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Abstract:

Our project is to design an 8-bit RISC microprocessor implementing a subset of the MIPS
instruction set.  This project is an extension of the designing of a 4-bit RISC microprocessor that
E157 had in previous years.  We have added memory to our design, whereas in the past, it was
not required.  We are using the Xilinx Spartan XCS10 FPGA to store all of the logic necessary to
make a microprocessor.  Also, all memory and registers are on-board the FPGA.  In addition to
the XCS10, we are using the Motorola HC11EVB as input to the microprocessor.
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Introduction

This project is to design and implement an 8-bit microprocessor implementing a subset of

the MIPS instruction set.  Most computers today are based off systems of similar design, so we

decided to build our processor to have a better understanding of the microprocessor architecture.

While our design does not have any direct real-world application, since it does not contain many

features common to current processors, we hope this project will enlighten us as to the

foundations of microprocessor design.

Our design is implemented on the Xilinx Spartan XCS10 FPGA using Verilog code to

design the logic for the microprocessor.  We have chosen the Verilog HDL instead of logic gate

schematics because we are more familiar with it, and it allows us to represent very complex logic

using a higher-level language.  The Motorola HC11EVB is used as the source of input

instructions for the microprocessor.

 In addition to the microprocessor and EVB interface, we have designed a dual 7-segment

display as output devices.  This is used to check the current status of any register on-board the

FPGA, which allows us to debug the operations of the circuit and verify the output of any

program created to run on our microprocessor.
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Schematics

Using Verilog has allowed us to design the microprocessor in a modular fashion.  Our

microprocessor layout is broken into several modules.  The top-level module implements the

transfer of information between the different registers, as well as the functional modules of the

microprocessor.  We then have the control module that acts as a finite state machine that outputs

an appropriate control code decoded from the instruction opcode.  Our microprocessor contains

on-board memory along with the top-level registers used for our design.  The ALU module acts

as the microprocessorÕs arithmetic logic unit to perform the instructions that we have

implemented.  Finally, the 7-segment display module is used to mux the display of two 4-bit

numbers onto a single 7-segment display.

It has been necessary to program our microprocessor into two separate FPGA units

because of the limited amount of logic blocks on the Spartan FPGAÕs.  Our design uses the

secondary FPGA to run the 7-segment display modules and the ALU module.

Our implementation of the 8-bit RISC microprocessor uses two modes of operation.  In

the ÒdownloadÓ mode, 8-bits of the EVB are sent to the FPGA to store the instruction onto on-

board memory.  In the ÒrunÓ mode, four bits of the EVB are used to select which register

information will be outputted to the 7-segment display.
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Microcontroller Design

Our design uses the 8-bits of port B on the Motorola HC11EVB.  To use port B of the

EVB as an input device it is only necessary to write the desired input value to the port B register

at address $1004 using the memory modify (mm) command in Buffalo.  As previously

mentioned, during the ÒdownloadÓ mode, all 8 bits are used to transmit the program word by

word into the on-board memory of the microprocessor.  In the ÒrunÓ mode all 8 bits of port B can

be written to but only the four least significant bits are used as input data.
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FPGA Design

Being an 8-bit microprocessor, each word in memory is 8 bits wide.  A program loaded

into the on-board memory consists of a series of commands, which are stored in memory in a

command field.  A command field consists of four words of data and looks as below:

Op-Code Rs Rt Rd

The op-code word is the actual instruction to be executed, while the words Rs, Rt, Rd

each have different functions depending on the instruction to be executed.  We have

implemented the following commands:

Name Mnemonic Op-Code Operation

Load Word lw 0 Loads word from memory address A+Rd into
reg_block[Rt]

Store Word sw 1 Stores the contents of reg_block[Rt] memory at the
address A+Rd.

Add add 2 Stores the result of binary addition of register A and
reg_block[Rt] into reg_block[Rd].

Subtract sub 3 Stores the result of binary subtraction of register A and
reg_block[Rt] into reg_block[Rd].

And and 4 Stores the result of the bitwise binary AND of register A
and reg_block[Rt] into reg_block[Rd].

Or or 5 Stores the result of the bitwise binary OR of register A
and reg_block[Rt] into reg_block[Rd].

Set on Less
Than

slt 6 Stores the value Ô1Õ into reg_block[Rd] if register A is less
than reg_block[Rt].  Otherwise, it stores the value Ô0Õ

Jump j 7 Change PC to the address Rd
Branch if
Equal

beq 8 Move PC to the address PC + Rd if reg_block[Rt] equals
register A

The register A contains the value that is in the on-board register with the address given in

Rs.  Registers Rt and Rd contain either addresses for registers used in the opcode instruction or

offsets for branch instructions.
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The primary FPGA also contains the register PC, which indicates the current address in

on-board memory for execution.  We also have a block of four 8-bit on-board general-purpose

registers, known as reg_block[X] (X = 0..3).

In the top-level module, there are sequential logic blocks for assigning values for memory

management units, the transfer of data from main memory to appropriate registers, assignment of

inputs for the ALU, and the assignment of values to be output on the 7-segment display.

On the secondary FPGA, the top-level module sends information obtained from the

primary FPGA to the ALU and 7-segment display modules.  The 7-segement-display module

displays a value on the left side during the positive part of clock and displays another value on

the right side of the display during the negative part of the clock.  The ALU module computes

our implemented instructions.

The following procedure is used in running a program on the microprocessor.  If the

program is not currently on the on-board memory it must be downloaded by entering the

program word by word in the manner outlined below.  Once the program has been downloaded

the microprocessor should be reset by using the reset input (not the reset button on the circuit

board) which will set all the registers in the microprocessor to their start states but keep the

program in memory.  Next one puts the microprocessor in run mode and clock through the

commands.  The running of the microprocessor in run mode is also described below.

To understand the workings of the microprocessor it is best to look at the timing diagram

for the microprocessor (see Microprocessor Timing Diagram).  Each command in a program is

implemented in one command cycle, taking a total of ten clock cycles to complete.  Each

command cycle is broken down into five sub-cycles, each taking two clock cycles to implement.
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The timing diagram also shows four clocks that each have a period of one command sub-cycle.

These clocks sequence the different actions that the microprocessor performs during a sub-cycle.

The microprocessor downloads a program when the input bit mode is low.  While in

download mode a word of the program is loaded into memory during every sub-cycle. On the

rise of clk2 a word is loaded into the mem_wr register and the Addr register is set to the address

of memory to which the word will be written.  On the rise of clk3 the value in the mem_wr

register is written to memory through the logiblox memory module.  The words are loaded in

order starting at memory address 00, and downloading stops when address 1F is reached since

there are only 32 words in memory.  A 6 bit index, that is incremented on the rise of clk4, is used

to keep track of the address that each word should be written to.

In run mode each command takes five sub-cycles to complete.  At the start of running a

program the microprocessor should have all registers set to their default values of zero, otherwise

the start state of the program may be indeterminable and cause the program to run improperly.

During the First sub-cycle, known as Fetch1, the register IR is loaded with the op-code from the

command field and PC is incremented.  In Fetch2 the Rs word is loaded in the register Rd and

PC is incremented.  In Fetch3 the word Rt is loaded into the register Rt, the register A is loaded

with the value contained in the general-purpose register with the address that is stored in register

Rd (the address comes from the Rs word in the command field), and PC is incremented.  In Fetch

4 register Rd is loaded with the word Rd and PC is incremented by one.  In the Instruction sub-

cycle the actions that take place depend on the instruction stored in IR and can be found in the

table above.

The sequencing of a sub-cycle in run mode is similar to the one followed in download

mode.  During the rise of Clk1 a control code is determined by the control module finite state
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machine (see Schematic for Control Module Finite State Machine) which determines the actions

that will be taken during each sub-cycle of the command cycle.  On the rise of Clk2 all required

on-board memory interfacing is done.  To read from or write to memory the read/write control

bit for the on-board memory must be set to the appropriate value (0 for read only, 1 for write

access), the address of the memory must be set, and if memory is being written to the word to be

written must be stored in the mem_wr register.  On the rise of clk3 the logiblox memory module

implements the memory interface that has been specified and places the word at the address

stored in Addr register in the register connected to mem_rd.  On the rise of  clk4 the appropriate

register is loaded with the value designated by the control code.

The microprocessor runs off the clock on the PC board built for the FPGA. While the

microprocessor is able to run off of the oscillator at speeds of at least 1MHz, it is more practical,

for demonstration purposes, to run it off of the manual clock connected using the jumper J3.  The

reason a real clock is not practical is due to the fact that we have not implemented a ÒstopÓ

command, which means the program that has been downloaded will run continuously until the

clock is disconnected.  Since it is impossible to predict at which command, or even sub-

command, the program will stop, it is impossible to tell what the end state of the registers should

be.  In any case, The timing analysis given above works for understanding the workings of the

microprocessor.
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Results

Our design has been implemented with a 32-word memory space, allowing for programs

of up to eight commands to be run.  We have implemented a program that uses all instructions

correctly, so our design is sound.  At the current time, the microprocessor has only been run

through a manual clock.

With a functional base microprocessor built it is now possible to focus on extending the

current design.  Some ideas we have had for extending the functionality of this design follow.

One idea is to program the HC11EVB to download the program to the on-board memory in real

time by setting up a master slave protocol between the microprocessor and the HC11EVB.  Other

commands would also be useful, including the much needed stop command which would allow

one to run the processor reliably in real-time (the only other alternative to a stop command is

jump command that jumps to itself, though infinite loops are never fun and would not work with

programs that run sub-processes).

The main limitation on the project has been the amount of logic that can be put on one of

the Spartan FPGAs. The Current design uses two FPGAs, as discussed above, which has led to a

massive wiring project and used up nearly all the available input/output pins for the two FPGAs.

The primary FPGA is currently running at about 94% to 100% full with a 32 word memory and

only four general purpose registers so extending the design may be very difficult.  Trying to

extend the abilities of the microprocessor by using the secondary FPGA will be extremely

difficult since there are so few pins left over communicating between the two FPGAs.  To

combat these problems the best approach may be to take the design and make break it down into

even smaller modules, which may allow for a more efficient design and one that can be spread

out to more processors with fewer pins needed.
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Microprocessor Timing Diagram
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