A Box Addressable Black and White VGA Monitor Driver

Final Projed Report
December 9, 1999
E157

Michad Cope and Phili p Johnson

Abstract:

We implemented a bladk and white driver for astandard VGA monitor. An FPGA runningat 12.5 MHz
reads from an external 32K SRAM and produces the timing signals to display the mntents of the SRAM on
the monitor. Between verticd refreshes, the FPGA accepts coordinates and color of a new box to draw on
the screen over aparal el interface The contents of this box are written to the SRAM at the gpropriate
addresses. A second FPGA is used for acceoting keypad input and testing the parall el interface

All images are persistent until they are explictly erased. The dfedive resolution of this systemis
312240with arefresh rate of 60 boces/sec

Interfacdn

11

Introduction

We wanted to make aCRT driver that someone could use to implement Pong or some such simple
block based game. To that end we implemented a driver on an FPGA board that accepts block coordinate
inputs, and a alor bit indicating blad or white, then draws that box to a frame buffer stored in memory.
The memory isread to producethe image on the screen. In order to test this driver we implemented a test
board which accets keypad input and sends the box data over the interface

Memory
A OEWE IO
)‘(H{(...........................
E Main Xilinx . v Frame :
I emory Buffer to :
| Generate 7| Control ' 78 > Signdl E
, | Frame Yy Trandation |
: Buffer 8 > i
i « ke
E Generate E |
! | Clocks Ly
. T R DataOn______________.
sClk 2Mhz Clk 12.5 MHz
i Test Xilinx E
| A/ |
. Send |
handshake : Box :
: —®| Keypad :
E Interface E
| 7seg :
E Display E
| A |
sClk 2 MHz
\ 4

V sync 59.52 Hz
H sync 31.25KHz

VGA Adapter

1Signa (R)
2 Signd (G)
3 Signd (B)
4 No pin
5N/C
6Gnd (R)
7Gnd (G)
8Gnd (B)
9No pin
10N/C
11N/C
12N/C
13HSync
14V Sync
15N/C

VGA Monitor

New Hardware

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

All Signalsaretied
All Gnds aretied

VGA signasarefairly smple. The aiticd components are Signals R, G, and B which are analog
voltages cooresponding to the intensity of Red, Green, and Bluein the display. In our design, these aetied
to asingle Signal line and hasthevalue of 0 or 2 V. For standard 640x480 VGA, Hsync and Vsync ae
negative palarity TTL pulsetrainsrunning at 31 KHz and 60Hz respedively. Figures 2 and 3illustrate the
timing rel ationships between the signal components. Note the presence of “porches’ around the Hsync and
Vsync pulses during which Signal must be zeo. Table 1 givesthe timing information for these scans.

Note that horizontal times are in terms of a dock cycle and verticd times are in terms of horizontal periods

Table 1: Comparativetiming (cf. [1])

25175 MHz dock | 125 MHz dock
(VGA Standard) (implemented)
[clock cycles] time
Hsync period [800 31.778 us [400 32 us
H front porch [8] 317.775 ns [18] 144w
Hsync pulse length [96] 3.813us [48] 3.84 s
H bad porch [40] 1.589us [22] 176 ws
H Border [8] 317.775 ns [0 O ns
H adive video [64(0 25.422 us [317 24.96 us
[scang] time
Vsync period [525 16.683 ms [529 16.8ms
V front porch [2] 63.555us [6] 64 us
Vsync pulse length [2] 63.555us [2] 64 us
V bad porch [25] 794.439 us [29] 800 us
V Border [8] 254.220 us [0] 256 us
V adive video [48(0 15.253ms [480 15.4ms
Vsync, Hsync pdarity - -
H frequency 3147 KHz 31.25KHz
V frequency 59.94 Hz 59.52 Hz

Figure 1: Horizontal Scan Timing Diagram

HE DS -

lA| B | C |D| E (Visible portion) |DIA|

HSync

A: Horizontal front porch

B: Hsync pulse length

C: Horizontal badk porch

D: Horizontal border (video signals which are not displayed, may be combined with porch)
E. Active horizontal video time

H. Hsync period

Figure 2: Verticd Frame Timing Diagram

T =

ldrl o |r] S(Visible portion) R d
u [VSync

| v |

O: Verticd front porch

P: Vsync pulse length

Q: Verticd badk porch

R: Verticd border (video signals which are not displayed, may be cmbined with porch)
S. Active verticd video time

V. Vsync period

Signal

Function Generator

We were unable to find a12.5 MHz dock, so we used an HP function generator to produce a0-
2.5V 12.5 MHz square wave and input the dock to the MCLK pin (13) of the FPGA board with the jumper
off. Thisisnot a dean solution. It would be much better to find a12.5 or 25.175 MHz dock.

SRAM

We chose a32Kx8 asynchronous SRAM for aframe buffer (seereference[2] for datashed). It
has 15 addresslines, 8 bidiredional datalinesand 3 control lines, CS_bar, OE_bar, and WE_bar. CS
seledsthe dhip, and hence should be tied low. OE_bar enables output, henceit should be low before aread
and high before awrite. WE_bar enables writes and hence should be low before awrite and high before a
read (seetruth table on page 2 of datashed).

Complete timing information is avail able on the datasheet, but the time for a complete read or
write cycle is 15ns or lessincluding enabling, addressng and hold times. Thisis much smaller than the
80ns clock cycle so one can doaread or awritein asingle g/cleif you set all your control lines and
addresson therising edge and read or write on the trailing edge. Y ou need to be caeful, however, since
there ae variable delaysin the bus due to varying lengths of wires to and varying impedance of the paths.
You also need to be caeful about the cgadtance of the protobaard which lengthens the rise and fall times
of the signals. For these reasons, and becaise we muldn’t use adata stream any faster, our adual design
takes 3 cyclesto read, 3 cyclesto write, with 1 cyclein between where both WE_bar and OE_bar are high.

Schematics

_ Arbitrary wave form generator T o
Square wave12.5 MHz @ — 5 V swing (12 175,
e
8 —S 705
—39 | Detectd 18| 1706
—20 | Detect1 9] 1707
—44 | wecg clk " -———1/08
— lec — |resel
2Mhz s, pSE| x| wsE oS —
Clock " Interfacelnd TP lygol ol g0 _ 8]
5 Ihandshake interfacein1 TlausE I m<sE| <X |~ Y
58 Interfaceln2 6| TS| ESs | S| X
-—=—color Interfaceln3
Interfaceln4
™ InterfacelnS l
Interfaceln? —2o
Interfaceln8 — 2*A10
Interfaceln9 | ———55A11
Interfaceln1@ |56 1A12
[——28 113
—=—sclk — —A14
[anal 20 |
- 21068
ok — o T B e 2 71
led i GndRed 14
led12| led2 ' d f Vss
led13 led. g {CnaBl]
ok I — o4 warst I -
led1 led: ol Ta|HSyne
led16] led6 a2 | VSync
HSyne g3 ‘
VSync
start| 61 Signal |85
— GND
led20) % S ledo o1 On board leds +5V
led21 19 led led@! 2 1] led®
led22 20 led2. led1 65 7 |led
led23—53————;|led3 led2! led2
led24{23 lod4 led3 55 > lled
led25 25 6] ledS led4| 68 led4
led26| led6 ledS 59 led5
st &
62 led
led30)| 65 led® 3 n board Switch
led31/-82 lod cear 3————————— 4
led321-85 led2 £ ~—switcho
led33| 68 led. testblock| 7 switch1
led34 69 led4 switch2
led35 70 led5 switch3
led36| led6 HandShak
The above three blocks are
dual seven segments ° On board Leds
displays with 330 resistors | ledd
between xilinx and the pins. 2], ‘3;
% led
s
led4
led5
R13 — 7 liea7

+5V

FPGA Design

Refer to System block diagram on page 1 and the ade in the Appendix

Generation of the HSync and VSync signals: (gensync.v)

HSync isbased off of the 12.5Mhz dock. The module aunts from zero to 397 for afrequency of
33kHz. To get the duty cycle desired for HSync an if statement checks if the value of the counter is0to 47
during which it will set HSync low, otherwise it is high.

To acourt for the porches and bader time Hdatais st high during the time asignal can be sent
inregardsto HSync. Thesignal islow between 394and 71for atotal low time of 2.35usec. Thisincludes
front and badk porches, HSync time, and the border.

Thelinedatais %t high when it istimeto send asignal. This sgnal isa combination of the Hdata
signal and the VSync counter. Inregardsto the VSync line, this sgnal islow for two cycles of HSync
before the V Sync pulse, for 2 HSync cycles during the V Sync pulse, and 33HSync cycles for the badk
porch and bader. This periodisequal to 37 HSync cycles.

The next always block sets VSync. VSyncisbased off of HSync, since HSync generally is high
and pulseslow the triggering is of f of the negative edge of HSync. The @unter counts up to 525and then
resets. VSyncislow only when all bits are zeo except for the LSB, which can have avalue of one or zero.

Memory Arbitration and display: (gensignalswitch.v)

The heat of thismoduleis an 8 state FSM that increments on each clock during DataOn. The

states are
read _addr, read_data0, read_datal, idle_1, write_addr, write_data0, write_datal, idle_2.

The memory addresschanges during read_addr. Memory isreal duringread_datal. Memory iswritten
during write_datal. OE_bar islow during the read_* states enabling output from the memory. WE_bar is
low during the write_* states enabling writing to the memory. When WE_bar is high, the FPGA setsthe
memory busto high Z. Sincewe have extrabitsto play with on the memory address the memory
addressis smply { verticd coordinate, horizontal coordinate/8} which simplifies the blockdeader’s job.

Oncewe have read memory in, we store it to a second buffer and display it to the screen by
indexing the 8 bit memory buffer with a munter which contains the horizontal positi on.

When DataOn is off, indicaing that we should not display to the screen, the buffers are reset, and
the memory addressis pointed to an empty byte & 7FFF.

Block decoding: (blockdecoder.v)

Eadh bit of memory is checked asit isread to determineif it isinside the block that isin the block
buffer. If so, the bit is %t to the lor of the block, if not it is written bad< unchanged. This process
requires 18 comparisons and uses a lot of areaon the chip for the alders. It also meansthat only one block
can be processd per Vsync for atotal of 60 boces per seaond, whichisnot alot. A better solution might
be to generate different addresses for writes than reads and have the block deader processdata & fast asit
can. Thiswould mean that small blocks would be faster and large blocks would take no additional time.
Thiswould not be too dfficult to implement. The write_addr state in gensignal switch anticipates this need.

Parallel Interface In: (blockdecoder.v)

Thisisa cmmbination of two FSM. Thefirst isresporsible for the generation of the handshake
signal. The handshake goes high when V Sync goes low and goes low again if either datais being recaved
or the video baard starts nding signalsto the screen again. If it recaéved data, it is necessary to wait urtil
V Sync goes high again before returning to the initial condition so that handshake does not go hightwicein
one VSync period.

The second FSM isbasicdly a amunter that starts when it deteds the box corner bit in the parall el
interfaceand the handshake signal is high. Thefirst state sets the parall € interfaceinformation to the first
locaion in the Xilinx onboard memory, the second parall € interfaceword to the second locaions and so

on. Thefifth state of the state machine is await state, which is not necessary any more (the board was
demonstrated with it in, so it is documented). The state machine then resets. The memory is realy before
the first signal period d HSync.

Parallel interface for the second Xilinx

A fundamental buil ding block for this unit isthe lab 4 design of adebounce FSM. It is dightly
modified from original form. The two major changes are athird digit and asignal that is high when 3
digits have been rotated out and 3 new digits have cmmein. Thisisthe module GetKeyPressthat iscdled
at thetop level.

In order to interfacewith the parall el interfaceon the video baard, the test board neals to generate
4 14ht words (12 kit isenough but the input is hex + 2 hits for the box corner bit and the alor bit) and
store this until the video baard isready to accept. When the video baard is ready to accept, it sets
handshake signal high and the test board sends the 4 words, at one word per 2Mhz dock tick.

This design requires a finite state machine and two counters. The first counter, which isin the
first always block, colleds the 3 hex charaders and appends the lor bit and the box corner bit every time
the ready signal comes from the lab four building block. When this has four new 14kt words and the
system deteds a handshake signal, the finite state machine moves to the next value. Sincethe handshake
signal comes much more frequently than it is possble to enter even one digit, a separate state for handshake
receved is not required in this particular design. With the new value of the FSM, the Send counter starts
and sends the data with the 2Mhz dock. When thisis complete, the FSV movesto a new state. In this
state the FSM is waiting for the system to start get new data. Thisinvolves waiting for the data wlledion
counter to go to zero and handshake to go low (the handshake condition is not truly necessary because
handshake shuts off as ©0n as dataincoming is deteded).

This description covers the major functionality of the block. In addition, start is supposed to light
the first led when the system isready to read in the first x coordinate. This does not seem to work. The
SevenSegDis module cdls are used to display the datais the memory; this also does not seem to be
working properly.

Thereisaflaw in the design: the data alledion only seems to work intermediately. As of yet the
fault has not been tracked down. This means that this interfaceonly sometimes produces the results that
would be expeded on the screen.

Results

The basic goal of creaing a video interfacefor future E157 students was achieved. The parallel
interfacewas tested and whil e the sending unit did not function corredly, in the limited testing of the
interfaceon the video handling Xilinx no problems were found. Whil e the general goal was achieved
several modifications were made dongthe way. Most of these were from gained insight into the working
of standard VGA.

The dock rate was moved from 2Mhz to 125Mhz. Thiswas necessary in order to get the
resolutions of interest. Basicdly, there were not 256 clock ticks between the HSync pulses with a2Mhz
clock, which means that a resolution of 256is not posshle & 2Mhz.

Another change isthe resolution. The final design wses 312 x 240, this makes the pixels gjuare &
compared to the original designthat would have stretched pixels. Thisis approximately half of the
standard 640x 480. The differencefrom half is because in the present form, memory realing and
generation of the signal start at the same time for a give horizontal line. This makesit impassibleto read
the data for the first 8 hits. Thiswould be somethingto corred in latter versions of the board.

Because of this change the parall €l interfacehad to be change to acoommodate the extra bit needed
for the horizontal line. On the Xilinx handling video this changed required 1 extrabit, on the test board this
change caused enlargement by 4 hits because the input to the test board is hexadedmal.

In addition, a screen saver and clea switches were alded to the video bcard. The dea switch
asssted with debugging and probably will be useful to future E157 students that might pursue this work.
The screen saver gives a graphic demonstration that the board is working and the speed at which it can
draw new boxes into the memory.

References

[1] http://www.hut.fi/Misc/Eledronics/docs/pc/vgatiming.html
[2] http://www.winbond.com/shed/257a-12.pdf

Parts List
Part Source Vendor Part # Price
Winbond W24257A Fry's ?Need to look onrecept | $2.59
32Kx8-12 Cache 5 Volt
28 Pin static memory
DIP padkage
DHS15S Fry's 1424214 $1.99
15Pinfemale high
density solder cup d-sub
VGA Monitor Stock Room
HP Function Generator | Stock Room $1500
33120A

10

Appendices

Main Driver
Toplevel.v
module TopLevel (clk, HSync, VSync, Signal, reset, OE, WE, address, 10, Interfaceln, handshake,
sclk ,led, clear,screensaver,testblock) ;
input clk; //12.5 MHz clock
input reset;
input [10:0] Interfaceln; /Iblock coordinate input
input sclk; //block input clock
output handshake; /Iset high indicates ready to receive data
output HSync ;
output VSync ;
output Signal ;
output OE, WE; /I OE_barand WE_bar to memory
output [13:0] address; /[Current memory address
inout [7:0] 10; //8 bit memory bus
output [7:0] led; /ldebugging leds
input clear; /Iset to 1 to clear memory (switch 1)
input screensaver; //set to 1 to draw random blocks to screen (switch 2)
input testblock; /Iset to 1 to draw standard block to screen (switch 3)
wire H,V;
wire DataOn;
wire pixel_clk;
wire [7:0] data_out;
wire [2:0] scan_state;
wire [7:0] mem_data;
GenSyncs GenSyncsl(clk, H, V, reset, DataOn); //generate monitor timing signals

/Ireceive and decode block
BlockDecoder BD1(clk, Interfaceln, address, mem_data, data_out,
reset, DataOn, VSync, sclk, handshake,led,clear, screensaver,testblock);

/lgenerate Signal to monitor and arbitrate memory

GenSignalSwitch GenSignall(V, DataOn, Signal, clk, address, 10,
OE, WE, mem_data, data_out);

assign HSync = H;

assign VSync=V;

endmodule

11

GenSync.v

module GenSyncs (clk, HSync, VSync, reset, Data) ;

input clk;
input reset ;
output HSync;
output VSync;
output Data ;

/1125 Mhz clk period = 0.00000008

/131468.31 Hz

reg [8:0] slowdownforHsync;

reg [9:0] slowdownforVsync;

reg HSync;

reg HData; //High when according to Hsync data is ready to flow
reg VSync;

reg Data;

always @ (posedge clk)
begin
slowdownforHsync = slowdownforHsync + 1;
if (slowdownforHsync == 9'b110001101) || (reset == 1'b1))
slowdownforHsync = 0;

if (slowdownforHsync >= 0) && (slowdownforHsync <= 9'h000101111)) HSync =

else HSync=1;

if (slowdownforHsync <= 9'h001000111) || (slowdownforHsync >=
9'b110000111)) HData = 0;

else HData=1;

if ((slowdownforVsync < 10'61000001011) && (slowdownforVsync >
10'b0000100100)) && HData) Data = 1;
else Data = 0; //
end

always @ (negedge HSync)
begin
slowdownforVsync = slowdownforVsync + 1;
if (slowdownforVsync == 10'b1000001101) || (reset == 1'b1))
slowdownforVsync = 0;

VSync =| slowdownforVsync [9:1];
I if (((slowdownforVsync <= 10'h1000001011) && (slowdownforVsync >=
10'b0000100101)) && HData) Data = 1;
1 else Data = 0;
end
endmodule

12

module GenSignalSwitch(
byte_buffer,data_out);

VSync,

input VSync ;

input DataOn ;
output Signal ;

input clk;

output [13:0] address_reg;
reg [13:0] address_reg;
inout [7:0] 10;

output [7:0] byte_buffer;
reg [7:0] current_buffer;
reg [8:0] pixel;

reg [8:0] h_count;

reg [7:0] byte_buffer;
reg [2:0] scan_state;
reg [2:0] next_scan_state;
wire pixel_clk;

wire [7:0] data_in;

wire [13:0] address;

input [7:0] data_out;
output OE;

output WE;

/Ibookkeeping of memory access states
parameter read_addr = 3'b000;

parameter read_data0O = 3'b001;

parameter read_datal = 3'b011;

parameter idle_1 = 3'b010;

parameter write_addr = 3'b110;

parameter write_dataO= 3'b111;

parameter write_datal= 3'b101;

parameter idle_2 = 3'b100;

always @ (posedge clk)

begin
if (DataOn) begin
pixel <= pixel + 1;
scan _state <= next_scan_state;
/lchange address and read memory into buffer in appropriate states
case (next_scan_state)
read_datal: byte_buffer <= data_in;
read _addr: begin
current _buffer <=
address _reg <= address;
end
endcase
end
/lclear buffers between scans
else begin
scan _state <= next_scan_state;
byte _buffer <= 8'h0;
current _buffer <= 8'b0;
pixel <= 0;
address _reg <={14'b1}
end
end

DataOn, Signal,

GenSignal Switch.v
clk, address_reg, IO, OE, WE,

/lcontains current address bei
/I bidirectional data bus to memory
/lthe most recent byte read from memory

/lthe next to most recent byte read from memory
dinate of the current pixel

[Ithe horizontal coor
/lthe veritcal coordinate of the current pixel

/I OE_bar really, low enables memory output
/I WE_bar really, low enables memory writes

13

ng sent to memory

byte_buffer;

always @ (posedge DataOnor negedge VSync)

begin
if (! VSync)
h_count=0;
else
h_count= h_count+1;
end
always @ (scan_state or DataOn) begin

if (DataOn) begin
case (scan_state)

read _addr: next_scan_state <= read_dataO;
read_data0: next_scan_state <= read_datal;
read_datal: next_scan_state <=idle_1;
idle_1: next_scan_state <= write_addr;
write _addr: next_scan_state <= write_data0;
write_data0: next_scan_state <= write_datal;
write_datal: next_scan_state <=idle_2;
idle_2: next_scan_state <= read_addr;
default: next_scan_state <= read_addr;
endcase
end
else
next _scan_state <= read_addr;

end

assign address = { h_count[8:1],pixel[8:3]};

assign Signal = current_buffer[pixel[2:0]] && DataOn; /ldraw to screen if

//[Enable output if we're reading or about to read, enable writes if we're writing or
about to write

assign OE =
I((scan_state==read_addr)||(scan_state==read_data0)||(scan_state==read_datal));
assign WE = ((scan_state==write_addr)]|(scan_state == write_data0) || (

== write_datal));

assign data_in = ('OE) ? 10 :8'bz;
assign 0 =('WE) ? data _out: 8'bz; // tristate output if we're not writing
endmodule

14

DataOn

scan_state

module BlockDecoder (clk, Interfaceln, address, mem_data, data_out, reset, DataOn,
sclk,
handshake, led, clear, screensaver,testblock);
input clk; 1/12.5 MHz
input [10:0] Interfaceln; /linterface bus for block coordinates
input [13:0] address; /lcurrent memory location
output [7:0] data_out; /ldata to b e written to memory
input [7:0] mem_data; //data read from memory
input reset;
input VSync;
input DataOn;
input sclk; IIslow (2 MHz) clock
output handshake; /Iset to indicate ready to receive data
output [7:0] led;
input clear; /lsetto 1to clear memory
input screensaver; /Iset to 1 to show random blocks
input testblock; /Iset to 1 to show a test block
wire [5:0] h_pos; /Ihorizontal coordinate of current memory byte divided by 8
wire [7:0] V_pos; IIvertical " " " "
wire [7:0] dat al;
wire [7:0] data_out;
wire [8:0] uxl; /lupper left x coordinate of box
wire [7:0] uyl; /lupper left y coordinate of box
wire [8:0] Ix1; /Nower right x coordintate of box
wire [7:0] ly1; INower right y coordinate of box
wire [8:0] h_pos_7; /Ihorizontal coordinates of pixels in current memory byte
wire [8:0] h_pos_6;
wire [8:0] h_pos_5;
wire [8:0] h_pos_4;
wire [8:0] h_pos_3;
wire [8:0] h_pos_2;
wire [8:0] h_pos_1;
wire [8:0] h_pos_0;
wire v_pos_1;
wire valid_1;
wire color_1;
reg [2:0] block_input_state;
reg [2:0] next_block_input_state;
reg [43:0] block;
reg [7:0] data_out_reg;
reg vsync_reg;
reg [15:0] random; /frandom number register
wire new_random_bit;
reg [1:0] PS;
reg [1:0] NS;
reg [2:0] prevstate;
reg [2:0] nextstate;
//Iminimum and maximum coordinates, could be used for error checking. Currently not in
use
parameter h_min =0;
parameter h_max =312;
parameter v_min =0;
parameter v_max = 240;

blockdecoder.v

15

VSync,

always @ (VSyncor DataOn or PS or prevstate)

case (PS)
0: if(~VSync) NS =1;
else NS =0;
1: if(DataOn || (prevstate == 3'b001)) NS = 2;
else NS = 1;
2: if (~VSync) NS = 2;
else NS =0;
3: NS =0;
endcase
always @ (posedge sclk)
begin
prevstate <= nextstate;
PS <=NS;
if(screensaver) begin
/Imake a new random block each Vsync
if (vsync_reg != VSync) begin
block[10] <=1,
block[9:0] <= random[9:0];
block[18:11] <= random[15:9];
block[30:22] <= random[9:0] + {random[2:0], random[12:9]};
block[40:33] <= random[15:9] + {random[12:9], random[2:0]};
vsync _reg = VSync;
end
end
else
/I show a standard test block
if (testblock) begin
block[10:0] <=11'b11000000100;
block[18:11] <= 8'b00000100;
block[30:22] <= 9'v101010011;
block[38:33] <= 8'b00010000;
end
else
/Ireceive data
if (~prevstate[2])
case (prevstate[1:0])
0:if(Interfaceln[10]) block[10:0] <= Interfaceln[10:0];
1: block[21:11] <= Interfaceln[10:0];
2 : block[32:22] <= Interfaceln[10:0];
3 : block[43:33] <= Interfaceln[10:0];
endcase
end
assign handshake = NS[0];
always @ (prevstate or Interfaceln or handshake)
case (prevstate)
3'b000 : if (Interfaceln[10] && handshake) nextstate = 3'b001;
else nextstate = 3'b000;
3'b001 : nextstate = 3'b010;
3'b010: nextstate = 3'b011;
3'b011 : nextstate = 3'b101;
3'b101: nextstate = 3'b000;
default : nextstate = 3'b000;
endcase

Iltest whether pixels are in block

assign datal = {((h_pos_7 >= ux1) && (h_pos_7 <=Ix1) && v_pos_1),
((h_pos_6 >=ux1) && (h_pos_6 <=Ix1) && v_pos_1),
((h_pos_5 >=ux1) && (h_pos_5 <=1Ix1) && v_pos_1),
((h_pos_4 >=ux1) && (h_pos_4 <=1Ix1) && v_pos_1),
((h_pos_3 >=ux1) && (h_pos_3 <=Ix1) && v_pos_1),
((h_pos_2 >=ux1) && (h_pos_2 <=Ix1) && v_pos_1),
((h_pos_1>=ux1) && (h_pos_1 <=1Ix1) && v_pos_1),
((h_pos_0 >=ux1) && (h_pos_0 <=Ix1) && v_pos_1)};

/lclear memory if clear is set

16

//Otherwise set the pixel to color_1 if the pixel is in the block
//Otherwise keep the pixel at the value stored in memory

assign data_out = (clear) ? 8'b0 :
{((datal[7]) ? color_1: mem_data[7]),
((datal[6]) ? color_1: mem_data[6]),
((datal[5]) ? color_1: mem_data[5]),
((datal[4]) ? color_1: mem_data[4]),
((datal[3]) ? color_1: mem_data[3]),
((datal[2]) ? color_1: mem_data[2]),
((datal[1]) ? color_1: mem_data[1]),
((datal[0]) ? color_1: mem_data[0])};

[ltest whether pixels are between top and bottom of block.
assign v_pos_1 = (V_pos >=uyl) && (v_pos <= lyl) && valid_1;

/lassign addresses for the position of the individual pixels
assign h_pos_7 ={ h_pos, 3'b111};
assign h_pos_6 = { h_pos, 3'h110};
assign h_pos_5 = { h_pos, 3'h101};
assign h_pos_4 ={ h_pos, 3'b100};
assign h_pos_3={ h_pos, 3'b011};
assign h_pos_2 = { h_pos, 3'n010};
_1={
_0={

assign h_pos h_pos, 3'n001};
assign h_pos h_pos, 3'n000};

/lget the vertical and horizontal positions from the address
assign { v_pos,h_pos} = address;

/lassign names to block[] data to keep track of coordinates
assign ux1 = block[8:0];

assign uyl = block[18:11];

assign Ix1 = block[30:22];

assign lyl = block[40:33];

assign color_1 = block[9];

/I check if upper left coordinate indicator bit is set
assign valid_1 = block[10];

/I debug by showing valid_1 and color bit followed by lower 6 bits of ux1
assign led = {block[10:9],block[5:0]};

/115 bit maximal length linear feedback shift register psuedo random number generator
llrepeats every 2715-1 bits. Taken from CDMA standard
always @ (posedge clk) begin

random[15:0] <= {random[14:0], new_random_bit};
end
assign new_random_bit = (] random[15:0]) ? random([1] + random[4] + random[5] +
random([6] + random[7] + random[11] +
random[12] + random[13]
1
endmodule

17

Second Xilinx

Toplevel.v
module toplevel (Scan, Detect, Send, color, clk, ledl, led2, led3, start, handshake) ;
output [3:0] Scan ; /lused for keypad detection
input [3:0] Detect ; n"
output [13:0] Send ; llparallel data lines
input color ;
input clk;
output [6:0] ledl ;
output [6:0] led2 ;
output [6:0] led3 ;
input handshake;
output start;
wire [11:0] s; //8bit bit number received from keypad
wire ready;
reg [55:0] box;
reg [55:0] readytogo;
reg [1:0] cornercounter;
reg [2:0] Sendcounter;
reg [13:0] Send;
reg [13:0] resetholder;
reg [1:0] prevstate;
reg [1:0] nextState;
reg [1:0] address;
wire resetcounter;

GetKeyPress GetKeyPressl(Detect, Scan, s, ready, clk, slowclk);
SevenSegDis sevensegdis1(box[3:0],led1);
SevenSegDis sevensegdis2(box[7:4],led2);
SevenSegDis sevensegdis3(box[11:8],led3);
assign start = | cornercounter;
assign resetcounter = (prevstate ==1);
always @ (posedge ready or posedge resetcounter)

if (resetcounter)

begin

cornercounter = 2'b00;
box[13:0] = 14'b0;
box[27:14] = 14'b0;
box[41:28] = 14'b0;
box[55:42] = 14'b0;

end
else
begin
case (cornercounter)
0 : box[13:0] = {1'b1,color,s};
1: box[27:14] = {0,color,s};
2 : box[41:28] = {0,color,s};
3 : box[55:42] = {0,color,s};
endcase
if (cornercounter !=2'b11) cornercounter[1:0] =
+1;
else readytogo = box;
end

always @ (posedge clk)

18

cornercounter[1:0]

begin

prevstate <=

if (

nextState;

nextState == 1) /I changed prevstate to nextState
case (Sendcounter[1:0])
0:Send <= readytogo[13:0];
1:Send<= readytogo[27:14];
2:Send <= readytogo[41:28];
3:Send <= readytogo[55:42];
default : Send <= 14'b0;
endcase

else Send <= 14'b0;

if (
end

always @ (prevstate or
case (prevstate)

nextState == 2)

Sendcounter <= 0;

Sendcounter or handshake or cornercounter or readytogo or box)

0:if(cornercounter == 2'b11 && (readytogo == box) && handshake)
nextState = 1;
else nextState = 0;
1:if(Sendcounter == 3'b100) nextState = 2;
else nextState = 1;
2:if (~handshake && cornercounter == 2'b00) nextState = 2'b00;
else nextState = 2'b10;
default : nextState = 0O;
endcase
endmodule
slowdownclock.v
module slowdownclk (clk, slowclk);
input clk;
output slowclk;

reg [8:0] counter;

always @ (posedge clk)
counter = counter + 1;

assign slowclk = counter[8];
endmodule
sevensegdis.v

module SevenSegDis (s, led) ;

input [3:0] s ;

output [6:0] led ;

reg [6:0] led;

/ll assume s = [Detect ,Scan]

/I scan are the cols

always @ (s) //7 bits for case when led lights on:

case (s) /llow /Ihigh

0:led = 7'b0000001 ; //7'b1111110;0
l:led = 7'b1001111 ; //7'b0110000 ;1
2:led = 7'0010010 ; //7'b1101101 ;2
3:led = 7'b0000110 ; //7'b1111001 ;3
4:led = 7'b1001100 ; //7'b0110011 ;4

7'b0100100 ; //7'b1011011 ;5
7'b0100000 ; //7'b1011111 ;6
7'b0001111 ; //7'b1110000 ;7
7'b0000000 ; //7'b1111111 ;8
7'b0000100 ; //7'b1111011 ;9

d 7'b0001000 ; //7'b1110111 ;a
11: led 7'b1100000 ; //7'b0011111 ;b
12: led 7'b1110010 ; //7'b0001101 ;c
13: led 7'1000010 ; //7'b0111101 ;d
14: led = 7'b0110000 ; //7'b1001111 ;e
15: led = 7'b0111000 ; //7'b1000111 ;f

default: led = 750000001
endcase

19

endmodule
keypad

module KeypadTo4bit (s, number) ;

input [7:0] s ;
output [3:0] number ;

reg [3:0] number;

/ll assume s = [

/I scan are the cols
always @ (s)
case (s)
8'v10111110: number = 4'b0000;
8'01110111: number = 4'b0001,;
8'h10110111: number = 4'b0010;
8'h11010111: number = 4'b0011;
8'v01111011: number = 4'b0100;
8'v10111011: number = 4'b0101,;
8'h11011011: number = 4'b0110;
8'h01111101: number = 4'b0111;
8'h10111101: number = 4'b1000;
8'v11011101: number = 4'b1001,;
8'v01111110: number = 4'b1010;
8'h11011110: number = 4'b1011;
8'h11100111: number = 4'b1100;
8'b11101011 : number = 4'b1101;
8'v11101101: number = 4'b1110;
8'h11101110: number = 4'b1111;
default: number = 4'b0000;
endcase
endmodule
getkeypress.v
module GetKeyPress (Detect, Scan, s, ready, clk, slowclk);
input [3:0] Detect;
output [3:0] Scan;
output [11:0] S;
output ready;
input clk;
/loutput slowclk
reg [1:0] PrevState;
reg [1:0] NextState;
reg [11:0] S;
reg [1:0] readycounter;
reg [1:0] Channel;
reg [3:0] Scan;
wire [3:0] first;
output slowclk;
wire [3:0] CScan;
slowdownclk slowclkl (clk, slowclk);
always @ (posedge slowclk)
begin
PrevState = NextState;
if (NextState == 2'b11)
begin
S[11:8] = s[7:4];
s[7:4] = s[3:0];
s[3:0] = CScan;
readycounter = readycounter + 1;
if (readycounter == 2'b11) readycounter = 2'b00;
end

Detect ,Scan]

20

if (NextState == 2'b00)
begin
Channel = Channel + 1;
end
end

KeypadTo4bit K24 ({ Detect ,Scan}, CScan);

assign first = s[3:0];

assign ready = readycounter[1];
always @ (Detect or CScan or first or PrevState)
case (PrevState)
0: if (Detect == 4'b1111) NextState = 2'b00;

else NextState = 2'b11;
1: NextState = 2'b00; //Should never reach this state

2: if (Detect == 4'b1111) NextState = 2'b00;
else if (CScan == first) NextState = 2'b10;
else NextState = 2'b11;
3: if (Detect == 4'b1111) NextState = 2'b00;
else if (CScan == first) NextState = 2'b10;
else NextState = 2'b11;
default : NextState = 2'b00;

endcase

always @ (Channel)
case (Channel)
0: Scan =4'b1110;
1:Scan =4'b1101;
2:Scan =4'b1011;
3:Scan =4'b0111;
default : Scan = 4'b1110;
endcase

endmodule

21

