
Two Function Calculator
Final Project Report
December 9, 1999

E157

Mark Holland

Abstract:

This project prototypes a two function calculator consisting of a 16 key keypad, FPGA, and 8 digit LED
display. The two targeted operations are addition and subtraction. Inputted numbers are positive base ten
integers of 8 or fewer digits. The user types in an arithmetic equation in four steps: they type the first
number, an operator, the second number, and lastly an equals operator. Each inputted number is placed in a
shift register in the FPGA while also being displayed on the LEDs. The operator is also placed in a
register. When an equals sign is inputted, the proper operation is performed on the two numbers and the
resulting number is put in a register and displayed on the LED display.

2

Introduction
Mathematics is a building block upon which all of the sciences are dependent. Being able to

perform simple arithmetic operations quickly and efficiently is a necessary tool in all scientific fields.
Calculators were created in order to give people a simple, fast, and error free method of doing these
calculations.

I chose to prototype a calculator because they are one of the most basic and important tools for an
engineer such as myself. Being able to design and understand the hardware of a calculator is a good
starting point from which I can go on to design and understand more complicated devices.

My calculator performs the operations of addition and subtraction. It operates in base 10 and is
capable of accepting, displaying, and operating on any numbers in the range 0 to 99,999,999. If answers
occur that are not in this range an overflow/negative indicator light is used to show that the outputted
number is not in the acceptable data range. A clear button is used to clear the memory and the display of
any contents.

From the cleared (empty) state, my calculator works by accepting four inputs from a user: a
number (from 0 to 99,999,999), an operator (+ or -), a second number (from 0 to 99,999,999), and lastly an
equals operator. The inputs are made on a 16 key keypad, which is shown in Figure 1.

Figure 1: 16 Key Keypad

Each inputted number is displayed on the LED display as the number is being inputted, and the

answer is displayed after the equals operator is entered. The outputted numbers are displayed on four dual
7-segment displays, combined as shown in Figure 2.

Figure 2: LED Display

My calculator uses an FPGA almost exclusively, with a small amount of external logic on my
board. Inputs come from the keypad and outputs go to the display. Inputted numbers and operators are
shifted into registers on the FPGA as they are entered on the keypad. Inputted numbers and the eventual
answer of the operation are displayed on the LED display at the proper times. The FPGA multiplexes the
8-digit display such that each digit is only on 1/8 of the time.

1

4

7

2 +3

C0

8 9

5 6 -

=

3

The only external logic that I use is 8 PNP transistors that control the switching of the 8 digits in
the display. The FPGA was inadequate in its current sinking/sourcing capabilities, which required the use
of these transistors.

The most basic block diagram for the design appears in Figure 3. From the keypad a button is
pressed, the proper operations are done inside the FPGA, and the proper segment mappings are outputted to
the display.

 BUTTON SEGMENT

 PRESSES MAPPINGS

Figure 3: Basic Design Block Diagram

Another basic block diagram can be made just to describe the FPGA. This block diagram appears
in Figure 4. The inputted number is first decoded into either a number or operation input and put into a
register. By deciphering the states of the registers the proper number can be chosen and mapped to LED
mappings. These mappings tell the display which segments to turn on.

BUTTON REGISTERS SEGMENT

PRESSES MAPPINGS

Figure 4: Basic FPGA Block Diagram

Much more goes on in the FPGA but a lot of it is regulation or control of the items shown in the
block diagrams and not actual blocks. The entire FPGA design is covered in a later section.

KEYPAD FPGA DISPLAY

DECODER MAPPER

4

Schematics
The schematics for my calculator circuit appear in Figure 5. The wires are named after the FPGA

inputs and outputs to which they are connected (the names are the same as those that appear in the Verilog
code in the Appendix). Poll[3:0] are inputs to the FPGA and the rest of the wires are outputs of the FPGA.

The keypad contains a matrix of wires that can be shorted by pressing the buttons. For example,
pressing button 1 would short the wires CYCLE[3] and POLL[2]. The FPGA cycles the columns one at a
time so that there is always only one column wire that is low. If a button in that column is being pressed,
the corresponding row wire is pulled low and the FPGA recognizes that a button has been pressed. By
knowing which row wire and column wire are low it can then decode the occurrence into a specific button
press. This is how the polling circuit works.

5

 The LED display is a common anode display. This means that the anodes (positive side) of each
of the seven LEDs on a digit are tied together. The cathodes of like segments (for example the cathodes
from the top LED on each digit) are then tied together as well.

In my design, the anodes are pulled high to turn on a digit. While a digit’s anodes are pulled high,
the LEDs that have low cathodes will light up. This is how my display works.

Ideally, the LEDs would like to see 5-20mA of current, but my FPGA cannot source this much
current. Because of this I use PNP transistors (see Figure 5) as switches to source the necessary current.
To turn on a PNP transistor I drop the base voltage of the transistor to 0V. The current that the LEDs see is
then determined by the value of the base resistor (here 1-Kohm), where a lower resistance would allow
more current to go through the transistor. I also have 240-ohm resistors in series with the LEDs to limit the
current to 21mA so that the LEDs are not damaged.

As an example, to display the number 3 in the least significant bit I would set the following levels:
high[0] = 0, digit[0] = 0, digit[3] = 0, digit[4] = 0, digit[5] = 0, digit[6] = 0, and the rest of the digit and
high variables would = 1.

6

 FPGA Design
My Verilog code is divided into seven modules, each of which appears in the Appendix. I will

attempt to introduce and describe them in order from input to output.

main.v
Main.v is the top-level module that organizes my overall design. It contains all of the FPGA

inputs and outputs and also contains wires for variables that are used across multiple modules. I will
describe most of these variables in the specific modules in which they are used.

The two inputs that I will describe here are clk and reset, because they are special cases. Clk is the
2Mhz clock that is generated by the FPGA. Reset is a global reset variable that appears in all of the
modules. When reset is entered, all of the variables in all of the modules get reset to their default values.
This is shown by the fact that every always statement within my design has logic designed to reset all
variables.

slow_clock.v
The clock that the FPGA runs off of is a 2 MHz clock, which means that it has a cycle time of

500ns. I have two different applications in my design that set upper and lower limits on the frequency that
I can operate my hardware at. The debouncing circuit that appears in decoder.v (to be discussed later)
requires a clock with cycles of approximately 5ms (200Hz). The display must multiplex its eight digits
such that each digit is flashing at around 50Hz or faster. To accommodate both of these requirements I
chose to use a clock that operates at 488Hz with a cycle time of 2ms. This clock gives me 61Hz flashing
for my display (which is acceptable), and gives me a 2ms-cycle time for my debouncing circuit which I
experimentally found to be an adequate cycle time.

Slow_clock.v is the module that creates a 488Hz clock. It inputs the FPGA clock (clk) and, using
a counter, creates a system clock named trigger that operates at 488Hz. If clk were the least significant bit
of a multiple bit signal, trigger would be the twelfth bit of the signal. Slow_clock also creates a three-bit
clock, clk2, which is used in the other modules to control the timing of hardware operations.

decoder.v
 Decoder.v is the module that is used to handle keypad inputs. It works by cycling the bits

cycle[3:0] such that the four bits alternate at being 0, and then monitors the bits poll[3:0] to see if any of
them are pulled low. When a button is pressed (see Figure 5) and the column and row wires are shorted,
the row gets pulled to the value of the corresponding column.

The basic hardware flow implied by decoder.v appears in Figure 6. In the figure, boxes represent
hardware, lines entering from the tops are inputs, lines entering from the sides are enable lines, and lines
coming out of the bottoms are outputs.

The debouncing circuit in decoder.v is designed such that an input must be sensed on two
consecutive clock cycles for it to be valid. This is because when a key is pressed the contacts between the
row and column wires may bounce. The debouncer must be able to ignore inputs that happen on only one
clock edge and realize that they were due to bouncing and not an actual input. This way each button press
is sensed only once and the keypad’s bouncing does not effect the input.

The variables hit [1:0] and miss are used to keep track of the consecutiveness of inputs. Hit is fed
to the decoding hardware as enabling lines, so that inputs are only decoded after being debounced. The
decoder code starts on line 132 of decoder.v. Once the enable line (hit), is sensed, two logic blocks take the
cycle and poll lines and decipher what the input was, outputting a new control line num[3:0].

The num control line is fed as an enable line to five hardware units depending on the type of input
that was sensed: numeral input, addition operator, subtraction operator, equals operator, or clear button.

In the numerical input unit there are two more units which are controlled by the signals plus and
minus. Logic determines whether plus or minus is true and enters the first unit if it is true (which means
that the entered digit is part of the second inputted number). If it is not true then we enter the second
hardware unit, which decodes digits for the first inputted number.

Both numerical input units (for first and second number) operate the same way. Upon numerical
inputs the first thing that happens is that the previous numerical inputs are shifted down a register in the

7

shift register. The input is then decoded into the low end of the shift register by the use of a multiplexer.
These numbers are held in dig0[3:0] through dig7[3:0] variables for the first inputted number and
dig2_0[3:0] through dig2_7[3:0] variables for the second inputted number. The wires for these variables
are also made accessible to the hardware in other modules.

If an addition, subtraction, or equals operator is sensed, the corresponding control line is set high
to indicate which part of the equation we are in and what operator we are using.

If the clear button is sensed, all of the variables in the module are reset to their default values.
This means that plus, minus, equals, and all of the digits are reset to zero.

Logic also exists to prevent the user from giving bad inputs. Once a plus or minus operator has
been chosen, the unchosen logic block of the two becomes disabled so that the calculator cannot try to do
addition and subtraction. Also, the equals logic unit cannot be entered until an operator has been chosen.
The only debugging logic that did not get entered into the module (due to a lack of space on the FPGA) is
logic that would prevent the user from inputting numbers after = has been entered. In the completed
calculator, the user can continue to edit the second inputted number (and therefore the answer) after the
equals button has already been hit.

cycle[3:0] poll[3:0]

 hit[1:0]

 num[3:0]

Figure 6: Decoder.v Hardware Flow

operator.v
The operator.v module is necessary for performing operations on the two inputted numbers. It

inputs the 8 digits of each of the first two numbers (dig0 – dig7, dig2_0 – dig2_7), the operators plus,
minus, and equals, and it outputs the answer variables ans0[4:0] – ans7[4:0] and the wire LED which
indicates an overflowing/negative answer.

The hardware implied by operator.v is all enabled by the wire equals. The two numbers are not
operated upon until the equals button is pressed and equals is set to one. The hardware for operator.v is
shown in Figure 7.

Multiplexers are used to choose between the digits of the first and second numbers depending on
the state of clk2[2:0]. A multiplexer also sets enable[7:0] so that sum[4:0] can be mapped to the correct
answer register. On any given clock cycle the two inputted numbers will be added or subtracted along with
c_in, their carry out (c_out) will be determined, and the result will be put in the correct ans variable
depending on the state of enable. Note that for the least significant bit addition there is a multiplexer on the
carry line to make sure that no carry in is added or subtracted.

INPUT
DECIPHERER

NUMBER
DECODER

+
LOGIC

-
LOGIC

=
LOGIC

CLEAR
LOGIC

8

The wire LED is also set in operator.v. LED is set to go high whenever there is a carry out (c_out)
at the same time that clk2 = 7 and equals is high. This indicates either an overflow for addition or a
negative number for subtraction.

 clk2[2:0] clk2[2:0] clk2[2:0]

 c_in O enable[7:0]

c_out

 sum[4:0]

Figure 7: Hardware for operator.v

mapper.v
Mapper.v is responsible for taking in the input and output numbers of the equation and mapping

them to the LEDs. It inputs both of the user-inputted numbers, the answer, plus, minus, and equals, and it
outputs the display mappings, key0[6:0] – key7[6:0].

Mapper.v starts by using equals to enable logic that will map the ans variables into temp variables
for later use. If equals is not high, it then has an enable line of plus or minus enabling logic that maps the
dig2_ variables (from the second digit) into the temp variables. If neither of the first two mappings
occurred it maps the dig variables (from the first digit) to the temp variables.

Once the eight temp[3:0] variables are set, a multiplexer uses clk2[2:0] to choose between them
and to put the proper one into hold[3:0]. Depending on the value of hold, another multiplexer then puts the
correct LED mapping into a key variable, which is then outputted to the display modules.

display.v
Display.v is responsible for taking the key LED mappings from mapper.v and outputting them to

the display. It inputs key0 – key7 and outputs a variable digit[6:0].
Display.v is simply a multiplexer that uses clk2[2:0] to choose between the 8 mapped key

variables and sends the proper mapping to the display.

display2.v
Display2.v is responsible for pulling the anodes of a digit high at the correct time. It outputs

high[7:0] to the 8 digits of the display.

dig0 – dig7 dig2_0 – dig7 enable options

ADDER/
SUBTRACTER

ans8 ans7 … … … … … … … … … … … … … … … … … … . ans0

9

Display2.v is simply a multiplexer that uses clk2[2:0] to cycle through all of the display digits,
pulling one of them high at a time.

10

Results
My initial proposal was to design and build a three-function calculator that would perform

addition, subtraction, and multiplication, free of bugs. My finished calculator was a two-function
calculator that performed addition and subtraction, and had one known bug.

The reason that the multiplication function did not make it into the calculator is because I ran out
of room on my FPGA. The FPGA has a total of 196 configurable logic blocks, and my completed design
used 193 of those blocks. In order to meet my original objectives of making a three-function calculator I
wrote a module that would perform operation, but this module could not be incorporated into the design.
The multiplication module appears in Appendix B.

I also proposed to have a calculator that would not accept bad inputs or display any errant
behavior. As I mentioned during my discussion of the module decoder.v, I was unable to fit all of my
debugging logic onto the FPGA. The result is that after the user hits equals, he can still edit the second
inputted number (and therefore the answer) by pressing digits on the keypad.

I would be able to make enough room for this last piece of debugging logic if I were to replace
lines 163 and 177 of operator.v with the code if (sum[3] && (sum[2] || sum[1])). This would have
eliminated two adders and given me room for my last piece of debugging.

I also did not maximize the brightness of my LED display. I left 1Kohm resistors in the transistor
circuits, which prevented the LEDs from seeing the maximum amount of current (21mA) that the 240ohm
resistors would have allowed them to see. The LED displays are robust enough that I could have taken the
1Kohm resistors out and had a brighter display at no harm to my hardware.

The most difficult part of my design was optimizing my hardware. I began writing my Verilog
code without any consideration for optimization because I was unaware that I would run out of room on my
FPGA. When I ran out of room I then had to take the code I had written and I had to reduce it to the
simplest hardware possible. While I believe I accomplished this in many cases, there were pieces of
hardware that I did not fully optimize, like the adders mentioned above.

Another problem that I had during my design process was that I was not initially writing my code
with the implied hardware in mind. I was simply writing code that would accomplish the tasks I needed,
which is one of the reasons that my original code implied unnecessary hardware. Getting myself to write
code with hardware in mind was somewhat difficult, but once I started doing it my code writing improved
greatly.

11

 Appendix A
This Appendix includes the Verilog files for my project. They are in the order in which they are

introduced in the FPGA design section of this paper.

12

//author: Mark Holland
//program: main.v
//purpose: top level module for calculator program

module main(clk, reset, poll, cycle, high, digit, plus, minus, equals,
LED);

input clk; //the FPGAs clock
input reset; //global reset
input [3:0] poll; //polling variables
output [3:0] cycle; //polling variables
output [7:0] high; //multiplexing variables
output [6:0] digit; //multiplexing variables

output plus; //operators, + - =
output minus;
output equals;

output LED; //LED for overflow/negative

wire [3:0] dig0; //wires for the first number
wire [3:0] dig1;
wire [3:0] dig2;
wire [3:0] dig3;
wire [3:0] dig4;
wire [3:0] dig5;
wire [3:0] dig6;
wire [3:0] dig7;

wire [3:0] dig2_0; //wires for the second number
wire [3:0] dig2_1;
wire [3:0] dig2_2;
wire [3:0] dig2_3;
wire [3:0] dig2_4;
wire [3:0] dig2_5;
wire [3:0] dig2_6;
wire [3:0] dig2_7;

wire [4:0] ans0; //wires for the answer
wire [4:0] ans1;
wire [4:0] ans2;
wire [4:0] ans3;
wire [4:0] ans4;
wire [4:0] ans5;
wire [4:0] ans6;
wire [4:0] ans7;

wire [6:0] key0; //wires for the key mappings
wire [6:0] key1;
wire [6:0] key2;
wire [6:0] key3;
wire [6:0] key4;
wire [6:0] key5;
wire [6:0] key6;
wire [6:0] key7;

13

wire [2:0] clk2; //wires for the slow clock
wire trigger; //wire for the trigger clock

//I call each of the submodules

slow_clock slow_clock(clk, reset, clk2, trigger);

decoder decoder(trigger, reset, poll, dig0, dig1, dig2, dig3, dig4,
dig5, dig6, dig7, dig2_0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5,
dig2_6, dig2_7, cycle, plus, minus, equals);

display display(clk2, trigger, reset, key0, key1, key2, key3, key4,
key5, key6, key7, digit);

display2 display2(clk2, trigger, reset, high);

mapper mapper(clk2, trigger, reset, dig0, dig1, dig2, dig3, dig4, dig5,
dig6, dig7, dig2_0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5, dig2_6,
dig2_7, ans0, ans1, ans2, ans3, ans4, ans5, ans6, ans7, key0, key1,
key2, key3, key4, key5, key6, key7, plus, minus, equals);

operator operator(clk2, trigger, reset, plus, minus, equals, dig0,
dig1, dig2, dig3, dig4, dig5, dig6, dig7, dig2_0, dig2_1, dig2_2,
dig2_3, dig2_4, dig2_5, dig2_6, dig2_7, ans0, ans1, ans2, ans3, ans4,
ans5, ans6, ans7, LED);

endmodule

14

//author: Mark Holland
//program: slow_clock.v
//purpose: to provide a slowed down clock for debouncing and
multiplexing

module slow_clock(clk, reset, clk2, trigger);

input clk; //the board's clock
input reset; //my reset
output [2:0] clk2; //my slow clock
output trigger; //my trigger for the always blocks
reg [14:0] count; //my 13-bit counter

assign clk2 = count[14:12]; //assign clk2

assign trigger = count[11]; //this gives me approximately a 4ms
cycle time

//which will be good for debouncing

always @(posedge clk or posedge reset) //on clk or reset...

if(reset) //reset resets the counting
count = 0;

else
count = count + 1; //the actual counting

endmodule

15

//author: Mark Holland
//program: decoder.v
//purpose: to debounce and decode keypad inputs, and to set the
// necessary corresponding logic

module decoder(trigger, reset, poll, dig0, dig1, dig2, dig3, dig4,
dig5, dig6, dig7, dig2_0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5,
dig2_6, dig2_7, cycle, plus, minus, equals);

input trigger; //the trigger for operation
(clock)
input reset; //my global reset
input [3:0] poll; //polling vars for keypad

output [3:0] dig0; //the digits of the first
number,
output [3:0] dig1; //in binary encoded decimal
output [3:0] dig2;
output [3:0] dig3;
output [3:0] dig4;
output [3:0] dig5;
output [3:0] dig6;
output [3:0] dig7;

output [3:0] dig2_0; //the digits of the second
number,
output [3:0] dig2_1; //in binary encoded decimal
output [3:0] dig2_2;
output [3:0] dig2_3;
output [3:0] dig2_4;
output [3:0] dig2_5;
output [3:0] dig2_6;
output [3:0] dig2_7;

output [3:0] cycle; //cycle vars for polling
keypad

output plus; //logic for the operators
output minus;
output equals;

reg plus; //various necessary registers...
reg minus;
reg equals;

reg [3:0] cycle;
reg [3:0] num; //num deciphers keypad
entries
reg [1:0] hit; //hit used in debouncing
reg miss; //used in debouncing too

reg [3:0] dig0; //registers for numbers...
reg [3:0] dig1;
reg [3:0] dig2;
reg [3:0] dig3;
reg [3:0] dig4;

16

reg [3:0] dig5;
reg [3:0] dig6;
reg [3:0] dig7;

reg [3:0] dig2_0;
reg [3:0] dig2_1;
reg [3:0] dig2_2;
reg [3:0] dig2_3;
reg [3:0] dig2_4;
reg [3:0] dig2_5;
reg [3:0] dig2_6;
reg [3:0] dig2_7;

parameter _zer = 4'b0000; //some parameters for the
numbers
parameter _one = 4'b0001;
parameter _two = 4'b0010;
parameter _thr = 4'b0011;
parameter _fou = 4'b0100;
parameter _fiv = 4'b0101;
parameter _six = 4'b0110;
parameter _sev = 4'b0111;
parameter _eig = 4'b1000;
parameter _nin = 4'b1001;

parameter col1 = 4'b0111; //parameters for the polling
parameter col2 = 4'b1011; //circuit
parameter col3 = 4'b1101;
parameter col4 = 4'b1110;

parameter line1 = 2'b00; //parameters for mapping from
parameter line2 = 2'b01; //the polling circuit
parameter line3 = 2'b10;
parameter line4 = 2'b11;

always @(posedge trigger or posedge reset) //at trigger or
reset...

if(reset) begin //if reset...

cycle = col1; //set variables to defaults

num[3:0] = 4'b0000;
hit = 0;
miss = 0;

plus = 0;
minus = 0;
equals = 0;

17

dig0 = _zer;
dig1 = _zer;
dig2 = _zer;
dig3 = _zer;
dig4 = _zer;
dig5 = _zer;
dig6 = _zer;
dig7 = _zer;

dig2_0 = _zer;
dig2_1 = _zer;
dig2_2 = _zer;
dig2_3 = _zer;
dig2_4 = _zer;
dig2_5 = _zer;
dig2_6 = _zer;
dig2_7 = _zer;

end

//if the polling circuit senses an entry we enter the debouncing
//and decoding logic

else if(poll != 4'b1111) begin

if(hit == 1) begin //if second straight
occurence...

//find the inputted column and row in case statements

case(cycle)
7: num[3:2] = line1;
11: num[3:2] = line2;
13: num[3:2] = line3;
14: num[3:2] = line4;
endcase

case(poll)
7: num[1:0] = line4;
11: num[1:0] = line1;
13: num[1:0] = line3;
14: num[1:0] = line2;
endcase

//if it was a number input...

if(num < 11 && num != 3) begin

if(plus || minus) begin //if on 2nd number

dig2_7 = dig2_6; //shift all numbers over
dig2_6 = dig2_5;
dig2_5 = dig2_4;
dig2_4 = dig2_3;
dig2_3 = dig2_2;
dig2_2 = dig2_1;

18

dig2_1 = dig2_0;

//and map new number

case(num)

0: dig2_0 = _one;
1: dig2_0 = _fou;
2: dig2_0 = _sev;
4: dig2_0 = _two;
5: dig2_0 = _fiv;
6: dig2_0 = _eig;
7: dig2_0 = _zer;
8: dig2_0 = _thr;
9: dig2_0 = _six;
10: dig2_0 = _nin;

endcase

end

else begin //if on first number

dig7 = dig6; //shift numbers over
dig6 = dig5;
dig5 = dig4;
dig4 = dig3;
dig3 = dig2;
dig2 = dig1;
dig1 = dig0;

//and map new number

case(num)

0: dig0 = _one;
1: dig0 = _fou;
2: dig0 = _sev;
4: dig0 = _two;
5: dig0 = _fiv;
6: dig0 = _eig;
7: dig0 = _zer;
8: dig0 = _thr;
9: dig0 = _six;
10: dig0 = _nin;

endcase

end

hit = 2; //increment hit so that we only
//sense one input

end

else if (num == 11) begin //logic for clear

19

cycle = col1; //set all variables
//to default values

dig0 = _zer;
dig1 = _zer;
dig2 = _zer;
dig3 = _zer;
dig4 = _zer;
dig5 = _zer;
dig6 = _zer;
dig7 = _zer;

dig2_0 = _zer;
dig2_1 = _zer;
dig2_2 = _zer;
dig2_3 = _zer;
dig2_4 = _zer;
dig2_5 = _zer;
dig2_6 = _zer;
dig2_7 = _zer;

hit = 0;
miss = 0;

plus = 0;
minus = 0;
equals = 0;

end

else if (num == 12) begin //logic for +

if(!minus) begin //if we aren't already
//doing subtract...

plus = 1; //we do add
hit = 2; //and increment hit

end

end

else if (num == 13) begin //logic for -

if(!plus) begin //if we aren't already
//doing an add...

minus = 1; //we do subtract
hit = 2; //and increment hit

end

end

else if (num == 15) begin //logic for =

if(plus || minus) begin //if we already chose
//to add or subtract...

equals = 1; //we do equals

20

hit = 2; //and increment hit

end

end

end
else if(hit == 0) begin //if the first occurence of

entry,
//we get ready for second occurence

hit = 1; //this is debouncing logic
miss = 0;

end

end
else if(miss == 1) begin //if no entry is seen we keep

//cycling and polling
case(cycle)
14: cycle = col1;
7: cycle = col2;
11: cycle = col3;
13: cycle = col4;
endcase

end
else if(miss == 0) begin //if no entry is seen for

first
//consecutive time, we reset

miss = 1; //polling variables miss and hit
hit = 0;

end

endmodule

21

//author: Mark Holland
//program: operator.v
//purpose: to perform either addition or subtraction on two inputted
numbers.

module operator(clk2, trigger, reset, plus, minus, equals, dig0, dig1,
dig2, dig3, dig4, dig5, dig6, dig7, dig2_0, dig2_1, dig2_2, dig2_3,
dig2_4, dig2_5, dig2_6, dig2_7, ans0, ans1, ans2, ans3, ans4, ans5,
ans6, ans7, LED);

input [2:0] clk2; //my clock
input trigger; //the trigger for operation

input reset; //global reset

input plus; //variable for adding
input minus; //variable for subtracting
input equals; //variable for equals

input [3:0] dig0; //the first inputted number, in
input [3:0] dig1; //binary encoded decimal
input [3:0] dig2;
input [3:0] dig3;
input [3:0] dig4;
input [3:0] dig5;
input [3:0] dig6;
input [3:0] dig7;

input [3:0] dig2_0; //the second inputted number,
in
input [3:0] dig2_1; //binary encoded decimal
input [3:0] dig2_2;
input [3:0] dig2_3;
input [3:0] dig2_4;
input [3:0] dig2_5;
input [3:0] dig2_6;
input [3:0] dig2_7;

output [4:0] ans0; //the answer, in binary
encoded
output [4:0] ans1; //decimal
output [4:0] ans2;
output [4:0] ans3;
output [4:0] ans4;
output [4:0] ans5;
output [4:0] ans6;
output [4:0] ans7;

output LED; //overflow and negative indicator

reg [4:0] ans0; //registers for ans
reg [4:0] ans1;
reg [4:0] ans2;
reg [4:0] ans3;
reg [4:0] ans4;
reg [4:0] ans5;
reg [4:0] ans6;

22

reg [4:0] ans7;

reg [3:0] num1; //other necessary registers
reg [3:0] num2;
reg [7:0] enable;
reg c_in;
reg c_out;
reg [4:0] sum;

//logic for overflow (adding) and negative (subtracting)

assign LED = clk2[2] && clk2[1] && clk2[0] && c_out && equals;

parameter def = 5'b0_0000; //default for ans

always @(posedge trigger or posedge reset)

if(reset) begin //if reset...

ans0 = def; //reset all variables
ans1 = def;
ans2 = def;
ans3 = def;
ans4 = def;
ans5 = def;
ans6 = def;
ans7 = def;

num1 = 4'b0000;
num2 = 4'b0000;
sum = 5'b0_0000;
enable = 8'b0000_0000;
c_in = 0;
c_out = 0;

end

else if(equals) begin //if equals, perform
operation

//on each of eight clock cycles in clk2[2:0] I choose a different
decimal

//place to operate on.

//choose decimal digit from first number

case(clk2[2:0])

0: num1 = dig0;
1: num1 = dig1;
2: num1 = dig2;

23

3: num1 = dig3;
4: num1 = dig4;
5: num1 = dig5;
6: num1 = dig6;
7: num1 = dig7;

endcase

//choose decimal digit from second number

case(clk2[2:0])

0: num2 = dig2_0;
1: num2 = dig2_1;
2: num2 = dig2_2;
3: num2 = dig2_3;
4: num2 = dig2_4;
5: num2 = dig2_5;
6: num2 = dig2_6;
7: num2 = dig2_7;

endcase

//set the one hot encoded enable line for controlling the answer
register

case(clk2[2:0])

0: enable = 8'b0000_0001;
1: enable = 8'b0000_0010;
2: enable = 8'b0000_0100;
3: enable = 8'b0000_1000;
4: enable = 8'b0001_0000;
5: enable = 8'b0010_0000;
6: enable = 8'b0100_0000;
7: enable = 8'b1000_0000;

endcase

//If working on first digit there is no carry in

case(enable[0])

0: c_in = c_out;
1: c_in = 0;

endcase

if(plus) begin //if doing plus...

sum = num1 + num2 + c_in; //add the numbers along
c_out = 0; //with c_in, set c_out

24

if(sum > 9) begin //if we have carry...

sum = sum - 10; //subtract 10 from sum
c_out = 1; //set c_out = 1

end

end

else if(minus) begin //if doing minus...

sum = num1 - num2 + 10 - c_in; //add by assuming
a borrow

c_out = 1;

if(sum > 9) begin //if don't need to borrow

sum = sum - 10; //make necessary
corrections

c_out = 0;

end

end

//These if statements map the answers to the proper output
register (digit)

if(enable[0])

ans0 = sum;

if(enable[1])

ans1 = sum;

if(enable[2])

ans2 = sum;

if(enable[3])

ans3 = sum;

if(enable[4])

ans4 = sum;

if(enable[5])

ans5 = sum;

if(enable[6])

ans6 = sum;

if(enable[7])

25

ans7 = sum;

end

endmodule

26

//author: Mark Holland
//program: mapper.v
//purpose: to map numbers to display segments for the display

module mapper(clk2, trigger, reset, dig0, dig1, dig2, dig3, dig4, dig5,
dig6, dig7, dig2_0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5, dig2_6,
dig2_7, ans0, ans1, ans2, ans3, ans4, ans5, ans6, ans7, key0, key1,
key2, key3, key4, key5, key6, key7, plus, minus, equals);

input [2:0] clk2; //slow clock
input trigger; //trigger clock

input reset; //global reset

input [3:0] dig0; //binary encoded decimal digits for
input [3:0] dig1; //first number
input [3:0] dig2;
input [3:0] dig3;
input [3:0] dig4;
input [3:0] dig5;
input [3:0] dig6;
input [3:0] dig7;

input [3:0] dig2_0; //binary encoded decimal digits for
input [3:0] dig2_1; //second number
input [3:0] dig2_2;
input [3:0] dig2_3;
input [3:0] dig2_4;
input [3:0] dig2_5;
input [3:0] dig2_6;
input [3:0] dig2_7;

input [4:0] ans0; //binary encoded decimal digits for
input [4:0] ans1; //answer
input [4:0] ans2;
input [4:0] ans3;
input [4:0] ans4;
input [4:0] ans5;
input [4:0] ans6;
input [4:0] ans7;

output [6:0] key0; //mappings for what I am currently
output [6:0] key1; //displaying
output [6:0] key2;
output [6:0] key3;
output [6:0] key4;
output [6:0] key5;
output [6:0] key6;
output [6:0] key7;

input plus; //operators, + - =
input minus;
input equals;

reg [6:0] key; //register for key currently being
//mapped

reg [6:0] key0;

27

reg [6:0] key1;
reg [6:0] key2;
reg [6:0] key3;
reg [6:0] key4;
reg [6:0] key5;
reg [6:0] key6;
reg [6:0] key7;

reg [3:0] temp0; //register for holding the numbers
reg [3:0] temp1; //to map
reg [3:0] temp2;
reg [3:0] temp3;
reg [3:0] temp4;
reg [3:0] temp5;
reg [3:0] temp6;
reg [3:0] temp7;

reg [3:0] hold; //register for holding specific
temp var
reg [7:0] enable; //enable contols the writing to key0-7

parameter def = 7'b111_1111; // the mappings for each digit,
as
parameter _one = 7'b100_1111; // they are sent to the display
parameter _two = 7'b001_0010;
parameter _thr = 7'b000_0110;
parameter _fou = 7'b100_1100;
parameter _fiv = 7'b010_0100;
parameter _six = 7'b010_0000;
parameter _sev = 7'b000_1111;
parameter _eig = 7'b000_0000;
parameter _nin = 7'b000_1100;
parameter _zer = 7'b000_0001;

always @(posedge trigger or posedge reset) //on trigger or
reset...

if(reset) begin //if reset...

temp0 = 4'b0000; //set all variables
temp1 = 4'b0000; //to default
temp2 = 4'b0000;
temp3 = 4'b0000;
temp4 = 4'b0000;
temp5 = 4'b0000;
temp6 = 4'b0000;
temp7 = 4'b0000;

key = def;

key0 = def;
key1 = def;
key2 = def;
key3 = def;

28

key4 = def;
key5 = def;
key6 = def;
key7 = def;

hold = 4'b0000;
enable = 8'b0000_0000;

end

else begin

if (equals) begin //if operation is complete...

temp0 = ans0; //map answer to temp
temp1 = ans1;
temp2 = ans2;
temp3 = ans3;
temp4 = ans4;
temp5 = ans5;
temp6 = ans6;
temp7 = ans7;

end

else if (plus || minus) begin //if on second number

temp0 = dig2_0; //map second number to temp
temp1 = dig2_1;
temp2 = dig2_2;
temp3 = dig2_3;
temp4 = dig2_4;
temp5 = dig2_5;
temp6 = dig2_6;
temp7 = dig2_7;

end

else begin //if on first number

temp0 = dig0; //map first number to temp
temp1 = dig1;
temp2 = dig2;
temp3 = dig3;
temp4 = dig4;
temp5 = dig5;
temp6 = dig6;
temp7 = dig7;

end

case(clk2[2:0])

0: hold = temp0; //depending on clock, will
1: hold = temp1; //operate on specific digit,

so
2: hold = temp2; //put proper digit in hold

29

3: hold = temp3;
4: hold = temp4;
5: hold = temp5;
6: hold = temp6;
7: hold = temp7;

endcase

case(clk2[2:0])

0: enable = 8'b0000_0001; //set enable for
mapping

1: enable = 8'b0000_0010; //the output according
to

2: enable = 8'b0000_0100; //the input
3: enable = 8'b0000_1000;
4: enable = 8'b0001_0000;
5: enable = 8'b0010_0000;
6: enable = 8'b0100_0000;
7: enable = 8'b1000_0000;

endcase

case(hold)

0: key = _zer; //map the number to the
1: key = _one; //display logic
2: key = _two;
3: key = _thr;
4: key = _fou;
5: key = _fiv;
6: key = _six;
7: key = _sev;
8: key = _eig;
9: key = _nin;

endcase

//map the display logic to the proper display variable so that it
puts

//the number in the right digit place

if(enable[0])

key0 = key;

if(enable[1])

key1 = key;

if(enable[2])

key2 = key;

if(enable[3])

key3 = key;

30

if(enable[4])

key4 = key;

if(enable[5])

key5 = key;

if(enable[6])

key6 = key;

if(enable[7])

key7 = key;

end

endmodule

31

//author: Mark Holland
//program: display.v
//purpose: to send the display information/mappings to the display LEDs

module display(clk2, trigger, reset, key0, key1, key2, key3, key4,
key5, key6, key7, digit);

input [2:0] clk2; //clock for multiplexing
input trigger; //trigger for operation (clock)
input reset; //global reset
input [6:0] key0; //the display mappings, for 8 digits
input [6:0] key1;
input [6:0] key2;
input [6:0] key3;
input [6:0] key4;
input [6:0] key5;
input [6:0] key6;
input [6:0] key7;
output [6:0] digit; //the current outputted display
mapping,

//to proper display digit

reg [6:0] digit;

parameter def = 7'b011_0110; //display mapping if in reset

always @(posedge trigger or posedge reset) //at trigger or
reset...

if(reset) //if reset...

digit = def; //set variable to defaults

else //otherwise...

case(clk2[2:0])
3'b000: digit = key0; //assign the
3'b001: digit = key1; //mapping of
3'b010: digit = key2; //segments to
3'b011: digit = key3; //the newly
3'b100: digit = key4; //pressed button
3'b101: digit = key5;
3'b110: digit = key6;
3'b111: digit = key7;

endcase

endmodule

32

//author: Mark Holland
//program: display2.v
//purpose: to turn the proper digit on in the multiplexed display

module display2(clk2, trigger, reset, high);

input [2:0] clk2; //clock for multiplexing
input trigger; //trigger for operation (clock)
input reset; //global reset
output [7:0] high; //for pulling a digit high

reg [7:0] high;

always @(posedge trigger or posedge reset) //on trigger or
reset...

if(reset) //if reset...

high = 8'b1111_1110; //set to default

else //otherwise...

case(clk2[2:0])

3'b000: high = 8'b1111_1110; //pull the
correct

3'b001: high = 8'b1111_1101; //digit high (0
here

3'b010: high = 8'b1111_1011; //for high)
3'b011: high = 8'b1111_0111;
3'b100: high = 8'b1110_1111;
3'b101: high = 8'b1101_1111;
3'b110: high = 8'b1011_1111;
3'b111: high = 8'b0111_1111;
default: high = 8'b1111_1110;

endcase

endmodule

33

Appendix B
This Appendix includes the Verilog file for the multiplier that did not get included into my design.

34

//author: Mark Holland
//program: operator.v
//purpose: to perform multiplication on two inputted numbers.

module operator(clk3, trigger, reset, equals, dig0, dig1, dig2, dig3,
dig4, dig5, dig6, dig7, dig2_0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5,
dig2_6, dig2_7, ans0, ans1, ans2, ans3, ans4, ans5, ans6, ans7, LED);

input [7:0] clk3; //my huge clock
input trigger; //the trigger for operation

input reset; //global reset

input equals; //variable for equals

input [3:0] dig0; //the first inputted number, in
input [3:0] dig1; //binary encoded decimal
input [3:0] dig2;
input [3:0] dig3;
input [3:0] dig4;
input [3:0] dig5;
input [3:0] dig6;
input [3:0] dig7;

input [3:0] dig2_0; //the second inputted number,
in
input [3:0] dig2_1; //binary encoded decimal
input [3:0] dig2_2;
input [3:0] dig2_3;
input [3:0] dig2_4;
input [3:0] dig2_5;
input [3:0] dig2_6;
input [3:0] dig2_7;

output [3:0] ans0; //the answer, in binary
encoded
output [3:0] ans1; //decimal
output [3:0] ans2;
output [3:0] ans3;
output [3:0] ans4;
output [3:0] ans5;
output [3:0] ans6;
output [3:0] ans7;

output LED; //overflow indicator

reg [3:0] ans0; //registers for ans
reg [3:0] ans1;
reg [3:0] ans2;
reg [3:0] ans3;
reg [3:0] ans4;
reg [3:0] ans5;
reg [3:0] ans6;
reg [3:0] ans7;

reg LED;

35

reg [3:0] temp_ans; //the temporary register that
//maps to reg0 - reg7

reg [63:0] answer_binary; //the total answer in binary

reg [31:0] mult; //the multiplier (powers of 10)
//in binary

reg [31:0] bin_num1; //the first inputted number
and
reg [63:0] bin_num2; //second inputted number in
binary

reg [31:0] sum; //sum maps to bin_num vars

reg [3:0] num1; //the current binary encoded
//decimal I am working on

//parameters for all of the multipliers

parameter one = 32'b0000_0000_0000_0000_0000_0000_0000_0001;
parameter ten = 32'b0000_0000_0000_0000_0000_0000_0000_1010;
parameter one_hundred = 32'b0000_0000_0000_0000_0000_0000_0110_0100;
parameter one_thousand = 32'b0000_0000_0000_0000_0000_0011_1110_1000;
parameter ten_thousand = 32'b0000_0000_0000_0000_0010_0111_0001_0000;
parameter one_hundred_thousand =
32'b0000_0000_0000_0001_1000_0110_1010_0000;
parameter one_million = 32'b0000_0000_0000_1111_0100_0010_0100_0000;
parameter ten_million = 32'b0000_0000_1001_1000_1001_0110_1000_0000;

//parameters for the default values

parameter ans_def = 4'b0000;
parameter sum_def = 32'b0000_0000_0000_0000_0000_0000_0000_0000;
parameter big_def =
64'b0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_00
00_0000_0000;

//I input two 8-digit numbers where each digit is in binary encoded
decimal. I then
//turn the two numbers into decimal numbers, multiply them by each
other, and map
//the result back into binary encoded decimal digits. I reuse the same
hardware
//as often as possible which is why the clock is 8 bits wide. A
mulitiplication
//would take approximately half a second to do.

always @(posedge trigger or posedge reset) //on trigger or reset

if(reset) begin //if reset...

ans0 = ans_def; //reset all variables
ans1 = ans_def;
ans2 = ans_def;
ans3 = ans_def;

36

ans4 = ans_def;
ans5 = ans_def;
ans6 = ans_def;
ans7 = ans_def;

temp_ans = ans_def;
num1 = ans_def;
sum = sum_def;
bin_num1 = sum_def;
bin_num2 = big_def;
mult = sum_def;
answer_binary = big_def;

LED = 0;

end

else if(equals) begin //if equals, perform
operation

//during the first 32 clock cycles I map each binary
encoded

//decimal digit to a straight binary number and keep a
running

//sum of the complete number.
//after every 8 cycles I complete one of the two digits

if(!clk3[5] && !clk3[6] && !clk3[7]) begin

case(clk3[3:0]) //choose which digit

0: num1 = dig0;
1: num1 = dig1;
2: num1 = dig2;
3: num1 = dig3;
4: num1 = dig4;
5: num1 = dig5;
6: num1 = dig6;
7: num1 = dig7;
8: num1 = dig2_0;
9: num1 = dig2_1;
10: num1 = dig2_2;
11: num1 = dig2_3;
12: num1 = dig2_4;
13: num1 = dig2_5;
14: num1 = dig2_6;
15: num1 = dig2_7;

endcase

case(clk3[2:0]) //choose the proper
multiplier

0: mult = one;
1: mult = ten;
2: mult = one_hundred;

37

3: mult = one_thousand;
4: mult = ten_thousand;
5: mult = one_hundred_thousand;
6: mult = one_million;
7: mult = ten_million;

endcase

//map the digit to straight binary, add to running
sum

if(num1[0])

sum = sum + mult;

num1 = num1 >> 1;
mult = mult << 1;

if(num1[0])

sum = sum + mult;

num1 = num1 >> 1;
mult = mult << 1;

if(num1[0])

sum = sum + mult;

num1 = num1 >> 1;
mult = mult << 1;

if(num1[0])

sum = sum + mult;

num1 = num1 >> 1;
mult = mult << 1;

//after 8 cycles I store the sum as a completed
number

if(clk3[0] && clk3[1] && clk3[2]) begin

if(clk3[3])

bin_num1 = sum;

else

bin_num2 = sum;

end

end

38

//on the next 32 cycles I multiply the two binary numbers
//together, giving me the result of the multiplication

else if(clk3[5] && !clk3[6] && !clk3[7]) begin

if(bin_num1[0])

answer_binary = answer_binary + bin_num2;

bin_num1 = {0, bin_num1[31:1]};
bin_num2 = {bin_num2[30:0], 0};

end

//I use 128 clock cycles to map the binary answer back into
//binary encoded decimal digits. In all, I use 256 clock

cycles
//of trigger, which takes about .5 seconds

else if(clk3[7]) begin

case(clk3[6:4]) //choose proper multiplier

0: mult = one;
1: mult = ten;
2: mult = one_hundred;
3: mult = one_thousand;
4: mult = ten_thousand;
5: mult = one_hundred_thousand;
6: mult = one_million;
7: mult = ten_million;

endcase

//if I can pull out a multiplier I do so and
//increment the proper binary encoded decimal digit

if(answer_binary > mult) begin

answer_binary = answer_binary - mult;
temp_ans = temp_ans + 1;

if(temp_ans > 9)

LED = 1;

end

//At the proper times I map the digits back to the
output

//registers, ans0 - ans7

if(!clk3[6] && !clk3[5] && !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

39

ans0 = temp_ans;

if(!clk3[6] && !clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans1 = temp_ans;

if(!clk3[6] && clk3[5] && !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans2 = temp_ans;

if(!clk3[6] && clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans3 = temp_ans;

if(clk3[6] && !clk3[5] && !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans4 = temp_ans;

if(clk3[6] && !clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans5 = temp_ans;

if(clk3[6] && clk3[5] && !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans6 = temp_ans;

if(clk3[6] && clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans7 = temp_ans;

end

end

endmodule

