
A Miniature Robot

Final Project Report
December 9, 1999

E157

Ronalee Lo and Dave Beydler

Abstract

Robots not only aid humans with day-to-day and difficult tasks, but they can also provide
people with entertainment. For example, Sony’s Aibo is a popular robotic dog. The
purpose of this project was to create basic functionality for a wheeled robot that could be
applied to either facet of robots. Since robotics combines the disciplines of both
mechanics and electronics (and increasingly computer programming), and since this class
is aimed for understanding microprocessors, the project is concentrated on the electrical
aspects of making robots.

2

Figure 1. A pulse width modulation signal.

1. Introduction

The purpose of this project was to design and implement a miniature, wheeled

robot capable of forward and turning (both left and right) motions based on sensory

inputs. Using these degrees of freedom, the robot is able to navigate using the “follow-

the-wall” algorithm, if it reaches an immovable object. The main focuses of this project

were not only to create this algorithm, but also to write and test the code necessary to

handle the I/O of the robot. A prototype was built to apply the code to a physical setting.

2. New Hardware

2.1. Servo Motors

Futaba S148 servo motors were used to move the prototype. Servo motors are

normally controlled via a pulse width modulation (PWM) signal. The S148 takes three

inputs: power, ground, and a PWM signal. The high-time length for each period, as

opposed to the duty cycle, determines the position of the S148. See Fig. 1 for a depiction

of a PWM signal.

Since these servo motors were limited to 180 ° of rotation, modifications had to

be made to allow for a full, 360 °

range. The internal

potentiometer was bypassed by

removing both the potentiometer

stop and drive plate (see

Appendix A for schematics of

the Futaba S148 servo motor).

When the potentiometer is bypassed, the feedback system that compares the

potentiometer readings with the incoming signal continues to run. Thus, a constant high-

3

time length results in rotation at a constant speed (the maximum is approximately 60° in

0.22 secs).

3. Schematics

3.1 HC11 I/O Signals

This project was implemented using minimal connections. The code was written

in such a way that only two inputs are needed and two outputs are produced. The two

sensor inputs are loaded into A/D converters on the HC11. The code calculates the

proper response for the motors and sends out the corresponding PWM signal. Most of

the connections were made using wire wrap because it made a good connection while

allowing for easy modification. The following diagram (Fig. 2) is a schematic of the

connections.

Figure 2. Schematics of pin connections and board layout.

4

Figure 3. Power Supply Circuit.

3.2. Power Supply

To run the robot autonomously (untethered) it would have to contain an internal

power supply; the clearest way to

implement this was using batteries. The

prototype was powered using a variable

power supply, but this meant that the

robot was tethered and could only go as

far as the power cords allowed. It was

calculated that four AA 1.5V batteries

could supply the necessary power.

There are three elements that require

power the two motors and the evaluation

board each requiring 5V. Note that if

these elements are in parallel when hooked up to the batteries, a 5V output from the

batteries is all that is needed to power all three elements. After mounting the four

batteries into a holder, the output voltage was measured to be 6.3707 V. In order to limit

this voltage to the necessary 5V the corresponding resistance was ascertained. See Fig. 3

for a schematic of the implemented circuit. However, due to the internal resistance of the

batteries and the combined resistance of the elements, the voltage output from the

batteries sagged. The solution was to give each element its own power supply; however,

time did not permit this solution to be implemented.

5

4. Mechanical Elements

Though the mechanical elements were not the emphasis of this project, a

prototype was built to test the control code. The following are descriptions of the

elements used to build the prototype.

4.1. Chassis

The original plan was to enclose the circuitry and power supply within a closed

chassis. However, due to budget constraints, everything was mounted to a wooden

board. This change of plan was actually a good decision since it allowed for an optimal,

custom design when attaching all of the elements together.

4.2. Mounting

The motors were secured to the board by first drilling a pair of holes for each

motor into the board. The motors were then placed between their respective holes and

affixed to the board using cable ties. A perforated board was used to connect the wires

necessary for input signals from the sensors and output signals to control the motors. See

Fig. 2 for a diagram of these connections.

The front and right sensors were also attached to the wooden board. The front

sensor was made by wire wrapping five push-button sensors to a perforated board. The

sensors were located in each the four corners and in the middle of the perforated board.

A cover made of cardboard was placed over the sensors to create a front bumper. Each

sensor was daisy-chained together so only one output line and one input line of 5V went

to and from the main circuit board.

The right sensor was a little harder to implement due to the nature of the turns.

The right sensor needed to be extended such that if the robot ran into a front wall and

6

Figure 5. Arm and right
sensor placement.

turned left 90 °, the right sensor would be activated during the turn. Also, the robot

needed to be far enough from the wall such that it would not hit corners upon turning.

See Fig. 4 for clarification.

To solve this problem, an “arm” was attached to the right side of the robot. A

sensor switch was attached to the arm so that when the arm came in contact with the wall

it would depress and activate the sensor. The material used to construct the arm needed

to fulfill the following criteria:

1. It had to be stiff enough to depress the sensor.
2. The material needed to be flexible enough to follow the contours of a wall.
3. The arm needed to be able to “spring” back when it is not in contact with a

wall so that the sensor would not be continuously activated when away from a
wall.

After considering these criteria, it seemed that a metal strip could be used. In particular,

a copper strip was chosen to make the arm. The strip was

creased so that it would bend away from the robot but

while allowing the arm to bend back into place when not

depressed by a wall. The arm was attached to the wooden

board with two screws to prevent the arm from rotating.

Figure 4. Clipping walls.

7

Figure 6. Sensor schematic.

A cylinder was also attached to the end of the arm to minimize friction when following a

wall. See Fig. 5 for a top-view of the robot and the right sensor.

4.3. Sensors

A lot of research went into

choosing the sensor. There were three

main kinds of sensors that were

considered. The first was the infrared

sensor; however, it did not always

provide a clear voltage change when

detecting an object. The next kind of

sensor considered was a strain-gauge

sensor. After wiring it in parallel with a

resistor in a voltage divider schematic it produced voltage changes when compressed.

However, like the IR sensor, there was not a significant voltage change when

compressed. The sensors were finally implemented using a simple switch, as shown in

Fig. 6. When the switch is not activated the two lines are kept separate, whereas when

the button is pressed the two lines are connected. Consequently, this kind of sensor

provides a definite 5V when connected and 0V when not.

5. Microcontroller Design

5.1. Testing Procedures

During the course of the project many individual elements were tested. The first

step was to consolidate the controlling code and the algorithm since different individuals

wrote each part. Before the code was written, common variable names and function calls

were agreed upon so that merging the two codes would be simplified. Next, the PWM

8

signal used to run the motors were tested by viewing the output wave on an oscilloscope.

After the PWM signal was confirmed, each motor was hooked up to understand how they

worked and what signal was needed to control them. Once both motors had been

modified and tested, the control code needed to be validated. However, in order to test

the code and the motors’ response, sensor inputs were needed. To expedite testing, a

switchboard was constructed to represent the right and front sensors. When the motors

were responding to the given stimuli in the way the algorithm proposed, each element

was mounted to the chassis. Later, sensors replaced the switchboard so that a physical

environment could be used to test the prototype.

5.2. Algorithm

Pseudo-coding the desired motion was the first step towards developing the

follow-the-wall algorithm. The code was first written for three sensors: one in front, to

the left, and to the right of the robot; see Appendix C for pseudo-code. For simplicity

and efficiency, the code was modified for only two sensors. See Appendix B for the

main code that was later translated into HC11 assembly language. Calls to move the

robot forward or to turn the robot were developed in subroutines and used by this main

code. Common subroutines called were:

• FORWARD_C (move forward continuously until either sensor hits a wall)

• FORWARD_CR (move forward until the front sensor sees a wall or the right sensor

looses the wall)

• LEFT_TURN (execute a left turn)

• RIGHT_TURN (execute a right turn)

See Appendix D for complete assembly translation of the code.

9

5.3. Servo Motors

Since the servo motors use PWM, Output Compares 2 and 3 are employed in the

code. A single-byte variable is used for each motor, containing the high-time length of

the pulses. For the high value, the variable is essentially multiplied by 256 (it is shifted

to the left 8 times) to ensure that the free running counter does not run past the Output

Compare value before the interrupt is completed. To arrive at the number of clock cycles

to pass for the low value, 256 is multiplied by 256 minus the variable. Since the HC11

operates at 2Mhz, a variable with the value 2E hex (46 decimal) would, for example,

equate to the following high-time length (HTL):

ms
cycles

cycles
HTL 89.5

sec2000000

256*46 =

=

As a temporary setup to determine what values were needed for the PWM signals, HC11

code was written to take as input an analog voltage value and output a PWM signal based

on that voltage. The voltage value was on a scale from 0 (0V) to 255 (5V). Table 1

presents the voltages and input values that corresponded with different motor movements.

Left Motor Right Motor
Forward 0.313V (10) 0.602V (07)
Stop 0.474V (18) no value (00)
Backward 0.838V (2A) 0.133V (1E)

Table 1. Voltage values and hex input values (in parentheses).

These values are used by the subroutines that both drive the robot forward and turn it left

and right. Note that the right motor has no stopping position, since no voltage value

could be found to stabilize the motor. See Appendix D for the HC11 code that performs

all of the PWM.

10

5.4. Sensors

The exact, physical implementation of the sensors was not clear throughout much

of the project. Infrared sensors, strain-gauge sensors, and simple switches were all

possibilities; hence, the method of input that could handle all sensors was the use of

analog-to-digital (A/D) converters. An A/D converter was used for both the front and

right sensors. After deciding to use simple switches as the sensors, the only change to the

A/D converter code was to change the boundary point between a high and low signal

(this boundary was set at 80 hex).

The conversion is triggered by a real-time interrupt that is called approximately

every 8ms. At this point, the two variables that store the front and right sensor data are

written as zeros if their voltage values are below 80 hex and ones if their voltage values

are above 80 hex. Consequently, any part of the code that wishes to view the current

state of either sensor will have an accurate reading to within about 8ms.

6. Results

The final project produced a prototype that responded to sensory inputs. The

prototype was driven by a variable power supply and controlled by an HC11 evaluation

board. The motors were configured so that the robot moved forward and turned in both

directions. The forward motion of the prototype was very close to linear except for a

slight drift to the left; the veering was hardly noticeable. Each turn was a couple degrees

over 90 ° but a left turn would compensate for a right turn and vice versa.

The most difficult part of the project was building a prototype to test the control

code. Choosing an appropriate sensor was time consuming and many compromises had

to be made, such as settling for a limited range in exchange for a clear, digital signal.

11

The next problematic section of the project was moving all of the components

onto the chassis and freeing the robot from the tethers of the variable power supply and

cables to the computer. Moving the existing program from the computer to the available

EEPROM space on the evaluation board required some changes to the code and the pin

out assignments.

The M68HC11EVB Evaluation Board was used to help debug the code. There

was not enough time to use the M68HC11EVBU Universal Evaluation Board, which we

had hoped to use, because we thought that the first one did not carry EEPROM.

Apparently, though, both evaluation boards contain 512 bytes of EEPROM.

Nevertheless, we learned how to program the EEPROM using the following steps:

1. Adjust the code so the origin is at $B600. This is the beginning of EEPROM in the
HC11 memory. When a jumper is switched on the evaluation board, the HC11 will
start executing commands at this location when powered. Note that variables must be
placed after the end of the code, and no other origins can be set (so if you set interrupt
vectors using the ORG instruction, you must change this to write the interrupt vector
directly).

2. In BUFFALO, type “mm 1023”, and then “35”. This sets the baud rate on the HC11
for loading programs over the serial line to 300.

3. Change the baud rate of your Hyperterm (or equivalent) program to 300, disconnect,
and reconnect.

4. Type “load t” and send your program to the HC11 as a text file. It may take a half
a minute to load.

The final outcome of the project differed in some aspects from our proposed

project. The backwards motion was replaced by two consecutive turns and then continue

forward. Also, variable speed could not be implemented because the motors did not

provide a smooth motion driven with a high-time length between moving forward and

being stopped. In addition, a custom-made PCB was not used because we felt that a

wire-wrapped board was more versatile. Our original proposal did not state that a fully

autonomous robot would be constructed, but we nevertheless tried to implement one.

12

7. References

[1] How to modify a Futaba FP-S148 servo for 360° rotation,
http://pws.prserv.net/pebly/futaba360.html

[2] Tower Hobbies, http://www.towerhobbies.com

[3] Futaba Corporation (California), (949) 455-9888

8. Parts List

Part Source Vendor Part # Price
Futaba Servo Motor (2) Tower Hobbies S148 $30.00 *
AA Batteries 1.5V (4) Stock Room --- ---
Wire Wrapping Access. Stock Room --- ---
Perforated Board Stock Room --- ---
Battery Case Professor Harris --- ---
Copper Strip Sheet Metal Shop --- ---
Wooden Board Wood Shop --- ---

* Does not include price of shipping/handling or tax.

13

Figure 7. A Futaba S148 servo motor with
modifications for 360-degree rotation.

Appendix A

The following diagram shows the parts of a Futaba S148 servo motor, and

highlights the modifications that must be made to allow for a full, 360-degree range.

When the potentiometer

stop (#14 in Fig. 7) is removed,

the servo motor is able to turn

360 degrees; however, the

feedback system does not work

properly under these conditions,

since it is geared towards a 180

degree turn. Consequently, the

drive plate (#7 in Fig. 7) must be

removed in order to force the

feedback system to read a

constant value from the

potentiometer. The feedback

system subsequently reads a

constant position for the servo

and, when supplied with a PWM

signal, causes the motor to move

in the direction of the goal

position of this PWM.

14

Appendix B

//BEGIN
//initializing variables
int wall = 0; // 0 => robot has not found a wall

 // 1 => robot has found a wall
int R = 0; // 0 => right sensor is not activated

 // 1 => right sensor has found a wall
int F = 0; // 0 => front sensor is not activated

 // 1 => front sensor has found a wall

//NO_WALL
while (wall == 0) // cycle here until a sensor detects a wall
{

if ((F == 0) && (R == 0))
go forward; //move forward if no wall is detected on either

// sensor
else // a sensor has hit a wall

wall = 1;
}

//GET_WALL: move the robot so that the wall it found is to its right
if (F == 1) // if there is a wall in front of the robot

turn left 90 °; // no code needed for R == 1 since wall is
// already on the right side of the robot

//HAVE_WALL: motions to execute once there is a wall to the right of
// the robot
while (wall == 1) // make sure robot has a wall
{

while (R == 1) // make sure the right sensor reads wall
{

if (F == 0) // if space in front of robot clear
go forward; // then move forward

else // if object in front of robot
turn left 90 °; // then turn left

 } // end while (R == 1) loop

//DOOR: execute this command if when R = 0 and wall is lost (i.e. a
// door has been found or a corner has been reached

// this command is necessary to prevent the robot clipping the corner
// when it turns, see Fig. 4 for pictorial explanation

go forward width of robot;
turn right 90 °; // turn right
if ((F = = 0) && (R = = 0)) // robot has lost wall

wall = 0;
else // robot has wall, go back and make

// sure the wall is on the robot’s right
branch always to GET_WALL;

} // end while (wall == 1) loop
branch always to NO_WALL; // if this section of code is reached

// robot has lost the wall so it will
// move forward until it finds one

15

Appendix C

Begin
{ // initializing variables
 wall = 1;

No_Wall
 while (wall == 0)
 {
 if ((F == 0) && (R == 0) && (L == 0))
 {

 go forward; // R = Right Sensor
 // L = Left Sensor
 // F = Front Sensor
 }
 else
 {
 wall = 1;
 }

Get_Wall // getting a right wall
 if ((F == 1) && (R == 0) && (L == 0))
 {
 turn left 90º;
 }
 else if (((F == 1) && (R == 0) && (L == 1)) ||

 ((F == 1) && (R == 1) && (L == 1)) ||
 ((F == 0) && (R == 0) && (L == 1)))

 {
 turn 180º;
 }

while (wall == 1)
 {
 while (R == 1) // still have right wall
 {
 if (F == 0) // room to go forward
 {
 go forward;
 }
 else if (L == 0) // front is blocked, see
 {
 turn left 90º; // if we can turn left
 }
 else // if front and left is
 { // blocked, turn around
 turn 180º;
 }

} // end while (R == 1)

 turn right 90º; // this happens when
// R == 0, because it
// could be a door

// check to see if any walls are around
if ((F == 0) && (R == 0) && (L == 0))
{

16

wall = 0;
 }

 // we have a sensor equal to 1, get right wall
else
{

branch (bra) Get_Wall;
}

 } // end while (wall == 1)

 branch (bra) No_Wall;

} // end program

17

Appendix D

**
* Ronalee Lo and Dave Beydler *
* rjlo@hmc.edu, dbeydler@hmc.edu *
* E157 Final Project *
* November 27, 1999 *
* Description: Code for a wheeled robot. *
**

**
************************** DATA ****************************
**

* Symbols *

ORG $0

REG EQU $1000
TOC2 EQU $1018 * The output compare register
TOC3 EQU $101A * The output compare register
TCTL1 EQU $1020 * Timer control register 1
TMSK1 EQU $1022 * Timer mask register 1
TFLG1 EQU $1023 * Timer flag register 1

TMSK2 EQU $1024 * Timer mask register 2
TFLG2 EQU $1025 * Timer flag register 2
PACTL EQU $1026 * Pulse accumulator control register

BIT6 EQU %01000000 * OL2
BIT4 EQU %00010000 * OL3
BIT0 EQU %00000001 * For getting sensor info
OC2F EQU %01000000
OC3F EQU %00100000

PORTA EQU $1000 * control motors and read from sensors

PORTB EQU $1004

PORTE EQU $100A * where digital rep. of analog signal is read
ADCTL EQU $1030 * A/D control register
ADR1 EQU $1031 * A/D result register 1 (PE0)
ADR2 EQU $1032 * A/D result register 2 (PE1)
ADR3 EQU $1033 * A/D result register 3 (PE2)
ADR4 EQU $1034 * A/D result register 4 (PE3)
OPTION EQU $1039 * Hardware option control register

BACK_PWM_R EQU $2A * PWM signal for backwards right motor
NO_MOVE_PWM_R EQU $18 * PWM signal for nowhere right motor
FORWARD_PWM_R EQU $10 * PWM signal for forwards right motor

BACK_PWM_L EQU $07 * PWM signal for backwards left motor
NO_MOVE_PWM_L EQU $00 * PWM signal for nowhere left motor
* (doesn't work)
FORWARD_PWM_L EQU $1E * PWM signal for forwards left motor

RIGHT_PWM FCB $1E * The PWM signal that the right motor reads
LEFT_PWM FCB $1E * The PWM signal that the left motor reads

18

SENSOR_F FCB $00 * 1 if front sensor on, 0 if front sensor off
SENSOR_R FCB $00 * 1 if right sensor on, 0 if right sensor off

WALL FCB $00 * 1 if we have a wall, 0 if we don't

INVALUE FCB $00 * Input from port E
PWMLO FDB $0100 * How long to wait on low
PWMHI FDB $0100 * How long to wait on high

* Set up interrupt vectors *

* Note: these will probably change with a different chip

ORG $00D9
JMP OC3ISR

ORG $00DC
JMP OC2ISR

ORG $00EB
JMP RTIISR

**
*********************** MAIN PROGRAM ***********************
**

* Initialize stack *

ORG $D000
LDS #$DFFF * Define the stack

* Initialize A/D converter *

* OPTION: ADPU=1, CSEL=0, IRQE=0, DLY=0, CME=0, 0, CR1=0, CR0=0

LDAA #$80
STAA OPTION

* Initialize Port E
CLR PORTE

* ADCTL: SCAN=1, MULT=1, CD=0, CC=0, CB=x(0), CA=x(0)
* Since we have MULT=1, CD and CC select the group of four ADRs
* PE0 = ADR1, PE1 = ADR2, PE2 = ADR3, PE3 = ADR4

LDAA #$30
STAA ADCTL

* Initialize PWM *

* Initialize OC2 and OC3

LDAA #$A0
STAA TCTL1

* Enable OC2 and OC3 interrupt
LDAA #$60
STAA TMSK1

19

* Slow down clock to lengthen periods
LDAA #$03
STAA TMSK2

* Initialize Real Time Interrupt *

* Set interrupt rate to 8.19 ms

LDAA #1
STAA PACTL

* Enable RTI interrupt
LDAA #BIT6
STAA TMSK2

* Stop the robot *

JSR STOP_ROBOT

* Enable interrupts *

CLI

* Main loop *

*F refers to front sensor (SENSOR_F)
*R refers to right sensor (SENSOR_R)
NO_WALL

LDAA SENSOR_F *get value of F
BNE HIT *if F != 0, branch to HIT
LDAB SENSOR_R *get value of R
BNE HIT *if R != 0, branch to HIT
JSR FORWARD_C *if R == 0 and F == 0 move forward

*until F or R equals 1

HIT *wall found
LDAA #$01 *set wall == 1
STAA WALL

GET_WALL *move robot so wall is on its right
LDAA SENSOR_F *get value of F
BEQ RIGHT_1 *if F == 0, branch to RIGHT_1
JSR LEFT_TURN *else turn left

RIGHT_1
LDAB SENSOR_R *load R
BEQ DOOR *if R == 0, branch to DOOR
LDAA SENSOR_F *load F
BEQ CONT_FORWARD *if F == 0, branch to CONT_FORWARD
JSR LEFT_TURN *if R == 1 and F == 1 turn left
LDAB SENSOR_R *load R
BNE RIGHT_1 *if R != 0, branch to RIGHT_1
BEQ DOOR *if R == 0, branch to DOOR

CONT_FORWARD
JSR FORWARD_CR *move forward until F == 1 or R ==0

20

LDAB SENSOR_R *load R
BEQ DOOR *if R == 0 branch to DOOR

LEFT2 *if R == 1
JSR LEFT_TURN *turn left
BRA RIGHT_1 *branch to RIGHT_1

DOOR *door or corner found
JSR FORWARD_W *move forward a length of w
JSR RIGHT_TURN *turn right
LDAA SENSOR_F *load F
BNE GET_WALL *if F != 0 branch to GET_WALL

LDAB SENSOR_R *load R
BNE RIGHT_1 *if R != 0 branch to RIGHT_1

* WALL == 0 *if R == 0 and F == 0 robot is lost
LDAA #$00 *set wall == 0
STAA WALL
BRA NO_WALL *branch to NO_WALL

************************ INTERRUPT FOR SENSORS ************************

RTIISR
* Did we get an interrupt from the real time interrupt device?

LDX #REG
BRCLR TFLG2-REG,X BIT6 RTRTI * If not, ignore by returning

* Clear real time interrupt flag (remember: 1 clears, 0 does nothing)
LDAA #BIT6
STAA TFLG2-REG,X

* Get front sensor data (PE2)
LDAA ADR3
CMPA #$80
BHI SET_SENSOR_F_1
LDAA #$00
BRA SET_SENSOR_F

SET_SENSOR_F_1
LDAA #$01

SET_SENSOR_F
STAA SENSOR_F

* Get right sensor data (PE0)
LDAA ADR1
CMPA #$20
BHI SET_SENSOR_R_1
LDAA #$00
BRA SET_SENSOR_R

SET_SENSOR_R_1
LDAA #$01

SET_SENSOR_R
STAA SENSOR_R

RTRTI
RTI * Return from the interrupt

21

************************ INTERRUPT FOR LEFT MOTOR *********************

* Check that flag set *

OC2ISR

LDX #REG
BRCLR TFLG1-REG,X OC2F RTOC2

* Clear the flag *

LDAA #OC2F
STAA TFLG1-REG,X * Acknowledge that interrupt

occurred

LDAA LEFT_PWM
STAA INVALUE

* Store the analog value into PWMHI
LDAA INVALUE
LDAB #$00
STD PWMHI

* Store $FF minus the analog value into PWMLO
LDAA #$FF
SUBA INVALUE
LDAB #$00
STD PWMLO

BRSET TCTL1-REG,X BIT6 LASTHI1

* Set PWM high *

BSET TCTL1-REG,X BIT6
LDD TOC2-REG,X
ADDD PWMLO
STD TOC2-REG,X

BRA RTOC2

* Set PWM low *

LASTHI1

BCLR TCTL1-REG,X BIT6
LDD TOC2-REG,X
ADDD PWMHI
STD TOC2-REG,X

RTOC2
RTI * Return from the interrupt

************************ INTERRUPT FOR RIGHT MOTOR ********************

22

* Check that flag set *

OC3ISR

LDX #REG
BRCLR TFLG1-REG,X OC3F RTOC3

* Clear the flag *

LDAA #OC3F
STAA TFLG1-REG,X * Acknowledge that interrupt

occurred

LDAA RIGHT_PWM
STAA INVALUE

* Store the analog value into PWMHI
LDAB INVALUE
LDAA #$00
LSLD
LSLD
LSLD
LSLD
STD PWMHI

* Store $FF minus the analog value into PWMLO
LDAB #$FF
SUBB INVALUE
LDAA #$00
LSLD
LSLD
LSLD
LSLD
STD PWMLO

BRSET TCTL1-REG,X BIT4 LASTHI2

* Set PWM high *

BSET TCTL1-REG,X BIT4
LDD TOC3-REG,X
ADDD PWMLO
STD TOC3-REG,X

BRA RTOC3

* Set PWM low *

LASTHI2

BCLR TCTL1-REG,X BIT4
LDD TOC3-REG,X
ADDD PWMHI
STD TOC3-REG,X

RTOC3
RTI * Return from the interrupt

23

**
******************** MOVING SUBROUTINES ********************
**

* Move forward one cycle *

FORWARD_W

PSHA
LDAA #FORWARD_PWM_L
STAA LEFT_PWM
LDAA #FORWARD_PWM_R
STAA RIGHT_PWM

* Delay for one second
LDAA #$32 * Parameter = # of 20 millisecond delays
JSR DELAY

JSR STOP_ROBOT

PULA
RTS

**
* Move forward continuously until F == 1 or R == 0 *
**
FORWARD_CR

PSHA
LDAA #FORWARD_PWM_L
STAA LEFT_PWM
LDAA #FORWARD_PWM_R
STAA RIGHT_PWM

* Poll the sensors to see if we hit something
FORWARD_LOOP1

TST SENSOR_F
BNE FORWARD_BREAK1
TST SENSOR_R
BEQ FORWARD_BREAK1
BRA FORWARD_LOOP1

FORWARD_BREAK1
JSR STOP_ROBOT

PULA
RTS

**
* Move forward continuously until F == 1 or R == 1 *
**
FORWARD_C

PSHA
LDAA #FORWARD_PWM_L
STAA LEFT_PWM

24

LDAA #FORWARD_PWM_R
STAA RIGHT_PWM

* Poll the sensors to see if we hit something
FORWARD_LOOP2

TST SENSOR_F
BNE FORWARD_BREAK2
TST SENSOR_R
BNE FORWARD_BREAK2
BRA FORWARD_LOOP2

FORWARD_BREAK2
JSR STOP_ROBOT

PULA
RTS

* Turn right 90 degrees *

RIGHT_TURN

PSHA
LDAA #FORWARD_PWM_L
STAA LEFT_PWM
LDAA #BACK_PWM_R
STAA RIGHT_PWM

* Delay for one second
LDAA #$32 * Parameter = # of 20 millisecond delays
JSR DELAY

JSR STOP_ROBOT

PULA
RTS

* Turn left 90 degrees *

LEFT_TURN

PSHA
LDAA #BACK_PWM_L
STAA LEFT_PWM
LDAA #FORWARD_PWM_R
STAA RIGHT_PWM

* Delay for one second
LDAA #$32 * Parameter = # of 20 millisecond delays
JSR DELAY

JSR STOP_ROBOT

PULA
RTS

25

* Stop the robot *

STOP_ROBOT

PSHA
LDAA #NO_MOVE_PWM_L
STAA LEFT_PWM
LDAA #NO_MOVE_PWM_R
STAA RIGHT_PWM
PULA

RTS

* Delay for (A * 20) milliseconds *

DELAY

TSTA
BEQ RT
LDX #$115C

AGAIN
BEQ AHEAD
DEX
BRA AGAIN

AHEAD
DECA
BRA DELAY

RT
RTS

END

