
A Binary Adder/Subtractor
Final Project Report
December 9, 1999

E157

Christopher Kalima and Joshua Kihm

Abstract:

A simple Four Function calculator is actually a fairly complex hardware design. Using two Xilinx Spartan
XCS10PC84 FPGA’s, this project is able to use familiar keypad inputs to calculate the sum or difference of
two integers. The user can type in an input on a keyboard in familiar decimal form, press the control keys
like a standard calculator, and then see the result of the operation displayed in hexadecimal on a eight
number hexidecimal display. The design consists of control of the keyboard input, arithmetic logic, control
and number storage units, the interface between the FPGA’s, and output logic.

2

Introduction
A common four-function calculator is actually a fairly complex piece of hardware to implement.

For a seven number display, one must find a way to perform arithmetic functions on numbers as large as
ten to the seventh minus one (9,999,999) as small as ten to the negative seventh (.0000001). Although
speed is not particularly vital for such a specialized system, chip area and systems resources are vitally
important. As this project progressed, difficulty in implementing various system components and fitting
our design onto the Xilinx Spartan XCS10PC84 field programmable gate array (FPGA) forced us to
simplify our design. What started as a four function calculator using IEEE 754 floating point numbers
ended up as a simpler binary integer adder/subtractor. We were, however able to at least implement each
sub system in software and completed enough of the design to show proof of concept of our original
design.

3

Schematics
The design of the circuit which we used is fairly simple. The first FPGA evaluation board

handles the input and the arithmetic logic. It is hooked up to the key pad and to the other FPGA EVB. The
keypad is a standard 4x4 matrix keypad as was used in lab 4. The keypad is set up so that the rows are tied
high through 1kΩ resistors and are monitored while the columns are powered such that three are high and
one is low at any given time. When a key is pressed, the row pin will be shorted to ground when the
appropriate column pin is low. By deciphering what row and column are low, the logic can determine what
key is being pressed.

The interface between the boards consists of seven data wires. The first five are used as a five bit
wide serial data interface which sends data to the second FPGA EVB. One pin sends a signal which
synchronizes the input and output of the two boards so that data on both ends matches. The last pin sends
as error signal if there is overflow or another arithmetic error.

The second FPGA controls the output of the system. Its pins are taken up be the interface with the
first FPGA and with pins used to display data on the seven segment displays. By using multiplexed output,
that is switching the data back and forth between two displays and only powering the appropriate display,
we cut down the number of necessary pins in half. Two PNP transistors are powered through 330Ω
resistors to the base. They are powered one at a time. The collectors are connected to 5v and the emitters to
the power pins of the seven segment displays. In this manner, only one of the two numbers on the display
is powered at a given time. The seven segment displays use a common anode set up so each LED or
number segment is lit when is pulled low through a 330Ω resistor. Figure one shows the setup of our
system.

Figure 1:system schematic

4

FPGA Design
The majority of this project was spent in designing and trouble shooting the logic on our two

FPGA’s. The system is divided such that the first FPGA EVB is used to interpret the input and perform
the arithmetic operation. The second FPGA EVB is used to convert the data from binary to the data used
by the actual seven segment displays. Each FPGA also contains the appropriate logic for interfacing with
each other.

The number foramt which we used consists of twenty five bits. The top bit is a sign bit and the
bottom twenty five bits are the significand. This format was chosen because of its simplicity for
multiplication and decoding. There is no shifting or exponent bits so the first bit always corresponds to
one, the second to two, the third to four and so on.

The top level layout of the first FPGA can be seen in figure two. Basically, it controls the three
registers and the inputs to the adder logic so that the correct data is displayed at the correct time. The first
register (Rslt) is used to store the data from the adder and feeds it back into the adder. The next register
(disp) also stores data from the adder and it feeds the output logic. The reason why two registers are
needed is because when a function or equals key is pressed, the data in the result register clears but the
display register keeps the data. The display register stores the data so that the user can still see the result.
The result register is cleared so that on the next number press, a new number is started rather than
appending it to the end of the old number. The shift left logic is used to compute the number in the register
times ten by adding eight times the number plus two times the number. This is done when ever a number is
pressed so that the user interface is in a decimal format. For example, if the user pressed two followed by
one, the number would be interpreted as twenty-one. The final register (arg) stores the first argument of the
main operation being performed. For example if the user input “45 + 90,” the argument register would
hold the data “45” while the user input the second number.

Control

Sft lft 3

Sft lft 1

Clk dvdr Output
logic

+/-

Disp

Arg2

Input

Figure 2: FPGA1
 Layout

Rslt

The logic which controls the input is one of the more complicated subsystems of this design.
Fortunately, it was already completed as part of lab 4. The only change that had to be made was to change
the decoder module and to remove the end so that it out put a number and a function code rather than
signals for a seven-segment display. The basic layout can be seen in figure three. The clock counter slows
the clock frequency so that the debouncer is looking at the signal in terms of milliseconds rather than
microseconds. The keypad driver outputs to the keypad a one low signal which is used to determine what
column a pressed key is in. The Three-Cycle delay block simply delays the data from the keypad driver so
that it arrives at the same time as the data from the debouncer. The mux separates out the data which is
debouncing form the three stable signals coming from the keypad. The debouncer debouces that one bit.
Finally the decoder takes the driver and debouncer data together to determine what key was pressed.

5

Clock
Counter

Keypad
Driver

Mux Debouncer Decoder Funtion [2:0]

Num [3:0]

3-cycle
delay

Key_out [3:0]

Key_in [3:0]

Figure 3:
Input Logic

The Adder logic is based on a finite state machine as shown in figure four. Basically it is just a
twos compliment adder set up so that the data which comes out is positive and that the sign bit of the result
and the sign bit of the result is adjusted accordingly. The add step simply adds the inputs. The invert state
works by subtracting the data from the number zero. The sign of the answer is changed here too. The send
state writes an output register so that the data is steady. There is also overflow detection in this software.
Because the data to the adder is always positive, it simply states overflow if the sign bit is high on the ALU
output and the operation was positive. The sign bit of the output is adjusted also if the first argument is
negative. If this is the case, the result has to be arithmetically inverted.

Sign
Sign

Sign
Add Invert Send

Figure Four: Finite State Machine for adder

The output logic is fairly simple. It is a six-state finite state machine. In the first state, the “send”
command is high and the data wires are low. This state is used to synchronize the states of the input and
output. The data is then sent five bits at a time with bits zero through four being sent first. Following that,
the data is sent five bits at a time until the end is reached. The cycle then repeats.

The finite state machine of the control logic can be seen in figure five. The logic
basically waits for a key to be pressed then goes through a few states according to the function code from
the input decoder. If a number is pressed, the data in the result register is multiplied by ten then added to
the number which was pressed. If the number in the result register was negative, then the number from the
decoder is subtracted. If a function key is pressed, plus or minus, the operation code is stored, the number
in the result register is written to the argument register, and the result register is cleared. This is where the
display register is needed. If it were not there, then the old number would disappear when the function key
was pressed or the next number pressed would simply be appended onto the end of the first. A clear
command makes the result and display registers go to zero. The argument register is not cleared. This is so
that if a mistake is made by the user, they can clear the number which they are inputting without losing the
first argument. The plus minus key inverts the sign bit of the result and display registers. The equals key,
performs the operation which is stored in the opcode register, writes the data to the argument register and
then clears the result register.

6

Sign
Sign

Sign

Add
input

Sub
Input

Mult
By 10

Figure Five: Finite state
Machine for Control logic

Clear
Rslt &
Disp

Invert
Sign

Store
Arg
& Op

Clear
result

Perform
Op

“=”
number

+/-

wait

Full_enbl

funct

clear

The second FPGA handles the output of the system. It receives the 5-bit wide serial input from
the other FPGA and then drives the seven segment displays. The input block of this FPGA is basically a
shift register with a FSM control. The states simply count the clock cycles since the send signal from the
output was high. Once that count reaches five, the data is done transferring and so the data in the shift
register is written to the out put register. The out put register is then read by the output encoder (called
out_reg). This module uses a multiplexor to read the input bits four at a time. It runs those four bits
through a decoder which convert a four bit number to the appropriate signal for the seven segment display.
On the other side of the decoder, eight 8-bit registers store the data from the decoder. The registers are
written when the corresponding eight bits are being read. For example, if the four least significant bits are
being read, then the first register is written with that data. The registers are eight bits so that the decimal
point can be used, even though are system does not use it. The display is multiplexed using PNP transistors
as in lab 3. When the display clock is high, the first, third fifth and seventh numbers on the display are
driven and the even ones are driven when the clock is low.

7

Results
In the end, this system can add and subtract integers which are input through the key pad.

Unfortunately, we were unable to get the system to work in floating point as originally planned. Also, we
were unable to integrate the multiplication and division due to space restraints. We did prove that our
original design would work if we had a slightly larger FPGA or a little more time to squeeze the needed
logic on our chips.

Originally, we planned to implement our design in IEEE 754 floating point. We were successful
in implementing all of the needed code to perform the operations. However, when we tried to program our
chip, the system required far more CLBs then were available. Our first attempts at optimization were
basically in cleaning up our code so that we implied less hardware, mainly ALUs.. This was far from
enough. The major progress we did make in reducing the size of our logic was that we changed the adder
from a single cycle design to a multicycle design. The modules which performed variable shift were very
large as they implied often twenty three way, twenty-three bit multiplexors. These were replaced in the
multicycle approach by single step shifts and control logic which could repeatedly perform such steps. This
design uses only one ALU to perform all of the various addition and subtraction needed in the floating
point process. This reduced the adder itself to about sixty percent usage of the CLB’s or about 120 CLB.
This was a vast improvement over our early single cycle designs which were in the range of two hundred
percent. The problem was that the Xilinx software would not right the eight bit exponent from the twenty-
six bit ALU. Despite trying a large number of ways around this problem we could not find a way to get it
to work. Also, the multiplier hardware would not perform multiplication on larger numbers after being
recorded. Smaller numbers would come out correctly but large ones would cause problems. Due to the
impending deadline and the troubles we were having with the arithmetic logic, we decided to go with a
simpler solution so that we could meet our deadline. Looking back, it would have been a good idea to go to
binary coded decimal due to the ease of decoding. However, our twenty five bit format required us to
change only a small amount of hardware, mainly in the adder to get the system working. With the deadline
looming, we were unable to fit the adder, input software, and the multiplier on one chip. The design, with
all of this hardware only required ten more CLB than we had available. Given just another day, we
probably could have further optimized the code to the point here it would have fit. The easiest way to do
this would have been to use the same ALU for the adder and the multiplier which probably would be
enough to fit the multiplier on the chip (a twenty five bit ALU usually takes up about 12 CLBs in
implementation with the foundation software). So in the end, we ended up with the adder, control logic
and registers, the interface with the second ALU, and the input system on the first chip. This implemented
using 113 CLBs of the available 196 or about 57%.

The main reason we decided to use two chips was that we could fit the decimal decoder on the
second chip. Since the system uses a simple binary number format, the decoder does not require any
complicated hard ware for performing arithmetic. We were able to design the decoder which worked
perfectly in simulation and only used sixty eight percent of the CLBs with the input system and output
registers. However, when we actually tried the system, the outputs were only zero and error. This was
probably due to a timing error. We implemented the final system with the second FPGA with only the
interface system and the output registers so that the result would come out in hexadecimal. This system
works perfectly so the problem is in the actual decimal decoder. Again, with the impending deadline, we
were unable to fully track down this problem, but it is probably only a relatively minor mistake.

One final note on our implementation is that the system only works in the one megahertz mode on
the EVBs. The output becomes blurry when we use the two mega hertz mode probably because the data
does not have enough time to stabilize and fully stabilize the seven-segment displays before it changes to
the other number.

Over all , the designs worked, at least in simulation, it was fitting them on the chip and worrying
about timing in the real world that was the greatest challenge. This is probably a very good lesson to learn
as this is exactly the sorts of things practicing engineers worry about. The system is at least minimally
functional and contains enough functions to prove our conceptual design. With a day or two more time,
multiplication could have been squeezed in and decimal decoding could have been worked out. Practicing
engineers also have to work with deadlines though.

8

References
[1]Patterson, David and Hennesy, John, Computer Organization and Design, Palo Alto, CA: Morgan
Kaufman, 1997.

Parts List
All parts used in this project are readily available in the Micro Systems lab or the engineering stock room.

9

Appendices

Appendix A: Binary Multiplication and Floating Point Operations

Appendix B: Verilog Code used in the final design

Appendix C: Verilog Code not used in the final design

10

Appendix A: Hardware not included in Final System
Through the course development of this design, several radically different approaches were taken

to the arithmetic logic. Also, the conversion of numbers to decimal was tried. Unfortunately, size and
timing constraints forced the omission of these systems from the final system. This appendix will address
multiplication, division, decimal conversion and floating point addition logic which was omitted from the
final design.

Binary Multiplier
When implementing our original design, the multiplier inferred in Verilog was optimized for

operational speed, but took up too more space than any other component. Because of this, there was a need
to design our own binary multiplier, which operated at a much, much slower rate but took up considerably
less area on the chip.

The multiplication algorithm used is the same as the one that is presented in Patterson and
Hennesy, which was chosen due to its relatively small area and simplicity of components. It consists of
two registers, one being 24-bits in length (given a 23-bit significand plus an appended leading one) and an
enabled 48-bit register (product register). There also exists a 24-bit adder, a three to one multiplexer, and a
finite state controller, which sends the appropriate control signals to the hardware. The hardware looks like
the following:

Multiplicand Register

Product Register

Control

24 Bit Adder

3 to 1 Multiplexer

Data In 1

Data In 2

R
ight Shifted

Left half of register

enable

select

enable

Figure A.1

Data 1 and Data 2 represent the numbers that are being multiplied. The multiplication process
takes 24 cycles, but this sacrifice in speed allows for a reduction of area, which was crucial for our project.
The actual control algorithm is implemented in a finite state machine, which is outlined below:

11

Initialize Registers

Test LSB of Product Register

Add left half of product
register to multiplicand

Right shift product
register

24th Repetition?

Increment Counter

finished

lowhigh

no

yes

Figure A.2

In the initial state the registers are initialized with the two values that are to be multiplied, and the
counter is reset to zero. Then the least significant bit of the product register is tested to see if it is high or
low. If the bit is high, the left half of the product is added to the multiplicand then written to the left half of
the product register. If the bit is low, then the product register is shifted right by one bit. Next, the counter
is incremented to denote the passing of a cycle. This step is followed by a test of the counter, to see if all
the necessary cycles have been performed. Since we are multiplying two 24-bit numbers, the counter must
equal 24 before we are finished. Once the 24th repetition has been performed, the multiplier is finished and
exerts a valid signal for two clock cycles before beginning the process again.

Floating-Point Multiplier
The floating-point multiplier was the largest single element in our design, eating up 86% of our

available configurable logic blocks on the chip. The hardware for the multiplier is outlined below:

12

Floating point number 1 Floating point number 2

xor

9 Bit ALU
Binary Multiplier

sign signexponent exponentsignificand significand

+1control

Mux 2:1 Mux 2:1

Product

sign
exponent significand

En_input

smux

emux

en_product

en_sig

 [23:0] {0, [22:1]}

msb_exp

msb_mult/ m_valid

 valid

 error

Figure A.3

The two floating-point numbers being multiplied are held in two 32-bit enabled registers. The
sign bit of the product is found by simply performing an exclusive-or on the two sign bits. This result is
then written directly to the product register. The exponents are sent to a 9-bit ALU which adds the two
exponents and then either passes on the sum (minus the 127 bias), or the sum plus one if overflow occurs in
the multiplier. This is controlled using a 2 to 1 multiplexer, which receives a select signal from the control
logic. The significand are multiplied using the binary multiplier discussed earlier. The result from this
block is also sent to a multiplexer, which is sent a control signal denoting whether overflow has occurred or
not. If it has, the right shifted product is sent to the product register significand, if not then the unaltered
product is sent. The control signal detects overflow in the binary multiplier by examining the top bit of the
significand product, which is one bit larger than necessary. Overflow and underflow in the product register
are detected by looking at the most significant bit of the exponent, which is also allowed one extra bit for
this detection. If the most significant bit of the exponent is high after normalization, then there is an error
and the product register is invalid. Setting an error signal high denotes this occurrence, which can be seen
by top level control.

The control logic was again implemented in a finite state machine. An outline of the algorithm
used is shown below. The initial state is the reset state, in which the two floating-point numbers are loaded
into the appropriate registers, the exponent result register is enabled, and the valid signal is set low. The
FSM then enters a delay state, in which it waits for the binary multiplier to finish, since through it lies the
critical path of the design. Once the binary multiplier is finished, the result is written to the product
significand. The control logic then checks the most significant bit of the binary multiplication product to
see if it is normalized. If it is, then the exponent product register is written. However, if it is not, then the
right shifted binary multiplication product is sent to the significand product register, and the exponent is
incremented by one. Once this is complete, overflow and underflow are checked for and the error bit is set
accordingly. The final state sets the valid signal high, and sends the FSM back to its initialization state.

13

Initial state
Enable inputs

Valid = 0

If m_done = 0
 Loop
Else
 Write significand

Normalized?
Overflow?

True: error = 1
False: error = 0

Normalize
Increment exp

Right shift product

Valid = 1

no

yes

Figure A.4

Floating-Point Division
Floating-Point division resembles floating-point multiplication, however the dilemma it presented

was much more immediate because Verilog does not support the division of non-constant numbers.
Immediately it was apparent that we would need to design our own binary division hardware, then use it to
implement our floating-point division. Unfortunately, once we decided that floating-point division was
outside the scope of our project, the Verilog code disappeared. However the basic algorithm that was used
still holds true and is outlined below.

This is very similar to floating-point multiplication, however now we are taking the difference of
the exponents and dividing the two significands. First to find the sign we can again exclusive-or the sign
bits. Next, to solve for the exponent, take the difference of the two input exponents. The significands are
then divided, making sure to append the leading one for each. This result may not be normalized and must
be checked for normalization. If it is the case that it is not, then simply shift the result right one bit and
increment the exponent by one. Finally, we need to check for overflow and underflow. If either of these
cases occur we have an exception that must be set.

Xor sign bits

Take the
difference of the

exponents and add
the bias.

Divide the
significands

Normalized?

Normalize
Increment exponentOver/Underflow?

finished

noyes

Figure A.5

The binary divider algorithm is analogously similar to the binary multiplication algorithm, again
instead of additions, now we are performing subtractions. The algorithm that was implemented in our
design is outlined below:

14

Shift Remainder Register left 1 bit

Subtract the divisor from the left half of the
remainder register and place the result in the left half
of the reminder register.

TestRemainder

Shift remainder left 1 bit
Set rightmost bit to 1.

Add the divisor register to the left half of the
remainder register and place the sum in the left half

of the remainder register.
Shift the remainder register left 1 bit, setting the

rightmost bit to 0.

If positive If negative

23rd Repitition?

Shift left half of remainder right 1 bit.

No

Yes

Figure A.6

This design required one 25-bit divisor register and one 50-bit remainder register. These are one
and two bits larger than necessary respectively, however sign becomes an issue in this procedure and must
be accounted for in the design. The easiest way to do so is to add a sign bit to the numbers being
manipulated. The design also requires a 25-bit ALU that performs the necessary functions upon the two
registers, and some multiplexers to the appropriate outputs at the appropriate times. The control logic is
modeled after the algorithm above, and must count repetitions in order to write the output at the appropriate
time.

Unfortunately we were never able to successfully implement this design, although steps had been
made in the right direction. Ultimately time constraints forced us to eliminate division from the scope of
our project, and area restrictions may have forced it out also, considering what little space remained after
our successful implementation of just the addition and subtraction modules.

Binary to Binary Coded Decimal Decoder
In order to be simple and easy to use, we wanted to display our output in decimal. It was an

obvious choice because only a select few people know what 528 is in hexadecimal off the top of their
heads. Thus we needed some way of decoding these numbers we were calculating in binary to a binary
coded decimal representation. We eventually settled upon a method that goes as follows.

Since our output could be no larger than 9,999,999 and no smaller than 0, we proposed to subtract
the first four powers of 2 (2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8) scaled by the decimal unit range desired
(10^0 through 10^6) to produce a binary coded decimal number for each unit displayed. We would begin
by subtracting the largest amount from the encoded number, or 8,000,000 and work our way down in
descending order to 1. If the result of a difference is negative, then the encoded register remains unchanged
and the binary coded decimal register for that unit is sent a zero. However, if the difference yields a
positive number, then that difference is written to the result register and the binary coded decimal register
receives a one. This algorithm and a brief example are given on the next page.

15

Write Result Register
Send 1 to BCD Register

Result Register = 9

2^i * 10^n n is the unit being decoded-

9-8 = 1

Pos or Neg?

i = 3

Decrement i

n = 7

Send 0 to BCD Register

i < 0 ?

Decrement n

no

yes

pos

neg

BCD = 0000

Result Register = 1 BCD = 0001

1-4 = -3

1-1 = 0

1-2 = -1

Result Register = 1

Result Register = 1

BCD = 0010

BCD = 0100

BCD = 1001Result Register = 0

n < 0 ? done
yes

no

Figure A.7

The example above is simple, only taking into account the ones place, however this method can be
expanded to all decimal places, and was done in our design. The BCD register consisted of a 28-bit shift
register, that shifted one bit left and placed the incoming bit as the least significant bit. Furthermore, since
we had a finite amount of numbers to subtract, we implemented a look up table that provided the necessary
value. This design worked in simulation, however did not perform well in the actual implemented design.
We believe that timing difficulties existed in the actual implementation that somehow erroneously reset the
display to zero continuously.

Floating Point Addition
Floating point addition is a fairly complex process. First the difference between the two

exponents must be found. This information is then used to shift the smaller numbers significand so that the
two numbers line up correctly. The exponents are then added or subtracted appropriately. The result must
then be arithmetically inverted if it is negative and the result sign has to then be changed. The new exponet
has to be shifted and the exponent changed so that the result has the right exponent and the significand is in
the right position with the implied leading one. The final step is to round the significand with taking into
consideration that if the significand is all ones, then the exponent may have to be incremented. Originally,
this was done in this project in a single cycle. This, unfortunately, was far too large to fit on a chip even
after significant optimization. After that, a multicycle approach was tried using fewer ALU’s and big
muxes. This unfortunately, didn’t work. We were unable to get the foundation software to use the ALU to
increment and decrement the exponent so the answer would not come out right.

A single cycle implementation requires several different components the data is processed as
described above on a continuous basis. This is understandably very large in implementation. The set-up of
such a system can be seen in figure A.8. The original verilog code for this is called float_add and a more
opimized version can be seen in float_add_op in appendix C.

16

Figure A.8: Single Cycle Floating Point addtion/subration

As is true for most multicycle processes, floating point addition is far more coplicated in several
steps rather than just one. The idea of this is that by using just one ALU and only shifting the data one bit
at a time, one can save a great deal of space. The implementation of this system did, in fact take up far less
space than the single step implementation. As stated earlier, the hardware had trouble incrementing and
decrementing the exponent. It did however, correctly find the difference between two exponents. Due to
time constraints, this problem was not solved. There is probably a way to fix this problem but it was not
found in several hours of trouble shooting. A finite state machine of this system is shown in figure A.9.

17

Rmv
sign
bit

Sub
sigs

Sub
sigs

Store
smaller

Sig

Store
larger
exp

Increment
exp

Round
sig

Shift
smaller

sig

Compare
exp

sign

Add
sigs

Shift
Implied

one

zero

Arith.
invert

Check for
overflow

Shift
sig left

Shift
smaller

sig

Store
larger
exp

sign

SubIn SubIn

Sign

SubIn

topbit
Sign topbit

zero
zero

zero zero

topbit

topbit

Figure A.9: FSM for
Multicycle floating
point adder

18

Appendix B: Verilog Code in Final System

FPGA 1
module binary_main3 (key_in, key_out, clk, reset, out, midclk, midclkb, send, error);
// this is the main module used on the first FPGA

//input and output declarations
input [3:0] key_in ;
input clk ;
input reset ;
output midclk, midclkb, send, error;
output [3:0] key_out ;
output [4:0] out;

//wire declarations
wire sclk, mux2db, db2dcdr, enbl, full_enbl, ovrflw, rslt_wrt, adderOp;
wire rslt_clr, disp_clr, disp_wrt;
wire [2:0] funct, opcode;
wire [3:0] M, S, n, num, state3;
wire [24:0] encdr_out, addr_out, addr2aluA, addr2aluB, aluOut, result;
wire [24:0] display, answer, mult_out, arg2;

wire arg_wrt, Inv, rslt_src, sub, m_error;
wire [1:0] addSrcB, addSrcA;
wire [12:0] control;

reg error;
reg [24:0] addrArgB, addrArgA;

assign addSrcA = control[12:11];
assign addSrcB = control[10:9];
assign rslt_clr = control[8];
assign disp_clr = control[7];
assign rslt_wrt = control[6];
assign disp_wrt = control[5];
assign arg_wrt = control[4];
assign Inv = control[2];
assign rslt_src = control[1];
assign sub = control[0];

assign answer = rslt_src?mult_out: addr_out;

always @(posedge clk or posedge reset)
if (reset) error <= 0;
else if (ovrflw || m_error) error <= 1;

//the keypad is dirven by the current state
assign key_out = S;

//midclkb is used to run the multiplexed display
assign midclkb = ~midclk;

19

//figure the inputs to the input module (calulate input plus result or result times ten)

always @(addSrcA or result or arg2)
case(addSrcA)
 2'b00: addrArgA <= {result[24], result[20:0], 3'b0};
 2'b01: addrArgA <= result;
 2'b10: addrArgA <= arg2;
 default: addrArgA <= result;
endcase

always @(addSrcB or result or encdr_out)
case(addSrcB)
 2'b00: addrArgB <= {result[24], result[22:0], 1'b0};
 2'b01: addrArgB <= encdr_out;
 2'b10: addrArgB <= result;
 default: addrArgB <= result;
endcase

//calls to the submodules
//clock control
cntr cntr1(clk, midclk, sclk, reset);

//input debounce and decode
driver driver1 (reset, sclk, S);
MUX mux1(key_in, midclk, reset, M, mux2db);
dbncr dbncr1(mux2db, midclk, db2dcdr, reset);
enblr enblr1(enbl, midclk, sclk, full_enbl, reset);
binary_encoder ncdr1(encdr_out, funct, enbl, state3, M, db2dcdr);
three_cyc_dly dly1(midclk, reset, S, state3);

//adder module
binary_adder adder(addrArgA, addrArgB, addr_out, sub, clk, reset, ovrflw, addr2aluA, addr2aluB,
adderOp, aluOut);

//dummy multiplier
pmultplr multplr1(result, arg2, mult_out, m_error, clk, reset);

//Alu
alu_25b ALU(addr2aluA, addr2aluB, aluOut, adderOp);

//result register
ERreg_25b rslt(result, addr_out, midclk, rslt_wrt, reset, rslt_clr, Inv);

//display register
ERreg_25b disp(display, addr_out, midclk, disp_wrt, reset, disp_clr, Inv);

//argument2 register
ERreg_25b_simp arg(arg2, result, midclk, arg_wrt, reset);

//control module
control cont(full_enbl, reset, midclk, funct, result[24], control);

//output module
serial_out_put_5x5 outp(display, out, send, clk, reset);

endmodule

20

21

module binary_adder (A, B, C, sub, clk, reset, ovrflw, argA, argB, alu_op, Alu_res);
//binary adder contains the logic used to perform addition and subracation on a
//25-bit signed binary number. It uses an outside alu so that the same ALU can be used
//for other operations

//declarations
input [24:0] A ;
input [24:0] B ;
output [24:0] C ;
input sub ;
input clk ;
input reset ;
output ovrflw, alu_op ;
output [24:0] argA, argB;
input [24:0] Alu_res;

//wires
wire op, signA, signB, opSel;

//registers
reg signC;
reg [1:0] state, next_state;
reg [24:0] res_reg, C;

//the sign bits are the top bits
assign signA = A[24];
assign signB = B[24];

//determines the operation which the ALU will carry out
assign op = (signA ^ signB) ^ sub;
assign alu_op = opSel?1:op;

//determines the inputs to the ALU
assign argA = state[0]?25'b0:{1'b0, A[23:0]};
assign argB = state[0]?res_reg:{1'b0, B[23:0]};

//dermines if overflow occurs by checking sign bit versus operation
assign ovrflw = ~op & Alu_res[24];

//control the registers
always @(posedge clk or posedge reset)

if (reset)
//on reset all registers go to zero
 begin

state <= 0;
res_reg <= 0;
C <= 0;
signC <= 0;

 end
//otherwise the ALU result is written to the result register,
//the state advances, and possibly the sign of the answer is inverted
//and the output is put to zero.
else
 begin
 res_reg <= Alu_res;
 state <= next_state;

22

 if (state == 2'b01)
 signC <= ~signA;
 else signC <= signA;
 if (state[1])
 C <= ovrflw?0:{signC, res_reg[23:0]};
 end

//next state logic
always @(state or res_reg)
 case (state)
 2'b00: next_state <= res_reg[24]?2'b01:2'b10;
 2'b01: next_state <= 2'b10;
 2'b10: next_state <= 2'b00;
 endcase

endmodule

23

module alu_25b (A, B, C, sub) ;
//this is a simple ALU which performs two’s compliment addition
// and subtraction on two 25-bit numbers

//declarations
input [24:0] A ;
input [24:0] B ;
output [24:0] C ;
input sub ;

wire [24:0] B_arg;

//sets the B argument depending on the function
assign B_arg = sub?~B:B;

//performs addtion
assign C = B_arg + A + sub;

endmodule

24

//Josh Kihm
//this module is the control for the binary calculator

module control (full_enbl, reset, midclk, funct, sign, cntrl) ;

//declarations
input full_enbl, reset, midclk, sign;
output [12:0] cntrl;
input [2:0] funct ;

wire rslt_wrt, opwrt;
wire [1:0] strd_op;

reg [3:0] state, next_state;
reg [12:0] cntrl;

parameter S00 = 4'b0000;
parameter S01 = 4'b0001;
parameter S02 = 4'b0010;
parameter S03 = 4'b0011;
parameter S04 = 4'b0100;
parameter S05 = 4'b0101;
parameter S06 = 4'b0110;
parameter S07 = 4'b0111;
parameter S08 = 4'b1000;

//this is a enable register which stores the op code
ERreg_2b op_reg(strd_op, funct[1:0], midclk, opwrt, reset);

//control signal logic based on state and the stored operation
always @(state or strd_op)
 case(state)

S00: cntrl <= 13'b0000000000000;
S01: cntrl <= 13'b0000001100000;
S02: cntrl <= 13'b0101001100000;
S03: cntrl <= 13'b0000110000000;
S04: cntrl <= 13'b0000000011000;
S05: cntrl <= {11'b10100001100, strd_op[1:0]};
S06: cntrl <= 13'b0000000000100;
S07: cntrl <= 13'b0101001100001;
S08: cntrl <= 13'b0000100000000;

 endcase

//write the op_reg when ever the appropriate signal is high
assign opwrt = cntrl[3];

//register control
always @(posedge midclk or posedge reset)
 if (reset)
 state <= S00;
 else
 state <= next_state;

//next state logic
always @(state or full_enbl or funct or sign)
 case (state)

25

 S00: if (full_enbl)
 case (funct)
 3'b000: next_state <= S01;//number
 3'b001: next_state <= S06;//+/-
 3'b010: next_state <= S05;//=
 3'b100: next_state <= S04;//add
 3'b101: next_state <= S04;//sub
 3'b110: next_state <= S04;//mult
 3'b111: next_state <= S03;//clear
 endcase
 else next_state <= S00;
 S01: next_state <= sign?S07:S02;
 S02: next_state <= S00;
 S03: next_state <= S00;
 S04: next_state <= S08;
 S05: next_state <= S08;
 S06: next_state <= S00;
 S07: next_state <= S00;
 S08: next_state <= S00;
 default next_state <= S00;
 endcase

endmodule

26

module serial_out_put_5x5 (in, out, send, clk, reset) ;
//this is the output module for the interface between the two chips
//it outputs the input five bits at a time. It has a send signal which
//marks the beginning of the transfer so that the input and output are
//synchronized.

//declarations
input [24:0] in ;
output [4:0] out ;
output send;
input clk, reset ;

reg [2:0] state, next_state;
reg [4:0] out;

wire [4:0] in1, in2, in3, in4, in5;

parameter S0 = 3'b000;
parameter S1 = 3'b001;
parameter S2 = 3'b010;
parameter S3 = 3'b011;
parameter S4 = 3'b100;
parameter S5 = 3'b101;

//the send signal goes high in the first state
assign send = (state[2:0] == S0);

//give names to the different sections
assign in1 = in[4:0];
assign in2 = in[9:5];
assign in3 = in[14:10];
assign in4 = in[19:15];
assign in5 = in[24:20];

//advance the state with clock
always @(posedge clk or posedge reset)

if (reset) state <= S0;
else state <= next_state;

//next state logic and output control based on state
always @(state or in1 or in2 or in3 or in4 or in5)
 case(state)
 S0:begin
 next_state <= S1;
 out <= 5'b0;
 end
 S1:begin
 next_state <= S2;
 out <= in1;
 end
 S2:begin
 next_state <= S3;
 out <= in2;
 end
 S3:begin

27

 next_state <= S4;
 out <= in3;
 end
 S4:begin
 next_state <= S5;
 out <= in4;
 end
 S5:begin
 next_state <= S0;
 out <= in5;
 end
 endcase

endmodule

28

module dbncr (mux2db, midclk, db2dcdr, reset) ;
//debouncer module from lab four.

//declarations
input reset;
input mux2db ;
input midclk ;
output db2dcdr ;

reg data1, data2, data3, db2dcdr;
wire AllSame;

//if the siganl is steady for three cycles, Allsame goes high
assign AllSame = ((data1 == data2) && (data2 == data3));

//shift register determines the last three values of the input
always @(posedge midclk or posedge reset)

if (reset)
 begin
 data1 <= 1;
 data2 <= 1;
 data3 <= 1;
 db2dcdr <= 1;
 end
else
 begin
 data1 <= mux2db;
 data2 <= data1;
 data3 <= data2;
 db2dcdr <= AllSame?data3:db2dcdr;
 end

endmodule

module MUX (K, midclk, reset, M, mux2db) ;
//this module selects the appropriate signal to send to the
// debouncer if there is a change in change in any of the
// siganls.

//declarations
input [3:0] K ;
input midclk ;
input reset ;

output [3:0] M ;
output mux2db ;

reg [3:0] M;
reg mux2db ;

wire A, B, C, D;

//give names to signals
assign A = K[0];
assign B = K[1];
assign C = K[2];

29

assign D = K[3];

//output register sends on the opposite of the input
always @(posedge midclk or posedge reset)

 if (reset) M <= 4'b0000;
 else if (K != 4'b1111) M <= ~K;

//determines which signal goes to the debouncer
always @(M or A or B or C or D)
begin
 case (M)
 4'b0001 : mux2db = A;
 4'b0010 : mux2db = B;
 4'b0100 : mux2db = C;
 4'b1000 : mux2db = D;

default : mux2db = 1;
 endcase
end

endmodule

module driver (reset, sclk, S) ;
//the driver circuit sends the four bits that drive the rows of the keypad

input reset ;
input sclk ;
output [3:0] S;

reg [3:0] S;

//on reset, the default value is given, otherwise it cycles through the
// 'one cold' encoding.
always @(posedge sclk or posedge reset)

if (reset) S <= 4'b1110;
else
 begin
 S[3] <= S[2];
 S[2] <= S[1];
 S[1] <= S[0];
 S[0] <= S[3];
 end

endmodule

module enblr (enbl, midclk, sclk, full_enbl, reset) ;
//enblr makes sure that a signal is only read once by sending a
// high signal when the signal only when the enabl signal from the
//decoder is low for the first time since it was last low in the current state.

// delcarations
input enbl ;
input midclk ;

30

input sclk ;
input reset ;
output full_enbl ;

reg lst_enbl1;
reg [3:0] lst_enbl2;

//shift register at slow slock frequency, lst_enbl2[3] hold the
//enble input form when the last time the locgic was in the current state
always @(posedge sclk or posedge reset)

if (reset) lst_enbl2 <= 0;
else
 begin
 lst_enbl2[0] <= enbl;
 lst_enbl2[1] <= lst_enbl2[0];
 lst_enbl2[2] <= lst_enbl2[1];
 lst_enbl2[3] <= lst_enbl2[2];
 end

//last_enbl1 holds the enbl signal from the last cycle of midclk
always @(posedge midclk or posedge reset)

if (reset) lst_enbl1 <= 0;
else lst_enbl1 <= enbl;

//only if enbl is high and it was low on the last cycle of midclk and
//four cycles of sclk ago, is full unble high.
assign full_enbl = enbl && ~lst_enbl1 && ~lst_enbl2[3];

endmodule

module cntr (clk, midclk, sclk, reset) ;
//counter is used to slow down the clock for use by the
// various system components. Midclk runs at 1/1024
//clk frequency and sclk runs at 1/8196 clk frequency

input clk ;
input reset;
output midclk ;
output sclk ;

reg [11:0] cnt;

assign midclk = cnt[8];
assign sclk = cnt[11];

always @(posedge clk or posedge reset)
if (reset) cnt <= 0;
else cnt <= cnt +1;

endmodule

module binary_encoder (binary, funct, enbl, state, mux, db2dcdr) ;
//binary encoder is a simple, combinational logic module that
//converts the debounced data from the keypad to the appropriate

31

//number and function symbols.

output [24:0] binary ;
output enbl ;
output [2:0] funct;
input [3:0] state ;
input [3:0] mux ;
input db2dcdr ;

reg [2:0] funct;
reg [4:0] low_bits;

assign binary = {21'b0, low_bits};

assign enbl = ~db2dcdr;

//number logic
always @(state or mux)
 case ({state, mux})
 8'b01110100: low_bits <=4'b0000; //0
 8'b11101000: low_bits <=4'b0001; //1
 8'b11100100: low_bits <=4'b0010; //2
 8'b11100010: low_bits <=4'b0011; //3
 8'b11011000: low_bits <=4'b0100; //4
 8'b11010100: low_bits <=4'b0101; //5
 8'b11010010: low_bits <=4'b0110; //6
 8'b10111000: low_bits <=4'b0111; //7
 8'b10110100: low_bits <=4'b1000; //8
 8'b10110010: low_bits <=4'b1001; //9
 default: low_bits <=0;
 endcase

//function logic
always @(state or mux)
 case ({state, mux})
 8'b11100001: funct <= 3'b100; //add
 8'b11010001: funct <= 3'b101; //subtract
 8'b10110001: funct <= 3'b110; //mult
 8'b01110001: funct <= 3'b111; //clear
 8'b01111000: funct <= 3'b001; //plus/minus
 8'b01110010: funct <= 3'b010; //equal
 default: funct <= 0; //no funct
 endcase

endmodule

module three_cyc_dly (midclk, reset, S, state3) ;
//three cycle delay is basically a shift register used to delay the state data
// which runs to the decoder in order tocompenste for the delay through the
// debouncer.

input midclk ;
input [3:0] S ;

32

input reset ;
output [3:0] state3 ;

reg[3:0] state1, state2, state3;

always @(posedge midclk or posedge reset)
if (reset)
 begin
 state1 <= 4'b1111;
 state2 <= 4'b1111;
 state3 <= 4'b1111;
 end
else
 begin
 state1 <= S;
 state2 <= state1;
 state3 <= state2;
 end

endmodule

module pmultplr (A, B, C, error, clk, reset) ;
//pmultplr is a dummy multiplier module used so that
// the main module and the control module need not be
// changed when the multiplier is taken in and out.
// it actually performs a logic and on the inputs

input[24:0] A, B;
output[24:0]C;
output error;
input clk;
input reset;

reg [24:0] C;

assign error = 0;

always @ (posedge clk or posedge reset)
if (reset) C <= 0;
else C <= A & B;

endmodule

module ERreg_2b (out, in, clk, enbl, reset) ;
// this is a two bit enable register with asynchronous reset

input [1:0] in ;
output [1:0] out ;
input enbl ;
input reset ;
input clk ;

33

reg [1:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <=0;
 else if (enbl) out <= in;
endmodule

module ERreg_25b_simp (out, in, clk, enbl, reset) ;
// this is a 25-bit enable register with asynchronous reset

input [24:0] in ;
output [24:0] out ;
input enbl ;
input reset ;
input clk ;

reg [24:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <=0;
 else if (enbl) out <= in;
endmodule

module ERreg_25b (out, in, clk, enbl, reset, clr, inv) ;
// this is a 25 bit enable register with both synchronous and asynchronous reset
// as well as a inv input witch causes the top bit to be inverted

input [24:0] in ;
output [24:0] out ;
input enbl ;
input reset ;
input clk, clr, inv ;

reg [24:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <=0;
 else if (clr) out <= 0;
 else if (enbl) out <= in;
 else if (inv) out [24] <= ~out[24];
endmodule

34

FPGA 2
module main (in, clk, reset, out1, out2, out3, out4, receive, midclk, midclkb) ;
//this is the main module of FPGA2, it calls the input module to interface with the
//other FPGA and the out_reg module to output to the seven segment displays
//it also uses the cntr module to produce slower clock signals

input [4:0] in ;
input clk ;
input reset, receive ;
output [7:0] out1 ;
output [7:0] out2 ;
output [7:0] out3 ;
output [7:0] out4 ;
output midclk, midclkb;

wire [24:0] num;
wire sclk;

assign midclkb = ~midclk;

cntr cnt(clk, midclk, sclk, reset);
serial_input_5x5 inpt(num, in, receive, clk, reset) ;
out_reg o_reg({7'b0,num}, out1, out2, out3, out4, clk, midclk, reset);

endmodule

35

module serial_input_5x5 (out, in, receive, clk, reset) ;
//this module is the receiving module for our chip to chip interface
// if is basically a shift register

//declarations
output [24:0] out ;
input [4:0] in ;
input receive ;
input clk, reset ;

wire [24:0] wire1;

reg [2:0] state, next_state;
reg [24:0] shft_out;
reg [24:0] out;

parameter S0 = 3'b000;
parameter S1 = 3'b001;
parameter S2 = 3'b010;
parameter S3 = 3'b011;
parameter S4 = 3'b100;
parameter S5 = 3'b101;

//on clk up, state gets the next state, the new data is shifted in and if
// the state is state 5, then the output is written
always @(posedge clk or posedge reset)

if (reset)
 begin
 shft_out <= 0;
 out <= 0;
 state <= 0;
 end

else
 begin
 state <= next_state;
 shft_out <= {in, shft_out[24:5]};
 if (state == S0) out <= shft_out;
end

//next state calculation, if recive is high, the next state is S1
always @(state or receive)
 case(state)
 S0: next_state <= receive?S1:S0;
 S1: next_state <= receive?S1:S2;
 S2: next_state <= receive?S1:S3;
 S3: next_state <= receive?S1:S4;
 S4: next_state <= receive?S1:S5;
 S5: next_state <= receive?S1:S0;
 endcase

endmodule

36

module out_reg (in, out1, out2, out3, out4, clk, midclk, reset) ;
//this module uses one display decoder and several registers to diplay the output

// input and output declarations
input [31:0] in ;
output [7:0] out1 ;
output [7:0] out2 ;
output [7:0] out3 ;
output [7:0] out4 ;
input clk ;
input midclk ;
input reset ;

// reg and wire declarations
reg [2:0]cntr;
reg [6:0] decout, dec1, dec2, dec3, dec4, dec5, dec6, dec7, dec8;

wire [3:0] num1, num2, num3, num4, num5, num6, num7, num8, muxout;
wire [7:0] dec_plc, reg_enbl, ans1, ans2, ans3, ans4, ans5, ans6, ans7, ans8;

// the counter simply cycles through eight states
always @(posedge clk or posedge reset)
 if (reset)
 cntr <= 0;
 else
 cntr <= cntr + 1;

//these lines divde up the output, the decimal point is set to off
//replace these 9 lines with decode logic
assign num1 = in[3:0];
assign num2 = in[7:4];
assign num3 = in[11:8];
assign num4 = in[15:12];
assign num5 = in[19:16];
assign num6 = in[23:20];
assign num7 = in[27:24];
assign num8 = in[31:28];
assign dec_plc = 8'b11111111;

//this converts the counter into a one hot signal
one_hot_encdr encdr(cntr, reg_enbl);

//this mux deicdes th input to the decoder
mux8_4b mux1(num1, num2, num3, num4, num5, num6, num7, num8, muxout, cntr);

//this decodes the number for the 7-seg display
//replace with dec_dcdr
Hex_Dcdr dcdr(muxout, decout);

//these registers are written at the appropriate time as the data comes out
//of the 7-segment decoder. The registers are written one at a time so that
//only one decoder is needed.
erreg_8b reg1(ans1, ({decout, dec_plc[0]}), clk, reset, reg_enbl[0]);
erreg_8b reg2(ans2, ({decout, dec_plc[1]}), clk, reset, reg_enbl[1]);
erreg_8b reg3(ans3, ({decout, dec_plc[2]}), clk, reset, reg_enbl[2]);
erreg_8b reg4(ans4, ({decout, dec_plc[3]}), clk, reset, reg_enbl[3]);

37

erreg_8b reg5(ans5, ({decout, dec_plc[4]}), clk, reset, reg_enbl[4]);
erreg_8b reg6(ans6, ({decout, dec_plc[5]}), clk, reset, reg_enbl[5]);
erreg_8b reg7(ans7, ({decout, dec_plc[6]}), clk, reset, reg_enbl[6]);
erreg_8b reg8(ans8, ({decout, dec_plc[7]}), clk, reset, reg_enbl[7]);

//the outputs are simply multiplexed so that fewer pins are needed
assign out1 = midclk?ans1:ans2;
assign out2 = midclk?ans3:ans4;
assign out3 = midclk?ans5:ans6;
assign out4 = midclk?ans7:ans8;

endmodule

38

module one_hot_encdr (in, out) ;
//one hot encoder is a combinational moduel that converts
// a binary number to a one hot signal

input [2:0] in ;
output [7:0] out ;

reg [2:0] out;

parameter ONE = 8'b00000001;
parameter TWO = 8'b00000010;
parameter THREE = 8'b00000100;
parameter FOUR = 8'b00001000;
parameter FIVE = 8'b00010000;
parameter SIX = 8'b00100000;
parameter SEVEN = 8'b01000000;
parameter EIGHT = 8'b10000000;

always @(in)
 case (in)
 0: out <= ONE;
 1: out <= TWO;
 2: out <= THREE;
 3: out <= FOUR;
 4: out <= FIVE;
 5: out <= SIX;
 6: out <= SEVEN;
 7: out <= EIGHT;
 endcase

endmodule

39

module mux8_4b (d1, d2, d3, d4, d5, d6, d7, d8, out, sel) ;
// eight way, 4-bit mux

input [3:0] d1, d2, d3, d4, d5, d6, d7, d8 ;
output [3:0] out ;
input [2:0] sel ;

reg [3:0] out;

always @(d1 or d2 or d3 or d4 or d5 or d6 or d7 or d8 or sel)
 case (sel)
 0: out <= d1;
 1: out <= d2;
 2: out <= d3;
 3: out <= d4;
 4: out <= d5;
 5: out <= d6;
 6: out <= d7;
 7: out <= d8;
 endcase

endmodule

module erreg_8b (out, in, clk, reset, enbl) ;
//8 bit enable register w/ asynchronous reset

input [7:0] in ;
input reset ;
input enbl ;
input clk ;
output [7:0] out ;

reg [7:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <= 0;
 else if (enbl) out <= in;

endmodule

module cntr (clk, midclk, sclk, reset) ;
//counter is used to slow down the clock for use by the
// various system components. Midclk runs at 1/1024
//clk frequency and sclk runs at 1/8196 clk frequency

input clk ;
input reset;
output midclk ;
output sclk ;

40

reg [11:0] cnt;

assign midclk = cnt[8];
assign sclk = cnt[11];

always @(posedge clk or posedge reset)
if (reset) cnt <= 0;
else cnt <= cnt +1;

endmodule

41

Appendix C: Verilog code not in final System
module float_add (A, B, sub, C) ;

input [31:0] A ;
input [31:0] B ;
input sub ;
output [31:0] C ;

//declarations
wire Sa, Sb, Sc;
wire [7:0] Ea, Eb, Ec;
wire [22:0] Ma, Mb, Mc;

wire [8:0] Edif;
wire [8:0] NegEdif;
wire EdifS;

wire inc;
wire MnsPlsA, MnsPlsB;
wire [7:0] intE;

wire [8:0] ShftAmt_1;
wire [4:0] ShftAmt;
wire [4:0] shftLAmt;

wire arg1sgn, arg2sgn, ALUsub;
wire [25:0] arg1, arg2;
reg [25:0] arg1f, arg2f;
wire [25:0] arg2p, AluRes;
wire [25:0] AluResP;

wire [2:0] lead;

assign lead = 3'b001;

//break up the inputs
assign Sa = A[31];
assign Sb = B[31];
assign Ea = A[30:23];
assign Eb = B[30:23];
assign Ma = A[22:0];
assign Mb = B[22:0];

//assemble the output
assign C = {Sc, Ec, Mc};

//find the difference betweent the exponents
assign Edif = Ea-Eb;
assign EdifS = Edif[8];
assign NegEdif = -Edif;

//figure out whether the argumanets are added or subtracted

42

assign MnsPlsA = Sa;
assign MnsPlsB = Sb ^ sub;

assign arg1sgn = EdifS ?MnsPlsB:MnsPlsA;
assign arg2sgn = EdifS ?MnsPlsA:MnsPlsB;
assign ALUsub = arg1sgn ^ arg2sgn;

//shift the smaller argument right
shft_right shft1(arg2, arg2p, ShftAmt);

//figure out an expected output
assign intE = EdifS? Eb: Ea;

//figure out how far to shift the smaller argument
assign ShftAmt_1 = EdifS? NegEdif: Edif;
// if the sfift amount is greater than 31, then 31 is sent to the shifter
assign ShftAmt = ~|ShftAmt_1[8:5]?ShftAmt_1[4:0]:5'b11111;

//add leading ones, overflow bit, and sign bit to arguments
// and dicide which one goes to which port of the ALU
assign arg1 = EdifS? ({lead[2:0], Mb}): ({lead[2:0], Ma});
assign arg2 = EdifS? ({lead[2:0], Ma}): ({lead[2:0], Mb});

//do any necesary unary inversion on the arguments
always @(EdifS or MnsPlsA or MnsPlsB or arg1 or arg2p)
case ({EdifS, MnsPlsA, MnsPlsB})
3'b000: begin

 arg1f <= arg1;
 arg2f <= arg2p;
end

3'b001: begin
 arg1f <= arg1;
 arg2f <= -arg2p;
end

3'b010: begin
 arg1f <= -arg1;
 arg2f <= arg2p;
end

3'b011: begin
 arg1f <= -arg1;
 arg2f <= -arg2p;
end

3'b100: begin
 arg1f <= arg1;
 arg2f <= arg2p;
end

3'b101: begin
 arg1f <= -arg1;
 arg2f <= arg2p;
end

3'b110: begin
 arg1f <= arg1;

43

 arg2f <= -arg2p;
end

3'b111: begin
 arg1f <= -arg1;
 arg2f <= -arg2p;
end

default: begin
 arg1f <= arg1;
 arg2f <= arg2p;
end

endcase

//add the arguments and find the sign
assign AluRes = arg1f+arg2f;
assign Sc = AluRes[25];

//perform unary inversion if necissary
assign AluResP = Sc? -AluRes: AluRes;

//figure out how far to shift the result
shft_fndr one(AluResP, shftLAmt);

//shift the result that far
Shft_lft lftShft(shftLAmt, AluResP, Mc, inc);

//figure out the result exponent as the estimated exponent, minus the
// amount of shifting necissary, plus the overflow bit, plus two
// (two is the amount of shifting necissary if there was no overflow)
assign Ec = intE - shftLAmt + inc + 2;

endmodule

module float_add_op (A, B, sub, C) ;

input [31:0] A ;
input [31:0] B ;
input sub ;
output [31:0] C;

//declarations
wire Sa, Sb, Sc;
wire [7:0] Ea, Eb, Ec;
wire [22:0] Ma, Mb, Mc;

wire [8:0] Edif;
wire [8:0] NegEdif;
wire EdifS;

wire inc;
wire MnsPlsA, MnsPlsB;
wire [7:0] intE;

wire [8:0] ShftAmt_1;
wire [4:0] ShftAmt;

44

wire [4:0] shftLAmt;

wire arg1sgn, arg2sgn, ALUsub;
wire [25:0] arg1, arg2, arg2f, arg2p, AluRes;
wire [25:0] AluResP;

wire [2:0] lead;

assign lead = 3'b001;

//break up the inputs
assign Sa = A[31];
assign Sb = B[31];
assign Ea = A[30:23];
assign Eb = B[30:23];
assign Ma = A[22:0];
assign Mb = B[22:0];

//assemble the output
assign C = {Sc, Ec, Mc};

//find the difference betweent the exponents
assign Edif = Ea-Eb;
assign EdifS = Edif[8];
assign NegEdif = -Edif;

//figure out whether the argumanets are added or subtracted
assign MnsPlsA = Sa;
assign MnsPlsB = Sb ^ sub;

assign arg1sgn = EdifS ?MnsPlsB:MnsPlsA;
assign arg2sgn = EdifS ?MnsPlsA:MnsPlsB;
assign ALUsub = arg1sgn ^ arg2sgn;

//shift the smaller argument right
shft_right shft1(arg2, arg2p, ShftAmt);

//figure out an expected output
assign intE = EdifS? Eb: Ea;

//figure out how far to shift the smaller argument
assign ShftAmt_1 = EdifS? NegEdif: Edif;
// if the sfift amount is greater than 31, then 31 is sent to the shifter
assign ShftAmt = ~|ShftAmt_1[8:5]?ShftAmt_1[4:0]:5'b11111;

//add leading ones, overflow bit, and sign bit to arguments
// and dicide which one goes to which port of the ALU
assign arg1 = EdifS? {lead[2:0], Mb}: {lead[2:0], Ma};
assign arg2 = EdifS? {lead[2:0], Ma}: {lead[2:0], Mb};

assign arg2f = ALUsub?(~arg2p):arg2p;

//add the arguments and find the sign
assign AluRes = arg1 + arg2f + ALUsub;
assign Sc = AluRes[25] ^ arg1sgn;

45

//perform unary inversion if necissary
assign AluResP = arg1sgn? -AluRes: AluRes;

//figure out how far to shift the result
shft_fndr one(AluResP, shftLAmt);

//shift the result that far
Shft_lft lftShft(shftLAmt, AluResP, Mc, inc);

//figure out the result exponent as the estimated exponent, minus the
// amount of shifting necissary, plus the overflow bit, plus two
// (two is the amount of shifting necissary if there was no overflow)
assign Ec = intE - shftLAmt + ({1'b1, inc});

endmodule

//This code performs floating point multiplication on two IEEE 754
//floating point numbers

module f_mult(aclk, areset, d1, d2, result, aerror);

input aclk, areset;
input [31:0] d1, d2;
output [31:0] result;
output aerror;

reg [31:0] result;

wire [31:0] multiplier, multiplicand;
wire [8:0] exp_sum; //one bit larger than actual exponent to account for
overflow
wire [8:0] exp_inc; //exponent incremented by 1
wire [8:0] emux_out;
wire [8:0] exponent;
wire [47:0] product; //48 bits in length, 23 bits plus inferred leading one
wire [22:0] significand; //23 bit significand
wire [22:0] smux_out;
wire sign, aerror;
wire smux, emux; //mux select signals
wire en_input, en_sig, en_exp; //enable signals
wire complete; //goes high upon multiplication completion

parameter BIAS = 7'b111_1111; //bias of 127 decimal
parameter MAX_EXP = 8'b1111_1110; //overflow limit = 254 decimal for given bias
parameter MIN_EXP = 1'b1; //underflow limit = 1 decimal for given bias

assign exp_inc = exponent + 1;
assign sign = multiplier[31] ^ multiplicand[31]; //exclusive-or the sign bits

f_mult_cont fcont(aclk, areset, significand[22], exponent[8], m_valid, smux, emux, en_input, en_sig,
en_exp, aerror, complete);

46

reg_32 d1_reg(aclk, areset, en_input, d1, multiplier);
reg_32 d2_reg(aclk, areset, en_input, d2, multiplicand);
reg_23 sig_reg(aclk, areset, en_sig, smux_out, significand);
reg_9 exp_reg(aclk, areset, en_exp, emux_out, exponent);

wire [22:0] rshift_sig;
assign rshift_sig = {0, significand[22:1]}; //right shifted significand, used if unnormalized

//mux used to select for unnormalized significand
//if unnormalized, set smux = 1
mux2_1_23b sig_mux(smux, product[47:25], rshift_sig, smux_out);

mux2_1_9b exp_mux(emux, exp_sum, exp_inc, emux_out);

wire [23:0] sig1, sig2;
assign sig1 = {1, multiplier[22:0]};
assign sig2 = {1, multiplicand[22:0]};

//multiplication is slow and takes upwards of 120 clock cycles
//must wait for m_valid signal before floating-point multiplication is correct
mult f_product(aclk, areset, sig1, sig2, product, m_valid);

//if bias is not 127, need to change alu_8 code
alu_8 f_exponent(multiplier[30:23], multiplicand[30:23], BIAS, exp_sum);

always @ (posedge aclk or posedge areset)
 if (areset) result = 0;
 else if (complete) result = {sign, exponent[7:0], significand};

endmodule

//a 24-bit unsigned multiplier controller

module f_mult_cont(clk, reset, msb_sig, msb_exp, m_valid, smux, emux, en_input, en_sig, en_exp, error,
complete);

input clk, reset;
input msb_sig; //msb of product register, used to detect normalization
input msb_exp; //msb of exponent register, used to detect over/underflow
input m_valid; //indicates completion of mult module

output smux; //selects significand mux output
output emux; //selects exponent mux output
output en_exp; //enables exponent register
output en_input, en_sig; //enables new inputs and significand register
output complete; //mulitplication is finished
output error; //over/underflow occurs

reg smux, emux;
reg en_input, en_sig, en_exp;
reg complete, error;

parameter

47

S0 = 3'b000,
S1 = 3'b001,
S1a = 3'b010,
S2 = 3'b011,
S3 = 3'b100,
S4 = 3'b101,
S5 = 3'b110;

reg [3:0] current_state;
reg [3:0] next_state;

always @ (posedge clk or posedge reset)
 begin
 if (reset) current_state <= S0;
 else current_state <= next_state;
 end

always @ (current_state or msb_sig or msb_exp or m_valid)
 begin
 case (current_state)

S0: begin
 en_input <= 1; //inputs are enabled
 en_exp <= 1; //exponent register is enabled
 en_sig <= 0; //significand register is disabled
 complete <= 0; //multiplication is not complete
 smux <= 0; //set mux for normalized product
 emux <= 0; //set for sum of exponents
 error <= 0;
 next_state <= S1;
 end
S1: begin //wait for mult product
 en_input <= 0; //lock inputs into registers
 if (m_valid == 0) //loop until mult module produces a valid result
 next_state <= S1;
 else
 begin
 en_sig <= 1; //write product to significand register
 next_state <= S1a;
 end
 end
S1a: begin

en_sig <= 1; //keep significand enabled to product is written
next_state <= S2;

 end
S2: begin //check if normalized
 if (msb_sig == 1) //product is not normalized
 begin
 smux <= 1; //normalize by setting smux high
 en_sig <= 1; //enable sig_reg
 next_state <= S3;
 end
 else //product is already normalized

 next_state <= S4;
 end
S3: begin //increment exponent
 en_sig <= 0; //disable significand register

48

 emux <= 1; //set emux for incremented exponent
 next_state <= S4;
 end
S4: begin //check for over/underflow
 en_sig <= 0; //disable sig_reg
 en_exp <= 0; //disable exponent register
 if (msb_exp == 1) //overflow occurs
 error <= 1;
 next_state <= S5;
 end
S5: begin //multiplication is complete
 complete <= 1;
 next_state <= S0;
 end

 default: next_state <= S0;
 endcase
 end
endmodule
//a 24-bit multiplier
module mult(clk, reset, d1, d2, dout, done, error);

input clk, reset;
input [23:0] d1, d2;
output [23:0] dout;
output done, error;

reg [23:0] dout;
reg done, error;

wire [23:0] multiplicand;
wire [47:0] rshift_product; //right shifted product register
wire [47:0] product;
wire [47:0] mux_out;
wire [23:0] add_out;
wire [1:0] smux;
wire enable, en_multreg, valid;

parameter ZERO = 24'h00_0000;
parameter MAX_VALUE = 24'd9999999;

assign rshift_product = product >> 1; //right shifted product register

//multiplication controller
mult_cont mcont(clk, reset, product[0], smux, enable, en_multreg, valid);

reg_48 product_reg(clk, reset, enable, mux_out, product); //enabled product register
reg_24 mult_reg(clk, reset, en_multreg, d1, multiplicand); //multiplicand register

//24-bit addition module
assign add_out = multiplicand + product[47:24];

//3 to 1 mux module
mux3_1 product_mux(smux, {add_out, product[23:0]}, rshift_product, {ZERO, d2}, mux_out);

always @ (posedge clk or posedge reset)
 begin

49

 if (reset)
 begin
 dout <= 0;
 error <= 0;
 done <= 0;
 end
 else if (valid == 1)
 begin
 done <= 1;
 dout <= product[23:0];
 if (product > MAX_VALUE)
 error <= 1;
 end
 else
 begin
 dout <= 0;
 done <= 0;
 error <= 0;
 end//a 24-bit unsigned multiplier controller

module mult_cont(clk, reset, din, smux, en1, en2, valid);

input clk, reset;
input din; //lsb of product register
output [1:0] smux; //selects mux output
output en1, en2, valid; //indicates write to register enables, valid product

reg [1:0] smux;
reg en1, en2, valid;

parameter
S0 = 3'b000,
S1 = 3'b001,
S2 = 3'b010,
S3 = 3'b011,
S4 = 3'b100,
S5 = 3'b101,
S6 = 3'b110,
S7 = 3'b111;

reg [4:0] rep; //repetition register
reg [3:0] current_state;
reg [3:0] next_state;

always @ (posedge clk or posedge reset)
 begin
 if (reset) current_state <= S0;
 else current_state <= next_state;
 end

always @ (posedge clk) //increment counter at given states on posedge clk
 begin
 if (current_state == S0) rep <= 0;
 else if (current_state == S4) rep <= rep + 1;
 end

50

always @ (current_state or din or rep)
 begin
 case (current_state)

S0: begin
 en1 <= 1; //write to register
 en2 <= 1;
 valid <= 0;
 smux <= 2; //select initial input to multiplier
 next_state <= S1;
 end
S1: begin //test lsb of product register
 en1 <= 0; //don't write product register
 en2 <= 0; //multiplication register never changes
 if (din == 0) next_state <= S3;
 else next_state <= S2;
 end
S2: begin //add multiplicand to left half of product and place in left half

of product
 smux <= 0; //set mux for addition output
 en1 <= 1; //write to register
 next_state <= S3;
 end
S3: begin //right shift the product register by 1 bit
 smux <= 1; //set mux for right shift output
 en1 <= 1; //write to register
 next_state <= S4;
 end
S4: begin
 en1 <= 0; //disable register
 if (rep == 23)
 begin
 valid <= 1;
 next_state <= S6;
 end
 else next_state <= S1;
 end
S6: begin
 en1 <= 0; //disable register
 next_state <= S7;
 end
S7: next_state <= S0; //delay state so valid signal is read correctly
default: next_state <= S0;

 endcase
 end
endmodule

//Chris Kalima
//This code performs floating point division on two IEEE 754
//floating point numbers

module div(clk, reset, num, den, result, error);

input clk, reset;
input [31:0] num, den;
output [31:0] result;

51

output error;

reg [8:0] exponent; //one bit larger than actual exponent to account for
overflow
reg [47:0] quotient; //48 bits in length, 23 bits plus inferred leading one
reg [22:0] significand; //23 bit significand
reg sign, error;

parameter BIAS = 7'b111_1111; //bias of 127 decimal
parameter MAX_EXP = 8'b1111_1110; //overflow limit = 254 decimal for given bias
parameter MIN_EXP = 1'b1; //underflow limit = 1 decimal for given bias

//==================
//ASSUMES num/den
//==================

always @ (posedge clk or posedge reset)
 if (reset)
 begin
 error = 0;
 sign = 0; //set result to zero on reset
 exponent = 0;
 significand = 0; end
 else if (num[22:0] == 0)
 begin
 error = 0;
 sign = 0; //set result to zero if num = 0
 exponent = 0;
 significand = 0; end
 else if (den[22:0] == 0) //divide by zero
 begin //set result as indeterminate = FFC0_0000
 error = 1; //set error as high to show invalid result
 sign = 1;
 exponent = 8'b1111_1111;
 significand = 23'b100_0000_0000_0000_0000_0000; end
 else begin
//compute resultant exponent
 exponent = num[30:23] - den[30:23] - BIAS; //take the difference of exponents and subtract bias
//compute resultant significand
 quotient = {1,num[22:0]} / {1,den[22:0]};//append leading ones and divide
 if (quotient[47] == 1) begin //check highest bit to see if normalized
 exponent = exponent + 1; //increment exponent
 quotient = quotient >> 1; end //shift quotient right one bit
 quotient = quotient << 2; //shift left by 2 to truncate leading one
 significand = quotient [47:25]; //place high 23 bits in significand
//check for overflow and underflow
 if (exponent[8] == 1) //msb will go high if overflow or underflow occurs
 error = 1;
 else
 error = 0;
//compute resultant sign
 sign = num[31] ^ den[31]; //exclusive-or the sign bits
 end

assign result = {sign, exponent[7:0], significand};

52

endmodule

module out_main (in, clk, reset, out1, out2, out3, out4, receive, midclk, midclkb) ;

input [4:0] in ;
input clk ;
input reset, receive ;
output midclk, midclkb;
output [7:0] out1 ;
output [7:0] out2 ;
output [7:0] out3 ;
output [7:0] out4 ;

wire [27:0] bcd_num;
wire [24:0] num;
wire sclk, sign;

parameter ERROR = 32'hffff_ff60;

assign midclkb = ~midclk;
assign sign = num[24];

cntr cnt(clk, midclk, sclk, reset);
serial_input_5x5 inpt(num, in, receive, clk, reset);
result_decoder decode(clk, reset, num[23:0], bcd_num);
out_reg o_reg(bcd_num, sign, out1, out2, out3, out4, clk, midclk, reset);
endmodule

module result_decoder(clk, reset, din, dout);

input clk, reset;
input [23:0] din; //unsigned 24-bit input
output [27:0] dout; //28-bit BCD output

wire [27:0] bcd_num;
wire [23:0] mux_out, alu_in1;
wire [23:0] alu_in2;
wire [23:0] m1, m2, m3, m4, m5, m6, m7;
wire [2:0] l_mux;
wire [1:0] s_lut;
wire s_mux, en, en_s, valid;

//testing purposes
wire [24:0] difference;
assign difference = alu_in1 - alu_in2;
wire sign;
assign sign = difference[24];
wire num;
assign num = ~sign; //BCD takes opposite of sign value for our method

decode_cont cont(clk, reset, sign, s_mux, l_mux, s_lut, en, en_s, valid);
mux2_1_24b d_mux(s_mux, din, difference[23:0], mux_out);

53

mux7_1_24b lut_mux(l_mux, m7, m6, m5, m4, m3, m2, m1, alu_in2);
reg_24 d_reg(clk, reset, en, mux_out, alu_in1);
lut_ones ones(s_lut, m1);
lut_tens tens(s_lut, m2);
lut_hund hund(s_lut, m3);
lut_thou thou(s_lut, m4);
lut_ttho ttho(s_lut, m5);
lut_htho htho(s_lut, m6);
lut_mil mil(s_lut, m7);
shift_reg28 out_reg(clk, reset, en_s, num, bcd_num);
reg_28 oreg(clk, reset, valid, bcd_num, dout);

endmodule

//FSM to control the decoder
//works by cycling through all 7 powers of ten (7 digit display)
//and subtracting decreasing powers of two (3-0)

module decode_cont(clk, reset, din, s_mux, l_mux, s_lut, en, en_shift, complete);

input clk, reset, din;
output s_mux, en, en_shift, complete;
output [1:0] s_lut;
output [2:0] l_mux;
reg [1:0] s_lut;
reg s_mux, en, en_shift, complete;

parameter
S0 = 3'b000,
S1 = 3'b001,
S2 = 3'b010,
S3 = 3'b011,
S4 = 3'b100,
S5 = 3'b101;

reg [2:0] current_state;
reg [2:0] next_state;
reg [2:0] rep;

assign l_mux = rep; //sets l_mux for proper power of ten

always @ (posedge clk or posedge reset)
 begin
 if (reset) current_state <= S0;
 else current_state <= next_state;
 end

always @ (posedge clk or posedge reset)
 begin
 if (reset) rep <= 0;
 else if (current_state == S4)
 rep <= rep + 1;
 else if (complete)
 rep <= 0;
 end

54

always @ (current_state or din or rep)
 begin
 case (current_state)

S0: begin
 complete <= 0;
 en <= 1; //enable decode register
 s_mux <= 0; //set mux to result register
 en_shift <= 0;
 next_state <= S1;
 end
S1: begin
 s_mux <= 1; //set mux to alu output
 en_shift <= 1; //enable shift register
 if (din == 0) en <= 1; //if positive, enable decode register
 else en <= 0; //if negative, maintain decode register
 s_lut <= 0; //look up first value
 next_state <= S2;
 end

 S2: begin
 if (din == 0) en <= 1;
 else en <= 0;
 s_lut <= 1;
 next_state <= S3;
 end

 S3: begin
 if (din == 0) en <= 1;
 else en <= 0;
 s_lut <= 2;
 next_state <= S4;
 end

 S4: begin
 if (din == 0) en <= 1;
 else en <= 0;
 s_lut <= 3;
 next_state <= S5;
 end
S5: begin
 en_shift <= 0;
 en <= 0;
 s_lut <= 0;
 if (rep == 7)
 begin
 complete <= 1;
 next_state <= S0;
 end
 else
 next_state <= S1;
 end
default: next_state <= S0;

 endcase
 end
endmodule

55

module float_encoder (float, funct, enbl, state, mux, db2dcdr) ;

output [31:0] float ;
output enbl ;
output [2:0] funct;
input [3:0] state ;
input [3:0] mux ;
input db2dcdr ;

reg [2:0] funct;
reg [31:0] float;

assign enbl = ~db2dcdr;

always @(state or mux)
 case ({mux, state})
 8'b01000111: float <= (32'h00000000); //0
 8'b10001110: float <= (32'h3f800000); //1
 8'b01001110: float <= (32'h40000000); //2
 8'b00101110: float <= (32'h40400000); //3
 8'b10001101: float <= (32'h40800000); //4
 8'b01001101: float <= (32'h40A00000); //5
 8'b00101101: float <= (32'h40C00000); //6
 8'b10001011: float <= (32'h40E00000); //7
 8'b01001011: float <= (32'h41000000); //8
 8'b00101011: float <= (32'h41100000); //9
 default: float <=0;
 endcase

always @(state or mux)
 case ({state, mux})
 225: funct <= 3'b100; //add
 226: funct <= 3'b101; //subtract
 228: funct <= 3'b110; //mult
 232: funct <= 3'b111; //divide
 120: funct <= 3'b001; //plus/minus
 216: funct <= 3'b010; //decimal
 default: funct <= 0; //no funct
 endcase

endmodule

module float_encoder2 (float, funct, enbl, state, mux, db2dcdr) ;

output [31:0] float ;
output enbl ;
output [2:0] funct;
input [3:0] state ;
input [3:0] mux ;
input db2dcdr ;

reg [2:0] funct;
reg [31:0] float;

56

assign enbl = ~db2dcdr;

always @(state or mux)
 case ({state, mux})
 184: float <=32'h00000000; //0
 113: float <=32'h3f800000; //1
 177: float <=32'h40000000; //2
 209: float <=32'h40400000; //3
 114: float <=32'h40800000; //4
 178: float <=32'h40A00000; //5
 210: float <=32'h40C00000; //6
 116: float <=32'h40E00000; //7
 180: float <=32'h41000000; //8
 212: float <=32'h41100000; //9
 default: float <=0;
 endcase

always @(state or mux)
 case ({state, mux})
 225: funct <= 3'b100; //add
 226: funct <= 3'b101; //subtract
 228: funct <= 3'b110; //mult
 232: funct <= 3'b111; //divide
 120: funct <= 3'b001; //plus/minus
 216: funct <= 3'b010; //decimal
 default: funct <= 0; //no funct
 endcase
endmodule

module num_dcdr (enbl, n, s, m, db2dcdr) ;

output enbl ;
output [3:0] n ;
input [3:0] s ;
input [3:0] m ;
input db2dcdr ;

assign enbl = ~db2dcdr;

assign n[0] = ~s[0] || (s[3] && m[2]) || (s[2] && m[3]);
assign n[1] = ~s[0] || m[1] || (m[2] && ~s[3]);
assign n[2] = (m[3] && s[2]) || (~s[1] && ~m[2]) || (~s[2] && m[0]) || (m[2] && (~s[3] || ~s[0]));
assign n[3] = (~s[1] && ~m[1]) || (~s[2] && m[1]) || (~s[0] && (m[1] || m[3])) || (~s[3] && (m[0] || m[2]));

endmodule

module multplr (A, B, C, error, clk, reset) ;

input [24:0] A ;
input [24:0] B ;
output [24:0] C ;
output error ;
input clk, reset;

57

wire sign, done;
wire [23:0] ans;

assign sign = A[24] ^ B[24];

mult mult1(clk, reset, A[23:0], B[23:0], ans, done, error);

ERreg_25b_simp result_reg(C, {sign, ans[23:0]}, clk, done, reset);

endmodule

module dec_dcdr (in, out) ;

output [6:0] out;
input [3:0] in;

reg out;

// define a set of numbers representing the outputs
parameter BLNK = 7'b111_1111;
parameter ZERO = 7'b000_0001;
parameter ONE = 7'b100_1111;
parameter TWO = 7'b001_0010;
parameter THREE = 7'b000_0110;
parameter FOUR = 7'b100_1100;
parameter FIVE = 7'b010_0100;
parameter SIX = 7'b010_0000;
parameter SEVEN = 7'b000_1111;
parameter EIGHT = 7'b000_0000;
parameter NINE = 7'b000_0100;
parameter MINUS = 7'b111_1110;
parameter E = 7'b011_0000;

always@(in)
case (in)

0 : out <= ZERO;
1 : out <= ONE;
2 : out <= TWO;
3 : out <= THREE;
4 : out <= FOUR;
5 : out <= FIVE;
6 : out <= SIX;
7 : out <= SEVEN;
8 : out <= EIGHT;
9 : out <= NINE;
10 : out <= MINUS;
15 : out <= E;
default : out <= BLNK;

endcase

endmodule

module dly (s, sdlyd, midclk, reset) ;

58

input reset, midclk;
input [3:0] s ;
output [3:0] sdlyd ;

reg [3:0] s1, s2, sdlyd;

always @(posedge midclk or posedge reset)
if (reset)
 begin
 s1 <= 4'b1111;
 s2 <= 4'b1111;
 sdlyd <= 4'b1111;
 end

else
 begin
 s1 <= s;
 s2 <= s1;
 sdlyd <= s2;
 end

endmodule

module num_mem (full_enbl, midclk, n, num, reset) ;

input full_enbl ;
input midclk ;
input [3:0] n ;
output [3:0] num ;
input reset ;

reg [3:0] num1, num2;

assign num = midclk?num1:num2;

always @(posedge midclk or posedge reset)
if (reset)
 begin
 num1 <= 0;
 num2 <= 0;
 end

else
 if(full_enbl)
 begin
 num1 <= full_enbl?n:num1;
 num2 <= full_enbl?num1:num2;
 end

endmodule

module shft_fndr (In, out) ;

59

input [25:0] In ;
output [4:0] out ;

wire Nor1, Nor2, Nor3, Nor4, Nor5, Nor6, Nor7, Nor8, Nor9, Nor10, Nor11, Nor12, Nor13;

assign Nor1 = ~|(In[25:10]);
assign Nor2 = ~|(In[25:18]);
assign Nor3 = ~|(In[9:2]);
assign Nor4 = ~|(In[25:22]);
assign Nor5 = ~|(In[17:14]);
assign Nor6 = ~|(In[9:6]);
assign Nor7 = ~|(In[25:24]);
assign Nor8 = ~|(In[21:20]);
assign Nor9 = ~|(In[17:16]);
assign Nor10 = ~|(In[13:12]);
assign Nor11 = ~|(In[9:8]);
assign Nor12 = ~|(In[5:4]);
assign Nor13 = ~|(In[1:0]);

assign out[4] = Nor1;
assign out[3] = (~Nor1 & Nor2) | (Nor1 & Nor3);
assign out[2] = (~Nor1 & ~Nor2 & Nor4) | (~Nor1 & Nor2 & Nor5) | (Nor1 & ~Nor3 & Nor6);
assign out[1] = (~Nor1 & ~Nor2 & ~Nor4 & Nor7) | (~Nor1 & ~Nor2 & Nor4 & Nor8) | (~Nor1 & Nor2 &
~Nor5 & Nor9) | (~Nor1 & Nor2 & Nor5 & Nor10) | (Nor1 & ~Nor3 & ~Nor6 & Nor11) | (Nor1 & ~Nor3
& Nor6 & Nor12) | (Nor1 & Nor3 & Nor13);
assign out[0] = (~Nor1 & ~Nor2 & ~Nor4 & ~Nor7 & ~In[25]) | (~Nor1 & ~Nor2 & ~Nor4 & Nor7 &
~In[23]) | (~Nor1 & ~Nor2 & Nor4 & ~Nor8 & ~In[21]) | (~Nor1 & ~Nor2 & Nor4 & Nor8 & ~In[19]) |
(~Nor1 & Nor2 & ~Nor5 & ~Nor9 & ~In[17]) | (~Nor1 & Nor2 & ~Nor5 & Nor9 & ~In[15]) | (~Nor1 &
Nor2 & Nor5 & ~Nor10 & ~In[13]) | (~Nor1 & Nor2 & Nor5 & Nor10 & ~In[11]) | (Nor1 & ~Nor3 &
~Nor6 & ~Nor11 & ~In[9]) | (Nor1 & ~Nor3 & ~Nor6 & Nor11 & ~In[7]) | (Nor1 & ~Nor3 & Nor6 &
~Nor12 & ~In[5]) | (Nor1 & ~Nor3 & Nor6 & Nor12 & ~In[3]) | (Nor1 & Nor3 & ~Nor13 & ~In[1]);

endmodule

module Shft_lft (shft_amt, in, out, inc) ;

input [25:0] in ;
input [4:0] shft_amt ;
output [22:0] out ;
output inc ;

reg [25:0] int;
wire [23:0] int2;

reg [22:0] out ;

always @(in or shft_amt)
case(shft_amt)
 1: int <= {in[24:0], 1'b0};
 2: int <= {in[23:0], 2'b0};
 3: int <= {in[22:0], 3'b0};
 4: int <= {in[21:0], 4'b0};
 5: int <= {in[20:0], 5'b0};

60

 6: int <= {in[19:0], 6'b0};
 7: int <= {in[18:0], 7'b0};
 8: int <= {in[17:0], 8'b0};
 9: int <= {in[16:0], 9'b0};
 10: int <= {in[15:0], 10'b0};
 11: int <= {in[14:0], 11'b0};
 12: int <= {in[13:0], 12'b0};
 13: int <= {in[12:0], 13'b0};
 14: int <= {in[11:0], 14'b0};
 15: int <= {in[10:0], 15'b0};
 16: int <= {in[9:0], 16'b0};
 17: int <= {in[8:0], 17'b0};
 18: int <= {in[7:0], 18'b0};
 19: int <= {in[6:0], 19'b0};
 20: int <= {in[5:0], 20'b0};
 21: int <= {in[4:0], 21'b0};
 22: int <= {in[3:0], 22'b0};
 23: int <= {in[2:0], 23'b0};
 24: int <= {in[1:0], 24'b0};
 25: int <= {in[0], 25'b0};
 default: int <= 0;
endcase

//int2 rounds off the two LSB of int
assign int2 = int[25:2] + int[1];

//inc checks for overflow
assign inc = ~int2[23];

//out gets inc2 minus the implied leading one. if there is overflow, then the
// answer is shifted one more place
always @(int2)
if(int2[23])
 out <= int2[22:0];
else
 out <= int2[23:1] + int2[0];

endmodule

module shft_right (Din, Dout, Shft_amt) ;

input [25:0] Din ;
output [25:0] Dout ;
input [4:0] Shft_amt ;

reg [47:0] int;

always @(Din or Shft_amt)
case(Shft_amt)
 0: int <= {Din[25:0], 22'b0};
 1: int <= {1'b0, Din[25:0], 21'b0};
 2: int <= {2'b0, Din[25:0], 20'b0};
 3: int <= {3'b0, Din[25:0], 19'b0};
 4: int <= {4'b0, Din[25:0], 18'b0};
 5: int <= {5'b0, Din[25:0], 17'b0};

61

 6: int <= {6'b0, Din[25:0], 16'b0};
 7: int <= {7'b0, Din[25:0], 15'b0};
 8: int <= {8'b0, Din[25:0], 14'b0};
 9: int <= {9'b0, Din[25:0], 13'b0};
 10: int <= {10'b0, Din[25:0], 12'b0};
 11: int <= {11'b0, Din[25:0], 11'b0};
 12: int <= {12'b0, Din[25:0], 10'b0};
 13: int <= {13'b0, Din[25:0], 9'b0};
 14: int <= {14'b0, Din[25:0], 8'b0};
 15: int <= {15'b0, Din[25:0], 7'b0};
 16: int <= {16'b0, Din[25:0], 6'b0};
 17: int <= {17'b0, Din[25:0], 5'b0};
 18: int <= {18'b0, Din[25:0], 4'b0};
 19: int <= {19'b0, Din[25:0], 3'b0};
 20: int <= {20'b0, Din[25:0], 2'b0};
 21: int <= {21'b0, Din[25:0], 1'b0};
 22: int <= {22'b0, Din[25:0]};
 default int <=48'b0;
endcase

//round off
assign Dout = int[47:22] + int[21];

endmodule

module io_tester (in, out, clk, reset) ;

input [24:0] in ;
output [24:0] out ;
input clk ;
input reset ;

wire sr;
wire [4:0] int;

serial_out_put_5x5 outp(in, int, sr, clk, reset);
serial_input_5x5 inp(out, int, sr, clk, reset);

endmodule

module lab_4 (clk, reset, midclk, midclkb, S, out, K) ;

input clk ;
input reset ;
input [3:0] K;
output midclk ;
output midclkb ;
output [3:0] S;
output [6:0] out ;

reg [3:0] state1, state2, state3;
wire sclk, mux2db, db2dcdr, enbl, full_enbl;
wire [3:0] M, n, num;

62

assign midclkb = ~midclk;

cntr cntr1 (clk, midclk, sclk, reset);
driver driver1 (reset, sclk, S);
Hex_Dcdr hex1(num, out);
MUX mux1(K, midclk, reset, M, mux2db);
dbncr dbncr1(mux2db, midclk, db2dcdr, reset);
enblr enblr1(enbl, midclk, sclk, full_enbl, reset);
num_mem num_mem1(full_enbl, midclk, n, num, reset);
num_dcdr num_dcdr1(enbl, n, state3, M, db2dcdr);

always @(posedge midclk or posedge reset)
if (reset)
 begin
 state1 <= 4'b1111;
 state2 <= 4'b1111;
 state3 <= 4'b1111;
 end
else
 begin
 state1 <= S;
 state2 <= state1;
 state3 <= state2;
 end

endmodule

module min_main (key_in, key_out, clk, reset, out1, out2, out3, out4, midclk, midclkb);

//input and output declarations
input [3:0] key_in ;
input clk ;
input reset ;
output midclk, midclkb;
output [3:0] key_out ;
output [7:0] out1, out2, out3, out4 ;

//wire declarations
wire sclk, mux2db, db2dcdr, enbl, full_enbl;
wire [2:0] funct;
wire [3:0] M, S, n, num, state3;
wire [31:0] ncdr_out, result;

//the keypad is dirven by the current state
assign key_out = S;

//midclkb is used to run the multiplexed display
assign midclkb = ~midclk;

//calls to the submodules
//clock control
cntr cntr1 (clk, midclk, sclk, reset);

63

//input debounce and decode
driver driver1 (reset, sclk, S);
MUX mux1(key_in, midclk, reset, M, mux2db);
dbncr dbncr1(mux2db, midclk, db2dcdr, reset);
enblr enblr1(enbl, midclk, sclk, full_enbl, reset);
float_encoder ncdr1(ncdr_out, funct, enbl, S, M, db2dcdr);
three_cyc_dly dly1(midclk, reset, S, state3);

//result register
ERreg_32b rslt(result, ncdr_out, midclk, full_enbl, reset);

//output register
out_reg oput(result, out1, out2, out3, out4, clk, midclk, reset);

endmodule

module test_main (key_in, key_out, clk, reset, out1, out2, out3, out4, midclk, midclkb);//, result, ncdr_out,
sub, add_out) ;

//input and output declarations
input [3:0] key_in ;
input clk ;
input reset ;
output midclk, midclkb;
output [3:0] key_out ;
output [7:0] out1, out2, out3, out4 ;

//output [31:0] result, ncdr_out, add_out;
//output sub;

//wire declarations
wire sclk, mux2db, db2dcdr, enbl, full_enbl, M_error, sub;
wire [2:0] funct;
wire [3:0] M, S, n, num, state3;
wire [31:0] ncdr_out, add_out, result;

//the keypad is dirven by the current state
assign key_out = S;
assign sub = 0;
//assign the exponent output as the exponent of the answer

//midclkb is used to run the multiplexed display
assign midclkb = ~midclk;

//calls to the submodules
//clock control
cntr cntr1 (clk, midclk, sclk, reset);

//input debounce and decode
driver driver1 (reset, sclk, S);
MUX mux1(key_in, midclk, reset, M, mux2db);
dbncr dbncr1(mux2db, midclk, db2dcdr, reset);
enblr enblr1(enbl, midclk, sclk, full_enbl, reset);
float_encoder ncdr1(ncdr_out, funct, enbl, S, M, db2dcdr);
three_cyc_dly dly1(midclk, reset, S, state3);

64

//arithmetic logic
float_add_op addr1(result, ncdr_out, sub, add_out);

//result register
ERreg_32b rslt(result, add_out, midclk, full_enbl, reset);

//output register
out_reg oput(result, out1, out2, out3, out4, clk, midclk, reset);

endmodule

module final_main (key_in, key_out, float_exp, clk, reset, out1, out2, out3, out4, midclk, midclkb) ;

//input and output declarations
input [3:0] key_in ;
input clk ;
input reset ;
output midclk, midclkb;
output [3:0] key_out ;
output [7:0] float_exp, out1, out2, out3, out4 ;

//wire declarations
wire sclk, mux2db, db2dcdr, enbl, full_enbl, M_error;
wire [2:0] funct;
wire [3:0] M, S, n, num, state3;
wire [31:0] ncdr_out, mult_out, add_out, result;

parameter TEN = 32'h41200000;

//the keypad is dirven by the current state
assign key_out = S;
//assign the exponent output as the exponent of the answer
assign float_exp = result [30:23];
//midclkb is used to run the multiplexed display
assign midclkb = ~midclk;

//calls to the submodules
//clock control
cntr cntr1 (clk, midclk, sclk, reset);

//input debounce and decode
driver driver1 (reset, sclk, S);
MUX mux1(key_in, midclk, reset, M, mux2db);
dbncr dbncr1(mux2db, midclk, db2dcdr, reset);
enblr enblr1(enbl, midclk, sclk, full_enbl, reset);
float_encoder ncdr1(ncdr_out, funct, enbl, S, M, db2dcdr);
three_cyc_dly dly1(midclk, reset, S, state3);

//arithmetic logic
mult mltplr(clk, reset, TEN, result, mult_out, M_error);
float_add addr1(mult_out, ncdr_out, 1'b0, add_out);

//result register
ERreg_32b rslt(result, add_out, midclk, full_enbl, reset);

65

//output register
out_reg oput(result, out1, out2, out3, out4, clk, midclk, reset);

endmodule

//binary encoded decimal conversion look up table
module lut_ones(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd8;//eight
 1: dout = 23'd4;//four
 2: dout = 23'd2;//two
 3: dout = 23'd1;//one
 default: dout = 0;
 endcase
endmodule

//binary encoded decimal conversion look up table
module lut_tens(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd80;
 1: dout = 23'd40;
 2: dout = 23'd20;
 3: dout = 23'd10;
 default: dout = 0;
 endcase
endmodule

//binary encoded decimal conversion look up table
module lut_hund(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd800;
 1: dout = 23'd400;
 2: dout = 23'd200;
 3: dout = 23'd100;

66

 default: dout = 0;
 endcase
endmodule

//binary encoded decimal conversion look up table
module lut_thou(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd8000;
 1: dout = 23'd4000;
 2: dout = 23'd2000;
 3: dout = 23'd1000;
 default: dout = 0;
 endcase
endmodule

//binary encoded decimal conversion look up table
module lut_ttho(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd80000;
 1: dout = 23'd40000;
 2: dout = 23'd20000;
 3: dout = 23'd10000;
 default: dout = 0;
 endcase
endmodule

//binary encoded decimal conversion look up table
module lut_htho(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd800000;
 1: dout = 23'd400000;
 2: dout = 23'd200000;
 3: dout = 23'd100000;
 default: dout = 0;
 endcase

67

endmodule

//binary encoded decimal conversion look up table
module lut_mil(select, dout);

input [1:0] select;
output [23:0] dout;
reg [23:0] dout;

always @(select)
case (select)
 0: dout = 23'd8000000;
 1: dout = 23'd4000000;
 2: dout = 23'd2000000;
 3: dout = 23'd1000000;
 default: dout = 0;
 endcase
endmodule

module add_24(d1, d2, dout);

input [23:0] d1, d2;
output [23:0] dout;

assign dout = d1 + d2;

endmodule

//Addition: select = 1
//Subtraction: select = 0
//Performs d1 (+-) d2
module alu_24(clk, d1, d2, select, dout);

input clk, select;
input [23:0] d1, d2;
output [23:0] dout;
reg [23:0] temp; //temp used for subtraction

//25 bit mask of 1's
parameter MASK = 24'b1111_1111_1111_1111_1111_1111;

always @(posedge clk)
 begin
 if (select)
 temp = d2;
 else
 temp = (d2 ^ MASK) + 1; //invert bits of d2 and add one for two's comp
 end

assign dout = d1 + temp;
endmodule

68

//Chris Kalima
//A 25-bit addition-subtraction unit [alu_25]
//Addition: select = 1
//Subtraction: select = 0
//Performs d1 (+-) d2
module alu_25(clk, d1, d2, select, dout);

input clk, select;
input [24:0] d1, d2;
output [24:0] dout;
reg [24:0] temp; //temp used for subtraction

//25 bit mask of 1's
parameter MASK = 25'b1_1111_1111_1111_1111_1111_1111;

always @(posedge clk)
 begin
 if (select)
 temp = d2;
 else
 temp = (d2 ^ MASK) + 1; //invert bits of d2 and add one for two's comp
 end

assign dout = d1 + temp;
endmodule

//A specialized 8-bit addition-subtraction unit [alu_8]
//Performs d1 + d2 and outputs a nine-bit number to account for overflow
module alu_8(d1, d2, bias, dout);

input [7:0] d1, d2;
input [6:0] bias;
output [8:0] dout;

assign dout = (d1 + d2) - bias;

endmodule

//A 8-bit enabled register with asyncronous reset
module reg_9(clk, reset, enable, din, dout);

input clk, reset, enable;
input [8:0] din;
output [8:0] dout;
reg [8:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable)
 dout <= din;
 end
endmodule

69

//A 50-bit register with asyncronous reset
module reg_50(clk, reset, din, dout);

input clk, reset;
input [49:0] din;
output [49:0] dout;
reg [49:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else dout <= din;
 end
endmodule

//A 48-bit enabled register with asyncronous reset
module reg_48(clk, reset, enable, din, dout);

input clk, reset, enable;
input [47:0] din;
output [47:0] dout;
reg [47:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable)
 dout <= din;
 end
endmodule

//A 32-bit enabled register with asyncronous reset
module reg_32(clk, reset, enable, din, dout);

input clk, reset, enable;
input [31:0] din;
output [31:0] dout;
reg [31:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable)
 dout <= din;
 end
endmodule

//A 28-bit enabled register with asyncronous reset
module reg_28(clk, reset, enable, din, dout);

input clk, reset, enable;
input [27:0] din;

70

output [27:0] dout;
reg [27:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0; //set to zero on reset
 else if (enable) dout <= din;
 end
endmodule

//A 25-bit enabled register with asyncronous reset
module reg_25_4(clk, reset, enable, din, dout);

input clk, reset, enable;
input [4:0] din;
output [4:0] dout;
reg [4:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable) dout <= din;
 end
endmodule

//A 25-bit enabled register with asyncronous reset
module reg_25(clk, reset, enable, din, dout);

input clk, reset, enable;
input [24:0] din;
output [24:0] dout;
reg [24:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable) dout <= din;
 end
endmodule

//A 24-bit enabled register with asyncronous reset
module reg_24(clk, reset, enable, din, dout);

input clk, reset, enable;
input [23:0] din;
output [23:0] dout;
reg [23:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable) dout <= din;
 end

71

endmodule

//A 23-bit enabled register with asyncronous reset
module reg_23(clk, reset, enable, din, dout);

input clk, reset, enable;
input [22:0] din;
output [22:0] dout;
reg [22:0] dout;

always @(posedge clk or posedge reset)
 begin
 if (reset) dout <= 0;
 else if (enable)
 dout <= din;
 end
endmodule

module ERreg_3b (out, in, clk, enbl, reset) ;

input [2:0] in ;
output [2:0] out ;
input enbl ;
input reset ;
input clk ;

reg [2:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <=0;
 else if (enbl) out <= in;
endmodule

module erreg_8b (out, in, clk, reset, enbl) ;
//8 bit enable register w/ asynchronous reset

input [7:0] in ;
input reset ;
input enbl ;
input clk ;
output [7:0] out ;

reg [7:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <= 0;
 else if (enbl) out <= in;

endmodule

module ERreg_32b (out, in, clk, enbl, reset) ;

72

input [31:0] in ;
output [31:0] out ;
input enbl ;
input reset ;
input clk ;

reg [31:0] out;

always @(posedge clk or posedge reset)
 if (reset) out <=0;
 else if (enbl) out <= in;
endmodule

module shift_reg28(clk, reset, en, din, dout);

input clk, reset, din, en;
output [27:0] dout;
reg [27:0] dout;
reg en;

always @(posedge clk or posedge reset)
 if (reset) dout = 0;
 else if (en) dout = {dout[26:0], din}; //shifts left

endmodule

module flop(clk, din, dout);

input clk, din;
output dout;
reg dout;

always @(posedge clk)
 dout = din;

endmodule

module mux2_1_4(SEL, A, B, OUT);

input SEL;
input [4:0] A, B;
output [4:0] OUT;
reg [4:0] OUT;

always @(SEL or A or B)
begin
 case (SEL)
 1'b0 : OUT = A;
 1'b1 : OUT = B;
 default : OUT = 0;
 endcase
end

73

endmodule

module mux2_1_9b(SEL, A, B, OUT);

input SEL;
input [8:0] A, B;
output [8:0] OUT;
reg [8:0] OUT;

always @(SEL or A or B)
begin
 case (SEL)
 1'b0 : OUT = A;
 1'b1 : OUT = B;
 default : OUT = 0;
 endcase
end

endmodule

module mux2_1_24b(SEL, A, B, OUT);

input SEL;
input [23:0] A, B;
output [23:0] OUT;
reg [23:0] OUT;

always @(SEL or A or B)
begin
 case (SEL)
 1'b0 : OUT = A;
 1'b1 : OUT = B;
 default : OUT = 0;
 endcase
end

endmodule

module mux2_1(SEL, A, B, OUT);

input SEL;
input [24:0] A, B;
output [24:0] OUT;
reg [24:0] OUT;

always @(SEL or A or B)
begin
 case (SEL)
 1'b0 : OUT = A;
 1'b1 : OUT = B;
 default : OUT = 0;
 endcase
end

74

endmodule
module mux2_1_32b(SEL, A, B, OUT);

input SEL;
input [31:0] A, B;
output [31:0] OUT;
reg [31:0] OUT;

always @(SEL or A or B)
begin
 case (SEL)
 1'b0 : OUT = A;
 1'b1 : OUT = B;
 default : OUT = 0;
 endcase
end

endmodule

module mux3_1(SEL, A, B, C, OUT);

input [1:0] SEL;
input [47:0] A, B, C;
output [47:0] OUT;
reg [47:0] OUT;

always @(SEL or A or B or C)
begin
 case (SEL)
 2'b00 : OUT = A;
 2'b01 : OUT = B;
 2'b10 : OUT = C;
 default : OUT = 0;
 endcase
end

endmodule

//A 5 to 1 multiplexer
//has a 50-bit width for inputs and outputs
//FAILS AT 50-BIT WIDTH!!!!
module mux5_1(select, a, b, c, d, e, dout);

input [2:0] select;
input [40:0] a, b, c, d, e;
output [40:0] dout;
reg [40:0] dout;

always @(select or a or b or c or d or e)
begin
 case(select)
 3'b000 : dout = a;
 3'b001 : dout = b;

75

 3'b010 : dout = c;
 3'b011 : dout = d;
 3'b100 : dout = e;
 default : dout = 0;
 endcase
end
endmodule

module mux7_1_24b(SEL, A, B, C, D, E, F, G, MUX_OUT);

input [2:0] SEL;
input [23:0] A, B, C, D, E, F, G;
output [23:0] MUX_OUT;
reg [23:0] MUX_OUT;

always @(SEL or A or B or C or D or E or F or G)
begin
 case (SEL)
 3'b000 : MUX_OUT = A;
 3'b001 : MUX_OUT = B;
 3'b010 : MUX_OUT = C;
 3'b011 : MUX_OUT = D;
 3'b100 : MUX_OUT = E;
 3'b101 : MUX_OUT = F;
 3'b110 : MUX_OUT = G;

default : MUX_OUT = 0;
 endcase
end

endmodule

module mux8_4b (d1, d2, d3, d4, d5, d6, d7, d8, out, sel) ;

input [3:0] d1, d2, d3, d4, d5, d6, d7, d8 ;
output [3:0] out ;
input [2:0] sel ;

reg [3:0] out;

always @(d1 or d2 or d3 or d4 or d5 or d6 or d7 or d8 or sel)
 case (sel)
 0: out <= d1;
 1: out <= d2;
 2: out <= d3;
 3: out <= d4;
 4: out <= d5;
 5: out <= d6;
 6: out <= d7;
 7: out <= d8;
 endcase

endmodule

76

module mux2_4b (a, b, out, sel) ;

input [3:0] a ;
input [3:0] b ;
output [3:0] out ;
input sel ;

reg out;

always @(a or b or sel)
 if (sel)
 out <= b;
 else
 out <= a;

endmodule

module mux2_32b (out, a, b, sel) ;

output [31:0] out ;
input [31:0] a ;
input [31:0] b ;
input sel ;

reg [31:0] out;

always @(a or b or sel)
 if (sel)
 out <= b;
 else
 out <= a;

endmodule

module mux3_32b (out, a, b, c, sel) ;

output [31:0] out ;
input [31:0] a, b, c ;
input [1:0] sel ;

reg [31:0] out;

always @(a or b or c or sel)
 case (sel)
 00: out <= a;
 01: out <= b;
 10: out <= c;
 default: out <= 0;
 endcase

endmodule

module mux4_32b (out, a, b, c, d, sel) ;

77

output [31:0] out ;
input [31:0] a, b, c, d ;
input [1:0] sel ;

reg [31:0] out;

always @(a or b or c or d or sel)
 case (sel)
 00: out <= a;
 01: out <= b;
 10: out <= c;
 11: out <= d;
 endcase

endmodule

