A Miniature Robot

Fina Project Report
December 9, 1999
E157

Ronalee Lo and Dave Beydler

Abstract

Robots not only aid humans with day-to-day and difficult tasks, but they can also provide
people with entertainment. For example, Sony’s Aibo is a popular robotic dog. The
purpose of this project was to create basic functionality for a wheeled robot that could be
applied to ether facet of robots. Since robotics combines the disciplines of both
mechanics and electronics (and increasingly computer programming), and since this class
is aimed for understanding microprocessors, the project is concentrated on the electrica
aspects of making robots.

1. Introduction

The purpose of this project was to design and implement a miniature, wheeled
robot capable of forward and turning (both left and right) motions based on sensory
inputs. Using these degrees of freedom, the robot is able to navigate using the “follow-
the-wall” agorithm, if it reaches an immovable object. The main focuses of this project
were not only to create this algorithm, but also to write and test the code necessary to

handle the 1/O of the robot. A prototype was built to apply the code to a physical setting.

2. New Hardware

2.1. Servo Motors

Futaba S148 servo motors were used to move the prototype. Servo motors are
normally controlled via a pulse width modulation (PWM) signal. The S148 takes three
inputs: power, ground, and a PWM signal. The high-time length for each period, as
opposed to the duty cycle, determines the position of the S148. See Fig. 1 for adepiction
of aPWM signal.

Since these servo motors were limited to 180 ° of rotation, modifications had to

be made to alow for afull, 360 °

|

5__:

range. The internal
Signal (V) .
potentiometer was bypassed by
0-— . . . Time 'EMOVING both the potentiometer
m—High time—»!
- Period——» stop and drive plate (see

Appendix A for schematics of
Figure 1. A pulse width modulation signal.
the Futaba S148 servo motor).
When the potentiometer is bypassed, the feedback system that compares the

potentiometer readings with the incoming signal continues to run. Thus, a constant high-

time length results in rotation at a constant speed (the maximum is approximately 60° in

0.22 secs).

3. Schematics

3.1 HC11 1/O Signas

This project was implemented using minimal connections. The code was written
in such away that only two inputs are needed and two outputs are produced. The two
sensor inputs are loaded into A/D converters on the HC11. The code calculates the
proper response for the motors and sends out the corresponding PWM signal. Most of
the connections were made using wire wrap because it made a good connection while

allowing for easy modification. The following diagram (Fig. 2) is a schematic of the

connections.
GND1| o a |2
3 o o 4
5 a a |6
7] [u] 11
9 o o 10
11 [o (12
13 fui o 14
15| o lu] 16
17 @ & |18 Fromit Sensor
19 fa]] el)} |
21 =) o (22 IV FATITHL)
2 o o |24 v— B
5| o o |26 K.
27| © o |28 PAG: Left Moter , g
PAS: Right Motor 29| o n |30 P43 (PEOY— 2
31 (=] o (32
33 fu] fal 34
35| a a |36 | v 5y
GHD G 4
37 o o 3% r P& AR P15 (PAS
3Bl a4 o |40
31 a a (42 :
PEQ: Right Sensor 43 [m] o 44 Left Motar] it Mor
45| a4 o (48
PE2: Fromt Sensor 47| © o |48
49| o o |50
VRL: GND 51| o o [S2VRE Figure 2. Schematics of pin connections and board layout.
53 a o (54
55 o o |56
57 o o[58
59 fu} o |60

3.2. Power Supply

To run the robot autonomously (untethered) it would have to contain an internd

power supply; the clearest way to

implement this was using batteries. The —/\W\,
prototype was powered using a variable i
Four AA »”

. batteries: — T ohrms

power supply, but this meant that the — ;:707+,
"
robot was tethered and could only go as 330 s i
whims

hm
far as the power cords allowed. It was S

calculated that four AA 1.5V batteries

Want V out to equal 5 volts. Use equations for adding

could supply the necessary power. resistance in series and parallel as well as the voltage
divider rule to get 5 volts at WV out when & 3707 wolts

There are three elements that require is supplied.

power the two motors and the evaluation Figure 3. Power Supply Circuit.
board each requiring 5V. Note that if

these elements are in parale when hooked up to the batteries, a 5V output from the
batteries is al that is needed to power al three elements. After mounting the four
batteries into a holder, the output voltage was measured to be 6.3707 V. In order to limit
this voltage to the necessary 5V the corresponding resistance was ascertained. See Fig. 3
for a schematic of the implemented circuit. However, due to the internal resistance of the
batteries and the combined resistance of the elements, the voltage output from the

batteries sagged. The solution was to give each element its own power supply; however,

time did not permit this solution to be implemented.

4. Mechanical Elements

Though the mechanical elements were not the emphasis of this project, a
prototype was built to test the control code. The following are descriptions of the

elements used to build the prototype.
4.1. Chassis

The original plan was to enclose the circuitry and power supply within a closed
chassis. However, due to budget constraints, everything was mounted to a wooden
board. This change of plan was actually a good decision since it allowed for an optimal,
custom design when attaching all of the elements together.

4.2. Mounting

The motors were secured to the board by first drilling a pair of holes for each
motor into the board. The motors were then placed between their respective holes and
affixed to the board using cable ties. A perforated board was used to connect the wires
necessary for input signals from the sensors and output signals to control the motors. See
Fig. 2 for adiagram of these connections.

The front and right sensors were also attached to the wooden board. The front
sensor was made by wire wrapping five push-button sensors to a perforated board. The
sensors were located in each the four corners and in the middle of the perforated board.
A cover made of cardboard was placed over the sensors to create a front bumper. Each
sensor was daisy-chained together so only one output line and one input line of 5V went
to and from the main circuit board.

The right sensor was a little harder to implement due to the nature of the turns.

The right sensor needed to be extended such that if the robot ran into a front wall and

turned left 90 °, the right sensor would be activated during the turn. Also, the robot
needed to be far enough from the wall such that it would not hit corners upon turning.

See Fig. 4 for clarification.

e

d

7 [wan 3 Wall o wan
B E-
{

Y
H- B

Figure 4. Clipping walls.

To solve this problem, an “arm” was attached to the right side of the robot. A
sensor switch was attached to the arm so that when the arm came in contact with the wall
it would depress and activate the sensor. The material used to construct the arm needed
to fulfill the following criteria

1. It had to be stiff enough to depress the sensor.

2. The material needed to be flexible enough to follow the contours of awall.

3. The arm needed to be able to “spring” back when it is not in contact with a

wall so that the sensor would not be continuoudly activated when away from a
wall.
After considering these criteria, it seemed that a metal strip could be used. In particular,
a copper strip was chosen to make the arm. The strip was

creased so that it would bend away from the robot but

while alowing the arm to bend back into place when not

depressed by awall. The arm was attached to the wooden

Figure5. Arm and right board with two screws to prevent the arm from rotating.

sensor placement.

A cylinder was aso attached to the end of the arm to minimize friction when following a

wall. SeeFig. 5 for atop-view of the robot and the right sensor.

4.3. Sensors

A lot of research went into
choosing the sensor. There were three
main kinds of sensors that were
considered. The first was the infrared
sensor; however, it did not aways
provide a clear voltage change when

detecting an object. The next kind of

Sensor

sensor. After wiring it in parallel with a

—— Convechicn shen Wathen s

{ =
K i | =[Pl side
b
net deprese=d

B depreszed

considered was a strain-gauge

F,__H === Coanechon whes tton iz

Figure 6. Sensor schematic.

resistor in a voltage divider schematic it produced voltage changes when compressed.

However, like the IR sensor, there was not a significant voltage change when

compressed. The sensors were finally implemented using a ssmple switch, as shown in

Fig. 6. When the switch is not activated the two lines are kept separate, whereas when

the button is pressed the two lines are connected. Consequently, this kind of sensor

provides a definite 5V when connected and OV when not.

5. Microcontroller Design

5.1. Testing Procedures

During the course of the project many individual elements were tested. The first

step was to consolidate the controlling code and the algorithm since different individuals

wrote each part. Before the code was written, common variable names and function calls

were agreed upon so that merging the two codes would be simplified. Next, the PWM

signal used to run the motors were tested by viewing the output wave on an oscilloscope.
After the PWM signa was confirmed, each motor was hooked up to understand how they
worked and what signal was needed to control them. Once both motors had been
modified and tested, the control code needed to be validated. However, in order to test
the code and the motors response, sensor inputs were needed. To expedite testing, a
switchboard was constructed to represent the right and front sensors. When the motors
were responding to the given stimuli in the way the agorithm proposed, each element
was mounted to the chassis. Later, sensors replaced the switchboard so that a physical
environment could be used to test the prototype.

5.2. Algorithm

Pseudo-coding the desired motion was the first step towards developing the
follow-the-wall algorithm. The code was first written for three sensors. one in front, to
the left, and to the right of the robot; see Appendix C for pseudo-code. For ssmplicity
and efficiency, the code was modified for only two sensors. See Appendix B for the
main code that was later trandated into HC11 assembly language. Calls to move the
robot forward or to turn the robot were developed in subroutines and used by this main
code. Common subroutines called were:

FORWARD_C (move forward continuously until either sensor hitsawall)
FORWARD_CR (move forward until the front sensor sees a wall or the right sensor
looses the wall)

LEFT_TURN (execute a left turn)

RIGHT_TURN (execute aright turn)

See Appendix D for complete assembly trandlation of the code.

5.3. Servo Motors

Since the servo motors use PWM, Output Compares 2 and 3 are employed in the
code. A single-byte variable is used for each motor, containing the high-time length of
the pulses. For the high value, the variable is essentially multiplied by 256 (it is shifted
to the left 8 times) to ensure that the free running counter does not run past the Output
Compare value before the interrupt is completed. To arrive at the number of clock cycles
to pass for the low value, 256 is multiplied by 256 minus the variable. Since the HC11
operates a 2Mhz, a variable with the value 2E hex (46 decimal) would, for example,

equate to the following high-time length (HTL):

e 0
_ G 46* 256cycles ~

HTL = -=5.89ms
(5’ .
82000000 cycl 67 +

As a temporary setup to determine what values were needed for the PWM signals, HC11
code was written to take as input an analog voltage value and output a PWM signal based
on that voltage. The voltage value was on a scale from 0 (0V) to 255 (5V). Table 1

presents the voltages and input values that corresponded with different motor movements.

Left Motor Right Motor
Forward 0.313V (10) | 0.602V (07)
Stop 0.474V (18) | no vaue (00)
Backward 0.838V (2A) | 0.133V (1E)

Table 1. Voltage values and hex input values (in parentheses).
These values are used by the subroutines that both drive the robot forward and turn it left
and right. Note that the right motor has no stopping position, since no voltage value
could be found to stabilize the motor. See Appendix D for the HC11 code that performs

al of the PWM.

10

5.4. Sensors

The exact, physical implementation of the sensors was not clear throughout much
of the project. Infrared sensors, strain-gauge sensors, and smple switches were al
possibilities, hence, the method of input that could handle al sensors was the use of
analog-to-digital (A/D) converters. An A/D converter was used for both the front and
right sensors. After deciding to use simple switches as the sensors, the only change to the
A/D converter code was to change the boundary point between a high and low signal
(this boundary was set at 80 hex).

The conversion is triggered by a rea-time interrupt that is caled approximately
every 8ms. At this point, the two variables that store the front and right sensor data are
written as zeros if their voltage values are below 80 hex and ones if their voltage values
are above 80 hex. Consequently, any part of the code that wishes to view the current

state of either sensor will have an accurate reading to within about 8ms.

6. Results

The fina project produced a prototype that responded to sensory inputs. The
prototype was driven by a variable power supply and controlled by an HC11 evauation
board. The motors were configured so that the robot moved forward and turned in both
directions. The forward motion of the prototype was very close to linear except for a
dight drift to the left; the veering was hardly noticeable. Each turn was a couple degrees
over 90 ° but a left turn would compensate for a right turn and vice versa.

The most difficult part of the project was building a prototype to test the control
code. Choosing an appropriate sensor was time consuming and many compromises had

to be made, such as settling for alimited range in exchange for a clear, digital signal.

11

The next problematic section of the project was moving all of the components
onto the chassis and freeing the robot from the tethers of the variable power supply and
cables to the computer. Moving the existing program from the computer to the available
EEPROM space on the evaluation board required some changes to the code and the pin
out assignments.

The M68HC11EVB Evauation Board was used to help debug the code. There
was not enough time to use the M68HC11EVBU Universal Evauation Board, which we
had hoped to use, because we thought that the first one did not carry EEPROM.
Apparently, though, both evaluation boards contain 512 bytes of EEPROM.
Nevertheless, we learned how to program the EEPROM using the following steps:

1. Adjust the code so the origin is at $B600. This is the beginning of EEPROM in the
HC11 memory. When a jumper is switched on the evaluation board, the HC11 will
start executing commands at this location when powered. Note that variables must be
placed after the end of the code, and no other origins can be set (so if you set interrupt
vectors using the ORG instruction, you must change this to write the interrupt vector
directly).

2. In BUFFALO, type “nm 1023”, and then “35”. This sets the baud rate on the HC11
for loading programs over the serial line to 300.

3. Change the baud rate of your Hyperterm (or equivalent) program to 300, disconnect,
and reconnect.

4. Type*“l oad t” and send your program to the HC11 as a text file. It may take a half
aminute to load.

The fina outcome of the project differed in some aspects from our proposed
project. The backwards motion was replaced by two consecutive turns and then continue
forward. Also, variable speed could not be implemented because the motors did not
provide a smooth motion driven with a high-time length between moving forward and
being stopped. In addition, a custom-made PCB was not used because we felt that a
wire-wrapped board was more versatile. Our origina proposa did not state that a fully

autonomous robot would be constructed, but we nevertheless tried to implement one.

7. References

[1] How to modify a Futaba FP-S148 servo for 360° rotation,
http://pws.prserv.net/pebly/futaba360.html

[2] Tower Hobbies, http://www.towerhobbies.com

[3] Futaba Corporation (California), (949) 455-9888

12

8. Parts List

Part Source Vendor Part # | Price
Futaba Servo Motor (2) | Tower Hobbies S148 $30.00 *
AA Batteries 1.5V (4) | Stock Room

Wire Wrapping Access. | Stock Room
Perforated Board Stock Room
Battery Case Professor Harris
Copper Strip Sheet Metal Shop | ---
Wooden Board Wood Shop

* Does not include price of shipping/handling or tax.

Appendix A

13

The following diagram shows the parts of a Futaba S148 servo motor, and

highlights the modifications that must be made to alow for afull, 360-degree range.

When the potentiometer
stop (#14 in Fig. 7) is removed,
the servo motor is able to turn
360 degrees;, however, the
feedback system does not work
properly under these conditions,
since it is geared towards a 180
degree turn. Consequently, the
drive plate (#7 in Fig. 7) must be
removed in order to force the
feedback system to read a
constant value from the
potentiometer. The feedback
system subsequently reads a
constant position for the servo
and, when supplied with a PWM
signal, causes the motor to move
in the direction of the goa

position of this PWM.

file tab from #14
—14

remove #7

Figure 7. A Futaba S148 servo motor with
modifications for 360-degree rotation.

14

detects a wall

| is detected on either

Appendix B
// BEG N
/[linitializing variables
int wall = 0; // 0 => robot has not found a wall
// 1 => robot has found a wall
int R=0; /1 0 => right sensor is not activated
/1 1 =>right sensor has found a wall
int F=0; // 0 => front sensor is not activated
// 1 => front sensor has found a wall
/1 NO WALL
while (wall == 0) // cycle here until a sensor
if ((F==20) & (R ==0))
go forward; //nove forward if no wal
/'l sensor
el se // a sensor has hit a wal
wal |l = 1;
}

/1 GET_WALL: nove the robot so that the wall
if (F 1) /1 if there is a wall

turn left 90°; /1 no code needed for R
/1 already on the right

// HAVE WALL: notions to execute once there is a
/1 t he robot
while (wall == 1) /'l make sure robot
while (R == 1) /'l make sure the r
{
if (F==0) /1 if space
go forward;
el se /1 if object

turn left 90°;
} // end while (R 1) loop

// DOOR: execute this command if when
1/ door has been found or a corner

// this commmand
/1 when it turns,

is necessary to prevent
see Fig. 4 for pictorial

R =0 and wal |
has been reached

t he robot
expl anati on

it found is to its right
in front of the robot

1 since wall is
side of the robot

wall to the right of
has a wal |
i ght sensor reads wall

in front of robot clear

// then nove forward

in front of robot

// then turn |eft

is lost (i.e. a

clipping the corner

robot has | ost wall

go forward wi dth of robot;
turn right 90 °; /1 turn right
if ((F==0) & (R==0)) [/
wal | = 0;
el se /1 robot has wall,

[l sure the wall i

branch al ways to GET_WALL;
} /1 end while (wall
branch al ways to NO VWALL; /1

/'l robot has | ost

/1 move forward unti

go back and make
s on the robot’s right

1) 1 oop

if this section of code is reached

the wall so it wll
it finds one

15

Appendix C

Begi n

{ // initializing variables
wal | = 1;

No_Val
while (wall == 0)

if ((F==0) & (R ==0) & (L == 0))

go forward, /1 R = Right Sensor
/1 L = Left Sensor
/1 F = Front Sensor
}
el se
{
wal | = 1;
}
CGet _Wal | /1 getting a right wal

if ((F==1) & (R ==0) && (L == 0))
turn left 90°;

}
else if (((F==1) & (R == 0) && (L ==

1)) 11
((F==1) & (R ==1) && (L == 1)) ||
((F==0) & (R ==0) && (L == 1)))
turn 180°;
}
while (wall == 1)
while (R == 1) [l still have right wall
if (F==0) /!l roomto go forward
{
go forward,
elseif (L ==20) // front is blocked, see
turn left 90°; // if we can turn |eft
}
el se [l if front and left is
{ /1 blocked, turn around
turn 1809
}
} // end while (R == 1)
turn right 90°; /1 this happens when

// R == 0, because it
/1 could be a door

/1 check to see if any walls are around
if ((F==0) & (R ==0) & (L == 0))

wal | = 0;
}
/1l we have a sensor equal
el se
branch (bra) Get_Wall;
}
} /] end while (wall == 1)

branch (bra) No_Wall;

} // end program

to 1, get

right wall

16

17

Appendix D

EE IR S S S S b S Sk S I R S S S S S S S S S SRRk Sk Sk S kS S Rk I
* Ronal ee Lo and Dave Beydl er *
* rjlo@nc. edu, dbeydl er @nt. edu *
* E157 Final Project *
* Novenber 27, 1999 *
* Description: Code for a wheel ed robot. *
SRR S S Sk S b S Sk I R S S S S S S S S Rk Sk Sk S Ik S S S

ER R o O R R I Sk Ik R R Rk R R R S kR R I b

R S S R R S O O R R

DATA R S I R Rk I I IR S o

ER R o O SRR R I Sk I R R O kR R R R S Sk S O O R R

kkkkkhkkhkkhk*k

* Synbol s *

kkkkkhkkhkkhk*k

ORG
REG EQU
TOC2 EQU
TOC3 EQU
TCTL1 EQU
TVBK1 EQU
TFLGL EQU
TVBK2 EQU
TFLG2 EQU
PACTL EQU
BI T6 EQU
Bl T4 EQU
BI TO EQU
OC2F EQU
OC3F EQU
PORTA EQU
PORTB EQU
PORTE EQU
ADCTL EQU
ADRL EQU
ADR2 EQU
ADR3 EQU
ADRA EQU
OPTI ON EQU
BACK_PWM R
NO_MOVE_PWM R
FORWARD_PWM R
BACK_PWM L

FORWARD PWM L

Rl GHT_PWv
LEFT_PWM

FCB
FCB

$0

$1000
$1018
$101A
$1020
$1022
$1023

The out put conpare register
The out put conpare register
Timer control register 1

Ti mer mask register 1

Timer flag register 1

PR S

*

$1024
$1025 *
$1026 *

Ti mer mask register 2
Timer flag register 2

Pul se accunul ator control register
%9©1000000 * OL2

%9©0010000 * OL3

%90000001 * For getting sensor
291000000

290100000

info

$1000 * control nmotors and read from sensors

$1004

$100A * where digital rep. of analog signal is read

$1030 * A/D control register

$1031 * A/Dresult register 1 (PEO)

$1032 * A/D result register 2 (PE1)

$1033 * A/D result register 3 (PE2)

$1034 * A/D result register 4 (PE3)

$1039 * Hardware option control register

EQU $2A PWM si gnal for backwards right notor

EQU $18 PWM si gnal for nowhere right notor

EQU $10 PWM signal for forwards right notor

EQU $07 PWM si gnal for backwards |eft notor

EQU $00 PWM si gnal for nowhere |eft notor
(doesn't wor k)

EQU $1E * PWMsignal for forwards |left notor

$1E * The PWM signal that the right notor reads

$1E * The PWM signal that the left nmotor reads

SENSOR_F FCB $00 * 1 if front sensor on, O if front sensor off
SENSOR_R FCB $00 1if right sensor on, O if right sensor off

*

WALL FCB $00 * 1 if we have awall, O if we dn't
I NVALUE FCB $00 * Input fromport E

PWWLO FDB $0100 * How long to wait on | ow

PWVHI FDB $0100 * How long to wait on high

Rk I R R R I R Rk S O S

* Set up interrupt vectors *

R IR R e S S b S S Rk S

* Note: these will probably change with a different chip
ORG $00D9
JMP OC3I SR

ORG $00DC
JMP OC21 SR

ORG $00EB
JMP RTII SR

R o O R R O Sk I SRR I O R R R R R R I S R R Ik O O S R
R I S R R R S '\/AI N PRmM R R S R kR R I o

ER R o O R R I Sk I R R O kR R I S R S Sk O O S A

R R ok S R R O R

* Initialize stack *
kkkhkkhkhkkhkikkkkhkikkkikhkhkkkk*x
ORG $D000
LDS #$DFFF * Define the stack

R S S R R R I R Rk R O R

* Initialize A/D converter *

EIR I I I I I I I I I I I I b I I I I I I I b

* OPTION: ADPU=1, CSEL=0, |RQE=0, DLY=0, CME=0, 0, CR1=0, CRO=0
LDAA #$80
STAA OPTI ON

* Initialize Port E
CLR PORTE

* ADCTL: SCAN=1, MULT=1, CD=0, CC=0, CB=x(0), CA=x(0)
* Since we have MJLT=1, CD and CC sel ect the group of four ADRs
* PEO = ADR1, PE1 = ADR2, PE2 = ADR3, PE3 = ADR4

LDAA #$30

STAA ADCTL

R Rk o S R S O

* Initialize PW *
EE R S S S b S S S
* Initialize OC2 and OC3
LDAA #$A0
STAA TCTL1
* Enable OC2 and OC3 interrupt
LDAA #$60
STAA TMSK1

18

19

* Sl ow down cl ock to | engthen periods

LDAA #$03
STAA TMSK2

R S S R R R I O S R R R o

* Initialize Real Tine Interrupt
LRI e S b S S b b Sk S R R R S S S S R

* Set interrupt rate to 8.19 ns

LDAA #1
STAA PACTL
* Enabl e RTI interrupt
LDAA #BI T6
STAA TMBK2

Rk o I R S O

* Stop the robot *

Rk o S R S O

JSR STOP_ROBOT

R Sk I R R O S S R

* Enable interrupts *
R IR o S S bk S S S R

CLI

kkkkkhkkhkkhkkk*k

* Main | oop *

kkkkkhkkhkkhkkk*k

*F refers to front sensor (SENSOR _F)
*Rrefers to right sensor (SENSOR _R)

NO_WALL
LDAA SENSOR F
BNE HT
LDAB SENSOR R
BNE HT
JSR FORWARD C
HT
LDAA #$01
STAA WALL
GET_WALL
LDAA SENSOR F
BEQ RIGHT 1
JSR LEFT_TURN
RIGHT 1

LDAB SENSOR R
BEQ DOOR

LDAA SENSOR F
BEQ CONT_FORWARD
JSR LEFT_TURN
LDAB SENSOR R
BNE RIGHT 1

BEQ DOOR

CONT_FORWARD
JSR FORWARD CR

*get value of F

*If FI1=0, branch to HT

*get value of R

*If R!1=0, branch to HT

*If R==0 and F == 0 npve forward
*until F or R equals 1

*wal | found
*set wall ==

*nmove robot so wall is on its right
*get value of F

*if F==0, branch to RIGHT_1
*else turn left

*l oad R

*If R== 0, branch to DOOR

*| oad F

*if F == 0, branch to CONT_FORWARD
*If R==1 and F == turn |eft

*|l oad R

*If R!=0, branch to RIGHT_1

*If R== 0, branch to DOOR

*nmove forward until F ==1 or R ==

20

LDAB SENSOR R *|l oad R

BEQ DOOR *If R==0 branch to DOOR
LEFT?2 *I'f R ==

JSR LEFT_TURN *turn |left

BRA RIGHT 1 *branch to RIGHT 1
DOCOR *door or corner found

JSR FORWARD W *move forward a |l ength of w

JSR RIGHT_TURN *turn right

LDAA SENSCOR F *|l oad F

BNE GET_VALL *if F1=0 branch to GET_WALL

LDAB SENSCR R *|l oad R

BNE RIGHT 1 *if R!1=0 branch to RIGHT 1
* WALL == *If R==0 and F == 0 robot is | ost

LDAA #$00 *set wall ==

STAA WALL

BRA NO WALL *branch to NO WALL

R R b S I R S S S R SRR I kIR R I kR R S S O R R R S S R SRR Rk kb O

R O S R R I S I INTERRUPT F(R SENSm R S S S Rk I S S A R

R R b Sk R Sk o S R R Ik O R R SRRk kb o R O O R ok S S Sk R R S Ak

RTI | SR
* Did we get an interrupt fromthe real time interrupt device?
LDX #REG
BRCLR TFL&2-REG X BIT6 RTRTI * If not, ignore by returning

* Clear real tinme interrupt flag (remenber: 1 clears, O does nothing)
LDAA #BI T6
STAA TFL&- REG X

* CGet front sensor data (PE2)

LDAA ADR3

CVMPA #3$80

BHI SET_SENSOR F_1

LDAA #$00

BRA SET_SENSOR_F
SET_SENSOR F_1

LDAA #$01
SET_SENSOR _F

STAA SENSCR F

* Cet right sensor data (PEO)

LDAA ADR1

CVPA #3$20

BHI SET_SENSOR R 1

LDAA #$00

BRA SET_SENSOR_R
SET_SENSOR R 1

LDAA #$01
SET_SENSOR R

STAA SENSOR R

RTRTI
RTI * Return fromthe interrupt

21

R R Sk I R o S R R R Ik O S S R SRR Ik b o R R S o S R R Sk Sk I S A R

Rk o S R R R O o S R INTERRUPT F(R LEFT I\/Ul'm R o S R R S O S O

Rk R b S Sk R ok S R SRR R Ik kS R SRRk kb o R R O R R R O O Ak S R A SRR Sk

R I S R R S S R

* Check that flag set *
R I I I I I I I I b I b b I S b I e
oC21 SR
LDX #REG
BRCLR TFLGIL- REG X OC2F RTOC2

Rk S o R R O S O

* Clear the flag *
kkkkhkkkhkikkhkkhkikkkikhkx*k

LDAA #OC2F

STAA TFLGL- REG X * Acknowl edge that interrupt
occurred

LDAA LEFT_PWM
STAA | NVALUE

* Store the anal og value into PWH
LDAA | NVALUE

LDAB #$00
STD PWwHI
* Store $FF nminus the anal og val ue into PWMLO
LDAA #$FF
SUBA | NVALUE
LDAB #$00
STD PWWMLO

BRSET TCTL1-REG X BI T6 LASTHI 1

R S o S Rk S

* Set PWM high *
EIE R I I I I I I
BSET TCTL1-REG X BI T6
LDD TOC2- REG X
ADDD PWWLO
STD TOC2- REG X

BRA RTCOC2

R S I R I

* Set PWM | ow *

R S I R O

LASTHI 1
BCLR TCTL1-REG X BI T6
LDD TOC2- REG X
ADDD PWWVHI
STD TOC2- REG X
RTOC2

RTI * Return fromthe interrupt

R Rk S Sk B o o S R R I Ok A R R A R R R I Rk S S R R O R R Ik Sk O R R

R O S R R O S I INTERRUPT F(R RIG_”' '\/D'r(R R I b R R R R S

R Rk Sk R ok S S R R I O R R I R R R AR Ik R R o O R Rk Sk S kS R AR R Ik Sk

R I S R R I S A

* Check that flag set *
R IR I I I I I I I I I I b I S b I e
OC3I SR
LDX #REG
BRCLR TFLGI1- REG X OC3F RTOC3

R Rk o O R S O

* Clear the flag *

Rk S o R R O S O

LDAA #OC3F
STAA TFLGL- REG X * Acknowl edge that interrupt
occurred

LDAA RI GHT_PWM
STAA | NVALUE

* Store the anal og val ue into PWH
LDAB | NVALUE

LDAA #$00
LSLD
LSLD
LSLD
LSLD
STD PWwH

* Store $FF nminus the anal og val ue into PWMLO
LDAB #$FF
SUBB | NVALUE
LDAA #$00
LSLD
LSLD
LSLD
LSLD
STD PWWMLO

BRSET TCTL1- REG X Bl T4 LASTHI 2

R S S R S

* Set PWM high *
EIR IR I I I I I I I
BSET TCTL1-REG X BI T4
LDD TOC3- REG X
ADDD PWWLO
STD TOC3- REG X

BRA RTCC3

R S I R R S

* Set PWM | ow *

R S I R R

LASTHI 2
BCLR TCTL1-REG X BI T4
LDD TOC3- REG X
ADDD PWWH
STD TOC3- REG X
RTOC3

RTI * Return fromthe interrupt

23

R o O R R I S IR R O bk R b R I R SRR S Sk O O O R AR R

R b S R I R S m/l NG SUBRQJTI NES khkkhkkhhkkhhkkhhkkhhkhhkkhkkhkkkx

R o O R R I Sk Ik R AR O R R R R R R R R S Sk kO S R

R S S R R S I R R R b

* Move forward one cycle *
E R IR Ik S S b S S R Rk I S
FORWARD W
PSHA
LDAA #FORWARD PWM L
STAA LEFT_PWM
LDAA #FORWARD PWM R
STAA Rl GHT_PWM

* Delay for one second
LDAA #$32 * Paranmeter = # of 20 mllisecond del ays
JSR DELAY
JSR STOP_ROBOT

PULA
RTS

R R o R R S o O S R Ik b R e S S S R R S O

* Move forward continuously until F ==1 or R == *
EE IR S S kS kI R S S R R Sk kS S Sk S Sk S S Rk b
FORWARD_CR

PSHA

LDAA #FORWARD PWM L
STAA LEFT_PWM
LDAA #FORWARD PWM R
STAA Rl GHT_PWM

* Poll the sensors to see if we hit something
FORWARD L OOP1

TST SENSOR _F

BNE FORWARD BREAK1

TST SENSOR R

BEQ FORWARD BREAK1

BRA FORWARD LOOP1

FORWARD_BREAK1
JSR STOP_ROBOT

PULA
RTS

R R o S R Rk ok O S Rk Sk O R R R e o S S R I O A S I

* Move forward continuously until F==1 o R==1*
R S S kI R Rk Sk Rk Sk S S
FORWARD C

PSHA

LDAA #FORWARD_PWM L
STAA LEFT_PW

LDAA #FORWARD_PWM R
STAA Rl GHT_PW

* Poll the sensors to see if we hit something

FORWARD_LOOP2

TST SENSOR_F

BNE FORWARD_BREAK2

TST SENSOR_R

BNE FORWARD_BREAK2

BRA FORWARD_LOOP2
FORWARD_BREAK2

JSR STOP_ROBOT

PULA

RTS

R I S S R R I O S A R

* Turn right 90 degrees *

R I S S R R I O S A R

Rl GHT_TURN
PSHA
LDAA
STAA
LDAA
STAA

#FORWARD PV L
LEFT_PWM
#BACK_PWM R

Rl GHT_PWM

* Delay for one second

LDAA
JSR

JSR

PULA
RTS

#$32 * Paranmeter = # of 20 mllisecond del ays

DELAY

STOP_ROBOT

R o S R R R O S S I

* Turn left 90 degrees *
LRI o Sk S S S S R I

LEFT_TURN
PSHA
LDAA
STAA
LDAA
STAA

#BACK_PWM L
LEFT_PWM
#FORWARD PV R
Rl GHT_PWM

* Delay for one second
#$32 * Paranmeter = # of 20 mllisecond del ays

LDAA
JSR

JSR

PULA
RTS

R Rk I o S R S O

DELAY

STOP_ROBOT

24

* Stop the robot

*

R Rk S O R O S O

STOP_ROBOT
PSHA
LDAA
STAA
LDAA
STAA
PULA

RTS

#NO_MOVE_PWM L
LEFT_PWM
#NO_MOVE_PWM R
Rl GHT_PWM

E R R S I R R Sk O S R SRk O kb o

* Delay for (A *

20) mlliseconds *

R R S I R R S O S R SRR I

DELAY
TSTA
BEQ
LDX

AGAI N
BEQ
DEX
BRA

AHEAD
DECA
BRA
RTS

END

RT
#$115C

AHEAD

AGAI N

DELAY

25

