematic and layout are equivalent. This is especially valuable when your design is
too complex to verify completely through simulation. The checker relies upon graph
theory algorithms. If your layout and schematic match, you have much greater confidence
that a bug hasn’t crept into your design. Unfortunately, if the two don’t match, the tool
becomes very confused and provides few hints. Also, NCC uses a rather complex
algorithm and has been the source of quite a few bugs in Electric, so don’t trust it blindly.

To use NCC, choose Tools ∑ Network ∑ Network Options. In the dialog box, set for all
facets to Flatten Hierarchy. Check the Use Port Names, Check Port Order, and Ignore
Power and Ground boxes. Click OK to close the dialog. Use Facets ∑ Edit Facet to be sure
both the nand2{sch} and nand2{lay} facets are open. Close all other facets; NCC
assumes the two windows open are the schematic and layout views of the cell being
verified. Then choose Tools ∑ Network ∑ Do Consistency Check. If your design is correct,
you should get a message of:

*** Comparing facet nand2{lay} (4 components, 4 nets) with facet nand2{sch} (4 components, 4 nets)
Facets are equivalent

This message means that the layout and schematic each have four components, i.e. the
two NMOS and two PMOS transistors. They also each have four nets: A, B, Y, and the
wire between the series NMOS transistors. Note that power and ground are ignored and
therefore do not appear in this count. NCC finds that the facets are equivalent.

If your design is not equivalent, NCC will likely mark too much mismatching to be
useful. You are best off carefully examining your design by hand to look for errors.
Remember that the order of inputs is important; if A and B are interchanged, you will get
an error.

14

8. Hierarchical Design

Now that you have a 2-input NAND gate, you can use it and an inverter to construct a 2-
input AND gate. Such hierarchical design is very important in the design of complex
systems. You have found that the layout of an individual cell can be quite time
consuming. It is very helpful to reuse cells wherever possible to avoid unnecessary
drawing.

Each schematic has a corresponding symbol, called an icon, used to represent the cell in a
higher-level schematic. For example, open the inv{sch} and inv{ic} to se the inverter
schematic and icon provided. You will need to create an icon for your 2-input NAND
gate.

Open your nand2{sch} and choose View ∑ Make Icon. Electric will create a generic icon
based on the exports looking something like Figure 8.

Figure 8: nand2{ic} from Make Icon

A schematic is easier to read when familiar icons are used instead of generic boxes.
Modify the icon to look like Figure 9. Pay attention to the dimensions of the icon; the
overall design will look more readable if icons are of consistent sizes.

Figure 9: nand2{ic} final version

15

Start by changing the technology to artwork. A palette will appear with various shapes.
Delete the generic box but leave the input and output lines. The body of the NAND is
formed from an open C-shaped polygon, a semicircle, and a small circle. To form the
semicircle, place an unfilled circle. Double-click to change its size to 6x6 and to span
only 180 degrees of the circle. Use the rotate commands under the Edit menu to rotate the
semicircle into place. Place another circle and adjust its size to 1x1. You will need to
change the alignment options under the Windows menu to 0.5 to move the circle into
place, then set alignment back to 1.

The opened-polygon shown in Figure 10 can be used to form the C-shaped body. Drop an
opened-polygon object. Select it and choose Edit ∑ Special Function ∑ Outline Edit to
enter outline edit mode. In this mode, you can use the left button to select and move
points and the right button to create points. You should be able to form the shape with
four clicks of the right button to define the four vertices. Outline edit mode is not entirely
intuitive at first, but you will master it with practice. Choose Edit ∑ Special Function ∑
Exit Outline Edit when you are done. If your shape is incorrect, delete it, drop another
opened-polygon, and try again.

Figure 10: Opened-Polygon

Electric is finicky about moving the lines with inputs or outputs. If you left-click and drag
to select the line along with the input, everything moves as expected. If you try to move
only the export name, it won’t move as you might expect. Therefore, make a habit of
moving both the line and export simultaneously when editing icons. Note that the line is
just an open-polygon and can be shortened if desired by entering Outline Edit mode.

Now that you have an icon with three exports, create a new schematic called and2.
Change the technology back to schematic, analog because you are drawing a schematic
again now. Use Edit ∑ New Facet Instance to create (“instantiate”) the nand2{ic} and an
inv{ic}. Wire the two together and create exports on inputs a and b and output y. Double-
click on the wire between the two gates and give it a name like yb so you know what you
are looking at in simulation. When you are done, your and2 schematic should look like
Figure 11. If the line between the gates is black rather than blue, you neglected to return
to the schematic, analog technology and were still drawing using the artwork palette.

Figure 11: and2{sch}

Simulate your and2 gate to ensure it works. Try the Tools ∑ Simulation ∑ Down Hierarchy
command to descend into each of the gates and observe their internal waveforms. The
gates are given generic names such as NODE4 and NODE5 when created, so it can be

16

hard to determine which is the nand and which is the inverter. In the schematic editor,
you can double-click on each gate and assign it a name to help differentiate cells when
you simulate.

Next, create a new layout called and2. Change the technology to mocmossub. Instantiate
the nand2{lay} and inv{lay} layouts. Initially the layouts appear as black boxes with
ports. Select both and use the Facet ∑ Expand Facet Instances ∑ All the Way command to
view the contents of each layout. Wire together power and ground. Move the cells
together as closely as possible without violating design rules. Connect the output of the
nand2 to the input of the inv using metal1. Export the two inputs, the output, and power
and ground. The final and gate should resemble Figure 12. Run DRC, ERC, and
simulation to verify your design.

Figure 12: and2{lay}

Finally, do a network compare. NCC has three modes in the Network Options: Check
Current Facet Only, Flatten Hierarchy, and Recursively Check Subfacets. Check Current
Facet Only assumes all subfacets are perfect. Don’t trust this mode. Flatten Hierarchy
smashes your entire design into one giant netlist for its internal comparison. Recursively
Check Subfacets checks each subfacet. NCC is a relatively new feature that has received
many bug fixes, so it is wise to try both Flatten Hierarchy and Recursively Check
Subfacets to catch any problems that one mode misses. In each case, be sure to check Use
Port Names, Check Port Order, and Ignore Power and Ground. Do not set any individual
facet overrides. After you check a facet, Electric marks it as clean and thus not in need of
rechecking. Press the Clear Valid NCC Dates before each NCC run to ensure NCC will
recheck your whole design each time.

If NCC reports a problem, check that your inputs are in the correct order. If a and b are
reversed between the layout and schematic, you will get an error that nodes are wired
differently. Tracking NCC mismatches is very difficult, so you are best off ensuring your

17

design is correct by means of careful drawing and simulation rather than drawing sloppily
and hoping to catch problems with the checker.

Now that your and2 gate is complete, use the Info ∑ Check and Repair Libraries
command to look for any inconsistencies in your library. You shouldn’t expect any, but
Electric has been known to do strange things from time to time, especially in the hands of
novice users. Therefore, you may wish to check your library every few hours.

9. NOR / OR Gate Design

Your MIPS processor supports the OR instruction as well as the AND instruction.
Therefore, you will need to create a 2-input NOR and a 2-input OR gate. Call these nor2
and or2. For each gate, create schematic and layout facets following the same steps you
used with the nand2 / and2. Simulate each to ensure correct operation. Run DRC, ERC,
and NCC to check each layout. Be sure to save your work frequently. It is wise to keep a
backup of your work from time to time in case your library becomes corrupted.

10. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your grade,
but will be helpful for calibrating the workload for the future.

2. What was unclear in this lab writeup? How would you change it to run more
smoothly next time?

3. A printout of your nor2 schematic.
4. A printout of your nor2 layout.
5. A printout of your or2 schematic.
6. A printout of your or2 layout.
7. Simulation waveforms demonstrating correct operation of the or2 layout.
8. What is the verification status of your or2 layout? Does it pass DRC? ERC? NCC?

Extra Credit

As you are probably aware by now, Electric has plenty of bugs and idiosyncrasies. A
major goal of this class is to improve the stability and ease-of-use of Electric. Please
email your bug reports directly to Prof. Harris in the format described in this lab manual.

