
Prototype Control Board for an Automated Bar
(Robotic Bar Monkey)

Final Project Report
December 9, 1999

E157

Andrew Cosand and Glenn Gebhart

Abstract:

We are interested in creating an automated beverage mixing system, affectionately termed a
robotic bar monkey. Ideally, authorized* bar monkey users will request beverages, either locally or
remotely, and the system will mix them from the available ingredients. The user will interact with the bar
monkey via a custom interface on the host computer. Once the user selects a drink from the database of
drinks, the host computer will determine how to make the drink, and send recipe steps to a microcontroller-
based control system as 1-byte words containing some instruction bits and some parameter bits. The
control system will then execute these instructions by sending out control signals to the appropriate valves
and motors. Once the control system finishes executing the instruction, it will send a “done” signal to the
host computer. When the host computer receives this done signal, it will either proceed with the next
recipe step, or send an all done “recipe step” which should return the cup to the home position, and could
initiate a diagnostic check or other system tasks.

2

Introduction

For our Micro Ps project, we are constructing a prototype of the bar monkey control system. The control
system will be based on the Motorola 68HC11 microcontroller, and will involve a Xilinx Spartan FPGA for
interface logic, as well as some other small components. The control system will receive 8 bit recipe steps
from the host computer via an RS232 serial interface, utilizing the HC11’s SCI communication capability
with a Maxim MAX232A transceiver chip to convert between the HC11’s 0,5 volt system and the ±10 volt
RS232 system. Although future releases could take advantage of the 64 possible “recipe steps” available
with 6 instruction bits and 2 parameter bits, (including steps such as stirring or shaking as well as system
tasks), this version will utilize a 4/4 instruction/parameter division resulting in a reduced set of steps with
more parameters. This basic set will be able to specify 15 different liquid components and a quantity for
each one. In order to locate the virtual cup under the virtual valve, the virtual motor controller will be
capable of lighting two lights, one to move the cup to a higher numbered valve, and one to move it to a
lower numbered valve. When the system receives a pour instruction, it will compare the current reported
position to the desired position, and toggle one of two outputs from the HC11 to light the up or down light.
When the correct position indicator is activated, the motor light will go out and virtual pouring can
commence. For adding liquid components, the four parameter bits will be multiplied by a smallest unit
(such as a half shot), which adjustable using a potentiometer attached to the HC11’s DAC. For rare
instances where more than a single 15 unit pour is required, two recipe steps can be issued for the same
ingredient. To open the virtual valve, the HC11 will send a number corresponding to that valve to the
FPGA, which will convert it to a one-hot code. This will be output to an LED indicator, which can
eventually be replaced with an opto-electric isolator capable of switching the AC power needed to actuate a
real valve or other bar monkey sub-system. After the period of time required to pour the liquid has passed,
the indicator will turn off, and the control system will notify the host computer that it has finished the
recipe step by returning a done signal.

New Hardware
The robotic bar control system ultimately gets its information from a controlling PC. As such, it has to have
some way to talk to it to get the information. In designing this project we had the choice of using either
parallel or serial communication. We needed slow, two-way communication with a minimum of wiring. As
such, serial seemed to use to be the best option. Having decided this we implemented a serial link which
will communicate 8-bit serial data between an HC11EVB and any product implementing the RS232 serial
communication protocol. The remainder of this section discusses the components of this serial link.

3

Setting up the HC11 Serial Hardware
The code we used to set up the HC11 hardware for serial communication is given below:

BAUD EQU $102B * Baud rate control register
SCDR EQU $102F * Serial communication data

* register
SCSR EQU $102E * Serial communication status

*
SCCR1 EQU $102C * Serial communication control

* register
SCCR2 EQU $102D * Serial communication control

* register 2
BAUD_MASK EQU %00110101 * BAUD register mask: SCP1, SCP0,

* R2, SR0. Sets baud rate to 300
* when using an 8 MHz oscillator
*

SCCR2_MASK EQU %00101100 * SCCR2 register mask: RIE, TE, RE.
* Turns on interrupt generation on
* receive,

*
LDAB #BAUD_MASK * Load B with BAUD register mask.
STAB BAUD * Store mask into BAUD register to

* set baud
CLR SCCR1 * Clear SCCR1. Sets up for standard

* serial communication.
LDAB #SCCR2_MASK * Load B with SCCR2 register
STAB SCCR2 * Store mask into SCCR2 register to

* enable transmitter, receiver, and
* receiver interrupt.

CLI * Turn on interrupts.

This code sets up the serial system to communicate at 300 baud using 8-bit characters, turns on the on-
board serial transmitter and receiver, and enables the receiver interrupt. All of the configuration registers
are described in detail in the HC11 reference manual and in Miller.

Receiving a Byte from the PC
You don’t generally know when the device at the other end is going to send data to you. The solution to
this is to handle data reception using interrupts. The following code constructs the correct interrupt vector
for the SCI interrupt. It is important to know that the vector for an HC11 operating in single chip mode can
be different from the vector for an HC11 on an EVB running in expanded mode.

*
SERIAL_VECTOR EQU $00C4 * Vector for SCI interrupts
*

ORG SERIAL_VECTOR
JMP RDRF * Jump to RDRF service routine

In this case, it sets the vector to the routine labeled RDRF show below:

SCDR EQU $102F * Serial communication data
* register

SCSR EQU $102E * Serial communication status
* register

4

RDRF CLR TEMP * Store 0 into TEMP to signal main
* program to stop

LDAA SCSR * Read SCSR to clear serial status
*

LDAA SCDR * Load incoming input in
STAA INPUT * Store input into INPUT
RTI * Return

This routine reads the serial status register and then reads the serial data register. This clears the serial
status flags (necessary for resetting the serial interrupt) and load the received byte into port A. This byte is
then stored in some memory location. You cannot use registers to return the result; when an interrupt is
called on the HC11 it pushes the contents of the registers onto the stack. Conversely, when an RTI
instruction is issued it pops the saved information from the stack back into the registers. Thus, if you try to
pass information back using a register it will get overwritten.

Sending a Byte to the PC
Sending a byte to the PC is easy. Just read the serial status register to make sure the status flags are cleared,
and then write the desired byte to the serial data register.

Connecting the EVB to the PC
The RS232 standard used in all modern PCs specifies voltages from –5 to –15 for logical one and

5 to 15 for logical zero, as opposed to the HC11 which uses 5 volts for logical one and 0 volts for logical
zero. Because the HC11’s SCI interface is not RS232 compliant, a transceiver chip is required to convert
the voltages. As shown in the schematics section, the Maxim MAX232A chip converts two 0,5 volt inputs
to ±12 volt outputs, and two ±12 volt inputs to 0,5 volt outputs. This particular chip generates the required
voltages using only a 5 volt input, but requires external capacitors to do so. Additionally, there are a
number of control lines in the RS232 specification (see appendix D), but we found that using our system
and a VT-220, we could transmit and receive at speeds of at least 9600 bps with only the Tx, Dx, and
ground lines connected.

Schematics
This is the schematic from the Maxim MAX232A data sheet (see appendix E), showing how to

hook up the external capacitors and the serial inputs and outputs.

The following block diagram indicates the interconnection of the major components of out system.
The host PC communicates with the HC11 through the Maxim MAX232A chip, which converts between
HC11 and RS232 serial. The potentiometer for the timer control loop adjustment is connected to the
HC11’s digital to analog converter. The motor direction indicator lights are connected to two of the pins of
port B. The connection between the EVB and FPGA uses a simple parallel interface, with 4 bits in each

5

direction. On the EVB side, this interface is connected to the wire wrap pins for port C, and on the FPGA
side to the same pins as the on-board LEDs (for easy debugging). The FPGA receives 15 inputs from the
position switches, and sends 15 outputs to the valve lights.

The following schematics are for the small circuits connected to the EVB and FPGA , including
the valve indicator lights, input switches, and the pot used for adjusting the timing loop.

LED pins

6

Microcontroller Design
One Motorolla HC11EVB is used in the construction of the bar control system. The HC11 is primarily
responsible for the coordination of the control signals used to operate the physical apparatus. This was
achieved using a small program written in HC11 assembly language which is discussed below. The code
for the control program can be found in Appendix B.

Program Layout
1. Set up serial receive interrupt vector
2. Initialize HC11 serial hardware

3. Set baud rate to 300
4. Use default serial communication characteristics (8-bit chars, etc.)
5. Turn on HC11 transmitter and receiver, and enable receive interrupts.

6. Initialize HC11 A/D hardware
7. Turn on A/D hardware
8. Set A/D to do continuous conversion of the signal on pin E7

9. Miscellaneous configuration
10. Set direction of port C pins
11. Set stack pointer. Stack is required by interrupt system
12. Turn on interrupts

13. Wait until a character is received via serial communication with controlling PC. Service receive
interrupt, reading input from serial data register and setting a flag which indicates that the program can
proceed.

14. Calculate desired position based on input character and read current position of cup from port C. Write
to port D to turn on the appropriate motor control line such that the cup moves towards desired
position.

15. Wait, reading position from port C, until current position of cup is equal to desired position.

1 kOhm Pot

7

16. Write desired position to low 4 bits of port C, opening appropriate valve
17. Get timing loop “tweak” value from A/D data register 1 and calculate amount to pour based on input

character.
18. Wait time specified by pour amount and “tweak” value
19. Write 0 to port C, closing the valve.
20. Send “done with step” signal to PC by writing to serial data register.
21. Branch to 13.

Input/Output
1. Port A: Not used
2. Port B: Pins B0 and B1 control the left and right motor lines.
3. Port C: Pins C7-C4 are configured as input pins. The FPGA passes them a 4-bit number which gives

the current cup position. Pins C3-C0 are configured as output pins. They pass a 4-bit number to the
FPGA which specifies which valve to turn on.

4. Port D: TX and RX pins used for serial communication with PC. These pins are tied to the appropriate
terminals of the MAX232A transceiver.

5. Port E: The VRL and VRH pins are tied to pin 0 (ground) and pin 26 (VDD) respectively. Pin E7 is
connected to a 0-5 V potentiometer which supplies the “tweaking” signal for the timing loop.

General Comments
As currently constructed, the program given in Appendix B is small enough to fit in the onboard EEPROM
of the HC11 with a little room to spare. However, there is plenty of opportunity for optimization of the
program to decrease its size further to allow for additional features while remaining small enough to fit in
onboard EEPROM.

Lessons for the Future
Serial I/O is non-trivial. In particular, when using an EVB rather than a straight HC11 chip it is important
to set your interrupt vector correctly. The procedure which is given in Miller is appropriate only for a
straight HC11 chip; check the EVB manual for how to set up interrupt vectors for the HC11EVB. Also, the
easiest way to test serial I/O is to drag out a VT-220 and use it in lieu of a computer. Pressing a key
automatically sends the character to the EVB, and anything sent from the EVB automatically shows up on
the screen, making it unnecessary to deal with serial I/O on a PC.

FPGA Design
One Xilinx XCS10P84 FPGA is used in the construction of the bar control system. The FPGA is primarily
responsible for encoding and decoding control signals obtained from the HC11 microcontroller via
continuous combinational logic. It implements two basic hardware modules which are tied together in a
single package by use of a simple top level module, all of which are discussed below. The Verilog code for
these modules is given in Appendix C.

Top Level Module
The top-level module accepts two inputs, one 4-bit and one 15-bit. The 4-bit input is passed to the FPGA
from pins C0-C3 of the HC11EVB, and specifies which one of 15 valves should be opened. The 15-bit
input is passed to the FPGA from a series of 15 switches which are depressed by the cup-carrier, giving the
current position of the cup. The top-level module passes the 4-bit input to the decode module and gets back
a 15-bit decoding. These 15 bits control 15 valves, opening them when high and closing them when low.
The top-level module passes the 15-bit input to the encode module and gets back a 4-bit encoding. These 4
bits are output to pins C4-C7 on the EVB, providing it with the current position of the cup.

The Decode Module
The decode module takes a 4-bit number and turns it into a 15-bit one-hot encoding. Inputting 0 causes the
output to be zero, while inputting any other number n causes the (n-1)th bit of the output to go high.

8

The Encode Module
The decode module takes a 15-bit one-hot input and turns it into a 4-bit output. Inputting 0 or a signal
which is not one-hot causes 0 to be output, while inputting a signal with bit n high results in the output of
the number n+1.

Lessons for the Future
The decoder module is not designed in the most efficient manner for this application. Due to the physical
construction of the mixing apparatus there is no chance that more than one bit will be high at any given
instant. As such, this module could be redone using simple combination logic rather than a “case”
statement, which would map to a significantly simpler circuit.

Results
Although we did not create a complete bar monkey as we had originally intended, we successfully

completed a bar monkey control board prototype which met our revised specifications. The system
receives characters from the VT-220 terminal we used for testing, lights a motor direction light until the
correct location switch is depressed, and then turns on the valve light for the specified period of time. After
that time, the light will turn off, and the system will return a done character (&).

The scope of the original project was reduced for a number of reasons. We first decided to switch
to a simple indicator light scheme in order to avoid dealing with the 110 VAC required for the valves we
had on hand. Once we eliminated the physical system, we also cut the PWM motor controller and pour
duration multipliers, as these are of no use without the physical system. We ended up using the HC11 EVB
and FPGA boards which we had on hand to create the system because of the difficulty of getting custom
PCBs made.

References
[1] Miller, Glenn H. Microcomputer Engineering.
[2] HC11 Reference Manual
[3] ask.com’s RS232 Serial Protocol Info Sheet http://www.ctips.com/rs232.html (in appendix D)

Parts List

Part Source Vendor Part # Price
Maxim MAX232A
serial transceiver

Scrap Bin (available
from DigiKey)

 MAX232ACPE-ND $4.88

1 k-ohm potentiometer Lab cabinet
25 pin female D-sub
connector

Stock Room

10 pin Ribbon Cable Stock Room
Red and Green LEDs Lab cabinet
MC68HC11 EVB Stock Room
FPGA Board Class
Pushbutton switches
(reset button type)

Stock Room

Appendices
A. FPGA pin assignments.
B. ASM code.

9

C. Verilog code.
D. RS232 Serial Protocol Info Sheet (printed separately or at http://www.ctips.com/rs232.html)
E. Maxim Serial Transceiver Data Sheet (printed separately or at http://209.1.238.250/arpdf/1798.pdf)

Appendix A: FPGA Pin Assignments

FPGA Pinlock file gives the pinouts used for our prototype configuration.

#PINLOCK_BEGIN
#Thu Nov 18 13:59:27 1999

#these are the inputs for the position determining

NET "pos_in<0>" LOC =
NET "pos_in<1>" LOC = "P8";
NET "pos_in<2>" LOC = "P10";
NET "pos_in<3>" LOC = "P14";
NET "pos_in<4>" LOC = "P18";
NET "pos_in<5>" LOC = "P19";
NET "pos_in<6>" LOC = "P24";
NET "pos_in<7>" LOC = "P26";
NET "pos_in<8>" LOC = "P27";
NET "pos_in<9>" LOC = "P28";
NET "pos_in<10>" LOC = "P29";
NET "pos_in<11>" LOC = "P38";
NET "pos_in<12>" LOC = "P39";
NET "pos_in<13>" LOC = "P40";
NET "pos_in<14>" LOC = "P44";

#this is the 4 bit parallel bus which sends the hex
#encoding of the position from the FPGA to the HC11

NET "pos_out<0>" LOC = "P66";
NET "pos_out<1>" LOC = "P65";
NET "pos_out<2>" LOC = "P62";
NET "pos_out<3>" LOC = "P61";

#this is the 4 bit parallel bus which receives the hex
#encoding of a valve number sent to the FPGA from the

NET "select_in<0>" LOC =
NET "select_in<1>" LOC =
NET "select_in<2>" LOC = "P68";
NET "select_in<3>" LOC = "P67";

#these are the outputs to the virtual valve control lights

NET "select_out<0>" LOC = "P50";
NET "select_out<1>" LOC = "P51";
NET "select_out<2>" LOC = "P56";
NET "select_out<3>" LOC = "P57";

10

NET "select_out<4>" LOC = "P58";
NET "select_out<5>" LOC = "P59";
NET "select_out<6>" LOC = "P60";
NET "select_out<7>" LOC = "P77";
NET "select_out<8>" LOC = "P78";
NET "select_out<9>" LOC = "P79";
NET "select_out<10>" LOC = "P80";
NET "select_out<11>" LOC = "P81";
NET "select_out<12>" LOC = "P82";
NET "select_out<13>" LOC = "P83";
NET "select_out<14>" LOC = "P84";

#PINLOCK_END

Appendix B: HC11 Assembly Code

* Filname: final.asm

* Author: Glenn Gebhart glenn@cs.hmc.edu>

* Date:
* Description: Assembly language program for controlling a robotic
* bar.

*

* Constants *

*
AMOUNT_MASK EQU %00001111 * Masks off bits which carry

* information about the amount of
* liquid to

POSITION_MASK EQU %11110000 * Masks off bits which carry
* information about where to
* position the cup

*
PORTB EQU $1004 * Address of port B
PORTC EQU $1003 * Address of port C
DDRC EQU $1007 * Data direction register for port

*
BAUD EQU $102B * Baud rate controll
SCDR EQU $102F * Serial communication data

* register
SCSR EQU $102E * Serial communication status

* register

SCCR1 EQU $102C * Serial communication control

* register
SCCR2 EQU $102D * Serial communication control

* register
OPTION EQU $1039 * Hardware option
ADCTL EQU $1030 * A/D control register
ADR1 EQU $1031 * A/D result register 1
*
SERIAL_VECTOR EQU $00C4 * Vector for SCI interrupts
*

11

MOTOR_OFF EQU 0 * Motor for positioning cup is off
MOTOR_LEFT EQU %00000001 * Motor moves cup left
MOTOR_RIGHT EQU %00000010 * Motor moves cup right
*
DDRC_MASK EQU %00001111 * Mask for DDRC, makes low 4 bits

* of port C output bits, high 4
* bits of port C input

INPUT_BITS EQU %11110000 * Masks off input
OUTPUT_BITS EQU %00001111 * Masks off output bits
*
CLOSE EQU %00000000 * Value to write to port C to turn

* off pour
*

BAUD_MASK EQU %00110101 * BAUD register mask: SCP1, SCP0,

* R2, SR0. Sets baud rate to 300
* when using an 8 MHz oscillator
* crystal

SCCR2_MASK EQU %00101100 * SCCR2 register mask: RIE, TE, RE.
* Turns on interrupt generation on
* receive, enables transmitter and
* receiver.

*

OPTIONMASK EQU %10000000 * Mask for OPTION register: ADPI.

* Turns on A/D
ADCTL_MASK EQU %00100111 * Mask for ADCTL register: SCAN,

* CC, CB, CA. Continuous scan of
* PE7, result dumped into

*

STEP_FINISHED EQU $A6 * Value to send to PC when a step

* is
*

* Variables

*

ORG $0000

INPUT FCB 0 * Holds current input value
TEMP FCB 0 * Scratch space
CURRENT_POS FCB 0 * Current position of cup
DESIRED_POS FCB 0 * Desired position of cup
*

* Interrupt vector settings *

*

ORG SERIAL_VECTOR
JMP RDRF * Jump to RDRF service routine

*

* Program *

12

*
ORG $d000

*
* Serial initialization
*

LDAB #BAUD_MASK * Load B with BAUD register mask.
STAB BAUD * Store mask into BAUD register to

* set baud
CLR SCCR1 * Clear SCCR1. Sets up for standard

* serial communication.
LDAB #SCCR2_MASK * Load B with SCCR2 register
STAB SCCR2 * Store mask into SCCR2 register to

* enable transmitter, receiver, and
* receiver interrupt.

*

* A/D converter initialization
*

LDAA #OPTIONMASK * Load A with mask for hardware
* option

STAA OPTION * Store in OPTION register to turn
* on A/D

LDAA #ADCTL_MASK * Load A with mask for A/D control
* register

STAA ADCTL * Store into ADCTL to start
* continuous conversion of signal
* on

*

* Misc
*

CLRA * Zero out
LDAB #DDRC_MASK * Load B with port C config

* information

STAB DDRC * Store into DDRC to program the

* pin directions of port
LDS #$CFFF * Initialize stack. Stack grows

* from high to low memory, so the
* stack is placed right before the
* program code. Stack is needed by
* interrupt

*

* Get next
*

CLI * Turn on
GET_INPUT LDAB #1 * Load B with 1

STAB TEMP * Store into temp
HERE CMPB TEMP * Compare B and TEMP

BEQ HERE * Wait here until value in TEMP is
* modified by RDRF interrupt
* service

*

13

* Turn on correct
*

LDAA INPUT * Load A with input
STAA TEMP * Store input value into TEMP
BCLR TEMP AMOUNT_MASK * Clear all bits of input not

* encoding position
LDAA PORTC * Load A with current position of

* cup

STAA CURRENT_POS * Store current position into

*
BCLR CURRENT_POS AMOUNT_MASK * Clear all bits of current

* position not encoding
* position

LDAA TEMP * Load A with desired
CMPA CURRENT_POS * Compare current position with

* input
BEQ POUR * If equal, we're already at the

* right position, jump to
BHI MOVE_LEFT * If the number is higher, move

* left

LDAB #MOTOR_RIGHT * Load move right mask into
STAB PORTB * Store move right mask into port B

* to turn on
STAA DESIRED_POS * Store desired position
BRA WAIT * Branch to positioning routine

MOVE_LEFT LDAB #MOTOR_LEFT * Load move left mask into B
STAB PORTB * Store move left mask into port B

* to turn on
STAA DESIRED_POS * Store desired

*

* waits for cup to hit correct position
*
WAIT LDAA PORTC * Read from port C to get current

* position of
STAA TEMP * Store into
BCLR TEMP OUTPUT_BITS * Clear bits which don't carry

* input
LDAA TEMP * Load back into
CMPA DESIRED_POS * Compare current position of cup

* with desired
BNE WAIT * If not equal, cup isn't in the

* right position yet, so go back
* to top of the

*

* Turn off
*

LDAB #MOTOR_OFF * Load B with MOTOR_OFF
STAB PORTB * Store into port B, turning motor

* off
*
* Open correct valve

14

*
POUR LDAA INPUT * Load input value into A

LSRA * Shift right 4 times to put valve
* number in lower 4

LSRA

LSRA

LSRA

STAA PORTC * Store into port C, opening

* correct
*

* Delay
*

LDAA ADR1 * Get "tweak" value from A/ D of
* attached

STAA TEMP * Store value in TEMP
CLRA * Zero out
BCLR INPUT POSITION_MASK * Clear bits not dealing with

* amount to
SLEEPTOP CMPA INPUT * Compare A to amount to pour

BEQ SLEEPBOTTOM * If equal we've poured enough
CLRB * Zero out B

LOOP1TOP CMPB TEMP * Compare to "tweak" value
BEQ LOOP1BOTTOM * If equal jump to bottom of loop
LDX #0 * Zero out X

LOOP2TOP CPX #1000 * Compare X to some medium sized
* constant

BEQ LOOP2BOTTOM * If equal jump to bottom of
INX * Increment
BRA LOOP2TOP * and jump to top of the

LOOP2BOTTOM INCB * Increment
BRA LOOP1TOP * and jump to top of the loop

LOOP1BOTTOM INCA * Increment A
BRA SLEEPTOP * and jump to top of the loop

*
* close spout
*
SLEEPBOTTOM LDAA #CLOSE * Load A with close mask

STAA PORTC * Store into port C, turning off
* valves

*

* send done with step signal
*

LDAA SCSR * Load A with SCSR to clear serial
* status

LDAA #STEP_FINISHED * Load A with STEP_FINISHED

STAA SCDR * Store into SCDR to send to

* controlling
*

* Get another
*

BRA GET_INPUT

15

*

* RDRF service routine *

*
RDRF CLR TEMP * Store 0 into TEMP to signal main

* program to stop
LDAA SCSR * Read SCSR to clear serial status

* flags

LDAA SCDR * Load incoming input in
STAA INPUT * Store input into INPUT
RTI * Return
END

Appendix C: Verilog Code

// Filename: control.v
// Author: Glenn Gebhart glenn@cs.hmc.edu
// Date: 11/20/1999
// Description: Continuous combinational logic for robotic bar controll
// board
// select_in is a 4-bit number which selects which one of the 15 lines
// in select_out to set high. If select_in is 0, no lines in select_out
// are set high.
// pos_in is a 15-bit one-hot number giving the current position of the
// cup-holder pos_out is the 4-bit decoding of pos_in. 0 indicates that
// no lines of pos_in are hot.

`include "encode.v"
`include "decode.v"

module CONTROL (select_in, select_out, pos_in, pos_out) ;

input [3:0] select_in ;
input [14:0] pos_in ;

output [3:0] pos_out ;
output [14:0] select_out ;

ENCODE encode1(pos_in, pos_out);
DECODE decode1(select_in, select_out);

endmodule

// Filename: encode.v
// Author: Glenn Gebhart glenn@cs.hmc.edu
// Date: 11/20/1999
// Description: Encodes 15 1-hot to 4-bit binary .
// Returns 0 if no lines are hot or if more than one line is hot.

16

module ENCODE (din, dout) ;

input [14:0] din ;

output [3:0] dout ;

reg [3:0] dout ;

always @(din) begin
case (din)

15'b000000000000000: dout = 0;
15'b000000000000001: dout = 1;
15'b000000000000010: dout = 2;
15'b000000000000100: dout = 3;
15'b000000000001000: dout = 4;
15'b000000000010000: dout = 5;
15'b000000000100000: dout = 6;
15'b000000001000000: dout = 7;
15'b000000010000000: dout = 8;
15'b000000100000000: dout = 9;
15'b000001000000000: dout = 10;
15'b000010000000000: dout = 11;
15'b000100000000000: dout = 12;
15'b001000000000000: dout = 13;
15'b010000000000000: dout = 14;
15'b100000000000000: dout = 15;
default: dout = 0;

endcase
end

endmodule

// Filename: decode.v
// Author: Glenn Gebhart glenn@cs.hmc.edu
// Date: 11/20/1999
// Description: 4-bit binary to 15-bit 1-hot
// No output lines are set hot on input

module DECODE (din, dout) ;

input [3:0] din ;

output [14:0] dout ;

reg [14:0] dout ;

always @(din) begin
case (din)

0 : dout = 15'b000000000000000;
1 : dout = 15'b000000000000001;

17

2 : dout = 15'b000000000000010;
3 : dout = 15'b000000000000100;
4 : dout = 15'b000000000001000;
5 : dout = 15'b000000000010000;
6 : dout = 15'b000000000100000;
7 : dout = 15'b000000001000000;
8 : dout = 15'b000000010000000;
9 : dout = 15'b000000100000000;
10: dout = 15'b000001000000000;
11: dout = 15'b000010000000000;
12: dout = 15'b000100000000000;
13: dout = 15'b001000000000000;
14: dout = 15'b010000000000000;
15: dout = 15'b100000000000000;

endcase
end

endmodule

