Two Function Calculator

Fina Project Report
December 9, 1999
E157

Mark Holland

Abstract:

This project prototypes atwo function calculator consisting of a 16 key keypad, FPGA, and 8 digit LED
display. Thetwo targeted operations are addition and subtraction. Inputted numbers are positive base ten
integers of 8 or fewer digits. The user typesin an arithmetic equation in four steps: they type the first
number, an operator, the second number, and lastly an equals operator. Each inputted number is placed in a
shift register in the FPGA while also being displayed on the LEDs. The operator isalso placed in a

register. When an equals sign isinputted, the proper operation is performed on the two numbers and the
resulting number is put in aregister and displayed on the LED display.

Introduction

Mathematics is a building block upon which al of the sciences are dependent. Being able to
perform simple arithmetic operations quickly and efficiently is a necessary tool in all scientific fields.
Calculators were created in order to give people asimple, fast, and error free method of doing these
calculations.

| chose to prototype a calculator because they are one of the most basic and important tools for an
engineer such as myself. Being able to design and understand the hardware of a calculator is a good
starting point from which | can go on to design and understand more complicated devices.

My calculator performs the operations of addition and subtraction. It operatesin base 10 and is
capable of accepting, displaying, and operating on any numbersin the range 0 to 99,999,999. If answers
occur that are not in this range an overflow/negative indicator light is used to show that the outputted
number is not in the acceptable datarange. A clear button is used to clear the memory and the display of
any contents.

From the cleared (empty) state, my calculator works by accepting four inputs from auser: a
number (from O to 99,999,999), an operator (+ or -), a second number (from 0 to 99,999,999), and lastly an
equals operator. The inputs are made on a 16 key keypad, which is shown in Figure 1.

1 2 3 +
4 5 6 -
7 8 9

0 C =

Figure1: 16 Key Keypad

Each inputted number is displayed on the LED display as the number is being inputted, and the
answer is displayed after the equals operator is entered. The outputted numbers are displayed on four dual
7-segment displays, combined as shown in Figure 2.

Figure2: LED Display

My calculator uses an FPGA almost exclusively, with a small amount of external logic on my
board. Inputs come from the keypad and outputs go to the display. Inputted numbers and operators are
shifted into registers on the FPGA as they are entered on the keypad. Inputted numbers and the eventua
answer of the operation are displayed on the LED display at the proper times. The FPGA multiplexes the
8-digit display such that each digit is only on 1/8 of the time.

The only externa logic that | useis 8 PNP transistors that control the switching of the 8 digitsin
the display. The FPGA was inadequate in its current sinking/sourcing capabilities, which required the use
of these transistors.

The most basic block diagram for the design appearsin Figure 3. From the keypad a button is
pressed, the proper operations are done inside the FPGA, and the proper segment mappings are outputted to
the display.

BUTTON SEGMENT
KEYPAD > FPGA > DISPLAY
PRESSES MAPPINGS

Figure 3: Basic Design Block Diagram

Another basic block diagram can be made just to describe the FPGA. This block diagram appears
in Figure 4. The inputted number isfirst decoded into either a number or operation input and put into a
register. By deciphering the states of the registers the proper number can be chosen and mapped to LED
mappings. These mappings tell the display which segments to turn on.

BUTTON REGISTERS SEGMENT
» DECODER > MAPPER >
PRESSES MAPPINGS

Figure 4: Basic FPGA Block Diagram

Much more goes on in the FPGA but alot of it isregulation or control of the items shown in the
block diagrams and not actual blocks. The entire FPGA design is covered in alater section.

Schematics

The schematics for my calculator circuit appear in Figure 5. The wires are named after the FPGA
inputs and outputs to which they are connected (the names are the same as those that appear in the Verilog
code in the Appendix). Poll[3:0] are inputsto the FPGA and the rest of the wires are outputs of the FPGA.

(+5v)
high[7] high[5]™ high[3]™ high[1 *(‘)
ig Y ig ighl3] ighl1] J 2402
all /
lka /"ﬁ/\/\r———‘digit[ﬂ
: digit[1]
PN , n= = i)
= | (] : igit
4 =] - E digit[2]
s » igit[4]
> M digit(3)
high[6]™] high[4 highf2] high[0]*]
poll3]—7/ cycle[3]
poll[1}]7 cycle[2]
poll[0] cycle[1]
poll[{2] » cyclef0]
MV, +
M - R) - - -
v/ 3 y
WA
| Iy
all ik
+5V

I_

Figure 5: Board Schematics

The keypad contains a matrix of wiresthat can be shorted by pressing the buttons. For example,
pressing button 1 would short the wires CY CLE[3] and POLL[2]. The FPGA cyclesthe columns one at a
time so that there is always only one column wire that islow. If abutton in that column is being pressed,
the corresponding row wire is pulled low and the FPGA recognizes that a button has been pressed. By
knowing which row wire and column wire are low it can then decode the occurrence into a specific button
press. Thisishow the polling circuit works.

The LED display isa common anode display. This means that the anodes (positive side) of each
of the seven LEDs on a digit are tied together. The cathodes of like segments (for example the cathodes
from the top LED on each digit) are then tied together as well.

In my design, the anodes are pulled high to turn on adigit. While adigit’s anodes are pulled high,
the LEDs that have low cathodes will light up. Thisis how my display works.

Ideally, the LEDs would like to see 5-20mA of current, but my FPGA cannot source this much
current. Because of this| use PNP transistors (see Figure 5) as switches to source the necessary current.

To turn on a PNP transistor | drop the base voltage of the transistor to OV. The current that the LEDS seeis
then determined by the value of the base resistor (here 1-Kohm), where alower resistance would allow
more current to go through the transistor. | aso have 240-ohm resistors in series with the LEDsto limit the
current to 21mA so that the LEDs are not damaged.

As an example, to display the number 3 in the least significant bit | would set the following levels:
high[0] =0, digit[0] = O, digit[3] = 0, digit[4] = 0, digit[5] = 0, digit[6] = O, and the rest of the digit and
high variableswould = 1.

FPGA Design

My Verilog code is divided into seven modules, each of which appearsin the Appendix. | will
attempt to introduce and describe them in order from input to output.

main.v

Main.v isthe top-level module that organizes my overall design. It containsall of the FPGA
inputs and outputs and &l so contains wires for variables that are used across multiple modules. | will
describe most of these variables in the specific modulesin which they are used.

The two inputs that | will describe here are clk and reset, because they are special cases. Clkisthe
2Mhz clock that is generated by the FPGA. Resetisaglobal reset variable that appearsin al of the
modules. When reset is entered, all of the variablesin all of the modules get reset to their default values.
Thisis shown by the fact that every aways statement within my design has logic designed to reset all
variables.

slow_clock.v

The clock that the FPGA runs off of isa2 MHz clock, which meansthat it has a cycle time of
500ns. | have two different applicationsin my design that set upper and lower limits on the frequency that
| can operate my hardware at. The debouncing circuit that appears in decoder.v (to be discussed later)
requires a clock with cycles of approximately 5ms (200Hz). The display must multiplex its eight digits
such that each digit is flashing at around 50Hz or faster. To accommodate both of these requirements |
chose to use a clock that operates at 488Hz with a cycle time of 2ms. This clock gives me 61Hz flashing
for my display (which is acceptable), and gives me a 2ms-cycle time for my debouncing circuit which |
experimentally found to be an adequate cycle time.

Slow_clock.v isthe module that creates a 488Hz clock. It inputs the FPGA clock (clk) and, using
acounter, creates a system clock named trigger that operates at 488Hz. If clk were the least significant bit
of amultiple bit signal, trigger would be the twelfth bit of the signal. Slow_clock also creates a three-bit
clock, clk2, which is used in the other modules to control the timing of hardware operations.

decoder.v

Decoder.v isthe module that is used to handle keypad inputs. 1t works by cycling the bits
cycle[3:0] such that the four bits alternate at being 0, and then monitors the bits poll[3:0] to seeif any of
them are pulled low. When abutton is pressed (see Figure 5) and the column and row wires are shorted,
the row gets pulled to the value of the corresponding column.

The basic hardware flow implied by decoder.v appearsin Figure 6. In the figure, boxes represent
hardware, lines entering from the tops are inputs, lines entering from the sides are enable lines, and lines
coming out of the bottoms are outputs.

The debouncing circuit in decoder.v is designed such that an input must be sensed on two
consecutive clock cyclesfor it to bevalid. Thisis because when akey is pressed the contacts between the
row and column wires may bounce. The debouncer must be able to ignore inputs that happen on only one
clock edge and redlize that they were due to bouncing and not an actual input. Thisway each button press
is sensed only once and the keypad' s bouncing does not effect the input.

The variables hit [1:0] and miss are used to keep track of the consecutiveness of inputs. Hit isfed
to the decoding hardware as enabling lines, so that inputs are only decoded after being debounced. The
decoder code starts on line 132 of decoder.v. Once the enable line (hit), is sensed, two logic blocks take the
cycleand poll lines and decipher what the input was, outputting a new control line num[3:0].

The num control line is fed as an enable line to five hardware units depending on the type of input
that was sensed: numeral input, addition operator, subtraction operator, equals operator, or clear button.

In the numerical input unit there are two more units which are controlled by the signals plus and
minus. Logic determines whether plus or minusistrue and enters the first unit if it is true (which means
that the entered digit is part of the second inputted number). If it isnot true then we enter the second
hardware unit, which decodes digits for the first inputted number.

Both numerical input units (for first and second number) operate the same way. Upon numerical
inputs the first thing that happensiis that the previous numerical inputs are shifted down aregister in the

shift register. Theinput is then decoded into the low end of the shift register by the use of a multiplexer.
These numbers are held in dig0[3:0] through dig7[3:0] variablesfor the first inputted number and
dig2_0[3:0] through dig2_7[3:0] variables for the second inputted number. The wires for these variables
are also made accessible to the hardware in other modules.

If an addition, subtraction, or equals operator is sensed, the corresponding control lineis set high
to indicate which part of the equation we are in and what operator we are using.

If the clear button is sensed, all of the variables in the module are reset to their default values.
This means that plus, minus, equals, and all of the digits are reset to zero.

Logic also exists to prevent the user from giving bad inputs. Once a plus or minus operator has
been chosen, the unchosen logic block of the two becomes disabled so that the cal culator cannot try to do
addition and subtraction. Also, the equalslogic unit cannot be entered until an operator has been chosen.
The only debugging logic that did not get entered into the module (due to alack of space on the FPGA) is
logic that would prevent the user from inputting numbers after = has been entered. 1n the completed
calculator, the user can continue to edit the second inputted number (and therefore the answer) after the
equals button has aready been hit.

cycle[3:0] poll[3:0]
| |
INPUT .
DECIPHERER |— hit[1:0]
num[3:0]
NUMBER + - = CLEAR
DECODER LOGIC LOGIC LOGIC LOGIC

Figure 6: Decoder.v Hardware Flow

operator.v

The operator.v module is necessary for performing operations on the two inputted numbers. It
inputs the 8 digits of each of the first two numbers (dig0 — dig7, dig2_0—dig2_7), the operators plus,
minus, and equals, and it outputs the answer variables ans0[4:0] —ans/[4:0] and the wire LED which
indicates an overflowing/negative answer.

The hardware implied by operator.v is all enabled by the wire equals. The two numbers are not
operated upon until the equals button is pressed and equalsis set to one. The hardware for operator.v is
shown in Figure 7.

Multiplexers are used to choose between the digits of the first and second numbers depending on
the state of clk2[2:0]. A multiplexer also sets enable] 7:0] so that sum[4:0] can be mapped to the correct
answer register. On any given clock cycle the two inputted numbers will be added or subtracted aong with
c_in, their carry out (c_out) will be determined, and the result will be put in the correct ans variable
depending on the state of enable. Note that for the least significant bit addition there is a multiplexer on the
carry line to make sure that no carry in is added or subtracted.

Thewire LED isaso set in operator.v. LED is set to go high whenever thereis a carry out (c_out)
at the sametime that clk2 = 7 and equalsis high. Thisindicates either an overflow for addition or a
negative number for subtraction.

dig0 — dig7 dig2 0—dig7 enable options

S T 7 k0] XT 7 ck[20] Y 7 dk2[20]

c_in ¢ enabl e[7:0]
—

ADDER/
SUBTRACTER

| c_out

Figure 7: Hardwarefor operator.v

mapper.v

Mapper.v is responsible for taking in the input and output numbers of the equation and mapping
them to the LEDs. It inputs both of the user-inputted numbers, the answer, plus, minus, and equals, and it
outputs the display mappings, key0[6:0] —key7[6:0].

Mapper.v starts by using equal s to enable logic that will map the ans variables into temp variables
for later use. If equalsis not high, it then has an enable line of plus or minus enabling logic that maps the
dig2_ variables (from the second digit) into the temp variables. If neither of the first two mappings
occurred it maps the dig variables (from the first digit) to the temp variables.

Once the eight temp[3:0] variables are set, a multiplexer uses clk2[2:0] to choose between them
and to put the proper oneinto hold[3:0]. Depending on the value of hold, another multiplexer then puts the
correct LED mapping into akey variable, which is then outputted to the display modules.

display.v

Display.v isresponsible for taking the key LED mappings from mapper.v and outputting them to
the display. It inputs keyO —key7 and outputs a variable digit[6:0].

Display.v is simply a multiplexer that uses clk2[2:0] to choose between the 8 mapped key
variables and sends the proper mapping to the display.

display2.v

Display2.v isresponsible for pulling the anodes of a digit high at the correct time. It outputs
high[7:0] to the 8 digits of the display.

Display2.v is simply a multiplexer that uses clk2[2:0] to cycle through all of the display digits,
pulling one of them high at atime.

Results

My initial proposal was to design and build a three-function calculator that would perform
addition, subtraction, and multiplication, free of bugs. My finished calculator was a two-function
calculator that performed addition and subtraction, and had one known bug.

The reason that the multiplication function did not make it into the calculator is because | ran out
of room on my FPGA. The FPGA has atotal of 196 configurable logic blocks, and my completed design
used 193 of those blocks. In order to meet my original objectives of making a three-function calculator |
wrote a module that would perform operation, but this module could not be incorporated into the design.
The multiplication module appearsin Appendix B.

| aso proposed to have a calculator that would not accept bad inputs or display any errant
behavior. As| mentioned during my discussion of the module decoder.v, | was unableto fit all of my
debugging logic onto the FPGA. Theresult isthat after the user hits equals, he can till edit the second
inputted number (and therefore the answer) by pressing digits on the keypad.

| would be able to make enough room for this last piece of debugging logic if | were to replace
lines 163 and 177 of operator.v with the code if (sum[3] && (sum[2] || sum[1])). Thiswould have
eliminated two adders and given me room for my last piece of debugging.

| dso did not maximize the brightness of my LED display. | left 1Kohm resistorsin the transistor
circuits, which prevented the LEDs from seeing the maximum amount of current (21mA) that the 2400hm
resistors would have allowed them to see. The LED displays are robust enough that | could have taken the
1Kohm resistors out and had a brighter display at no harm to my hardware.

The most difficult part of my design was optimizing my hardware. | began writing my Verilog
code without any consideration for optimization because | was unaware that | would run out of room on my
FPGA. When | ran out of room | then had to take the code | had written and | had to reduceit to the
simplest hardware possible. While | believe | accomplished thisin many cases, there were pieces of
hardware that | did not fully optimize, like the adders mentioned above.

Another problem that | had during my design process was that | was not initially writing my code
with the implied hardware in mind. | was simply writing code that would accomplish the tasks | needed,
which is one of the reasons that my original code implied unnecessary hardware. Getting myself to write
code with hardware in mind was somewhat difficult, but once | started doing it my code writing improved
greatly.

10

Appendix A

This Appendix includes the Verilog files for my project. They are in the order in which they are
introduced in the FPGA design section of this paper.

11

/[aut ho

r: Mark Hol | and

[/ program main.v

/] pur po

nmodul e mai n(cl k,

LED) ;

i nput c¢

se:

| k;

top | evel

i nput reset;
i nput [3:0] poll;

out put
out put
out put

out put
out put
out put

out put

£ sss2ss:ss=

£ sss2ss=

re [4

£ £sssss=

£ £sssss=

re [3:
re [3:
re [3:
re [3:
re [3:
re [3:
re [3:
re [3:

re [3:
re [3:
re [3:
re [3:
re [3:
re [3:
re [3:
re [3:

re [4:
re [4:
re [4:
re [4:
re [4:
re [4:
re [4:

re [6:
re [6:
re [6:
re [6:
re [6:
re [6:
re [6:
re [6:

[3:0] cycle;

[7:0] high;

[6:0] digit;

pl us;
n nus;
equal s;

LED;

di g0;
di g1;
di g2;
di g3;
di g4;
di g5;
di g6;
di g7;

di g2_0;
di g2_1;
di g2_2;
di g2_3;
di g2_4;
di g2_5;
di g2_6;
di g2_7;

anso;
ansi;
ans2;
ans3;
ans4;
ansb;
anso;
ans’;

keyO;
key1;
key2;
key3;
key4;
key5;
key6;
key7;

reset,

modul e for cal cul ator program

cycle, high, digit, plus, mnus,

//the FPGAs cl ock
/1 gl obal reset

/Ipolling variabl es
/Ipolling variabl es
//Imultiplexing variabl es
//multiplexing variabl es

/loperators, + - =

/I LED for overfl ow negative

//Iwires for the first nunber

equal s,

//wires for the second nunber

//wires for the answer

/Iwires for the key mappi ngs

12

wire [2:0] clk2z; /Iwires for the slow clock
wire trigger; //wire for the trigger clock

/11 call each of the subnodul es
sl ow_cl ock slow clock(clk, reset, clk2, trigger);

decoder decoder(trigger, reset, poll, dig0, digl, dig2, dig3, dig4,
di g5, dig6, dig7, dig2_ 0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5,
dig2_6, dig2_7, cycle, plus, mnus, equals);

di spl ay display(clk2, trigger, reset, keyO, keyl, key2, key3, key4,
key5, key6, key7, digit);

di spl ay2 display2(cl k2, trigger, reset, high);

mapper mapper(cl k2, trigger, reset, dig0, digl, dig2, dig3, dig4, dig5,
dig6, dig7, dig2 0, dig2_1, dig2_2, dig2_ 3, dig2_4, dig2_5, dig2_6,
dig2_7, ans0, ansl, ans2, ans3, ans4, ansb5, ans6, ans7, keyO, keyl,
key2, key3, key4, key5, key6, key7, plus, mnus, equals);

operator operator(clk2, trigger, reset, plus, mnus, equals, dig0,
digl, dig2, dig3, dig4, dig5, dig6, dig7, dig2 0, dig2_1, dig2_2,
dig2_3, dig2_4, dig2_5, dig2_ 6, dig2_7, ansO, ansl, ans2, ans3, ans4,
ans5, ans6, ans7, LED);

endnodul e

13

[l author: Mark Hol | and
/I program sl ow clock.v

[/ purpose: to provide a slowed down clock for debouncing and
mul ti pl exi ng

nmodul e sl ow_cl ock(clk, reset, clk2, trigger);

i nput cl k; //the board' s cl ock

i nput reset; /1y reset

output [2:0] clk2; /Iy slow cl ock

out put trigger; /Iy trigger for the always bl ocks
reg [14: 0] count; /Iy 13-bit counter

assign cl k2 = count[14: 12]; /lassign cl k2

assign trigger = count[11]; //this gives nme approximately a 4nms

cycle tine
//which will be good for debouncing

al ways @ posedge cl k or posedge reset) //on clk or reset..
if(reset) //reset resets the counting
count = O;
el se
count = count + 1; //the actual counting
endnodul e

14

[l author: Mark Hol | and
[/ program decoder.v

/] pur pose:
/1
nodul e decoder (trigger

reset, pol

to debounce and decode keypad i nputs,
necessary correspondi ng | ogic

and to set the

di g0, digl, dig2, dig3, dig4,

di g5, dig6, dig7, dig2_ 0, dig2_1, dig2_2, dig2_3, dig2_4, dig2_5,

dig2_6, dig2_7, cycle, plus, mnus,
i nput trigger;

(cl ock)

i nput reset;

i nput [3:0] poll;

out put [3:
nunber,

out put [
out put
out put
out put
out put
out put
out put

0] dig0;
di g1;
di g2;
di g3;
di g4;
di g5;
di g6;
di g7;

out put
nunber,
out put [
out put
out put
out put
out put
out put
out put

[3: di g2_0;
di g2_1;
di g2_2;
di g2_3;
di g2_4;
di g2_5;
di g2_6;
di g2_7;

out put [3:0]
keypad

cycl e;

out put pl us;
out put m nus;
out put equal s;

reg plus;
reg m nus
reg equal s;

reg [3:0]
reg [3:0]
entries

reg [1:0]
reg mss;

cycl e;
num

hit;

reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]

di g0;
di g1;
di g2;
di g3;
di g4;

equal s);
//the trigger for operation

/Iy global reset
/Ipolling vars for keypad

//the digits of the first

//in binary encoded deci nal

//the digits of the second

//in binary encoded deci nal

/lcycle vars for polling

//1ogic for the operators

//various necessary registers...

/I num deci phers keypad

//hit used in debouncing
//used in debouncing too

/lregisters for nunbers..

15

reg [3:0]
reg [3:0]
reg [3:0]

reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]
reg [3:0]

par anet er
nunbers

par anet er
par anet er
par anet er

par anet er
par anet er
par anet er
par anet er

par anet er
par anet er
par anet er
par anet er

_zer

di g5;
di g6;
di g7;

di g2_0;
di g2_1;
di g2_2;
di g2_3;
di g2_4;
di g2_5;
di g2_6;
di g2_7,;

_one

5

_,,
<
|1 1 1 I O | O

_thr
par aneter _
par aneter _
par aneter _
par aneter _
par aneter _
par aneter _

_,,
e
c

>S50 nw v
== —
S < X

col 1l
col 2
col 3
col 4

i nel
i ne2
i ne3
i ne4

4' b0000;

4' b0001;
4' b0010;
4' b0011;
4' b0100;
4' b0101;
4' b0110;
4' b0111;
4' b1000;
4' p1001;

4' b0111,;
4' b1011;
4' b1101;
4' b1110;

2' b0O;
2' b01,;
2' b10;
2' b11,;

al ways @ posedge trigger

reset...

if(reset) begin

cycle

nuni 3

col 1;

:0] = 4

hit = 0;

m ss

pl us
m nus
equal

= 0;

s = 0;

or

b00O0O0;

16

posedge reset)

/] some paraneters for the

/Il paraneters for the polling
[lcircuit

[/ paraneters for mapping from
//the polling circuit

/lat trigger or

//if reset...

//set variables to defaults

di g0 = _zer;
digl = _zer;
dig2 = _zer;
di g3 = _zer;
dig4 = _zer;
di g5 = _zer;
di g6 = _zer;
dig7 = _zer;
dig2_ 0 = _zer;
dig2_1 = _zer;
dig2 2 = _zer;
dig2_3 = _zer;
dig2_4 = _zer;
dig2 5 = _zer;
dig2_6 = _zer;
dig2_7 = _zer;

end

/1if the polling circuit senses an entry we enter the debouncing
//and decodi ng | ogic

else if(poll !'= 4'"b1111) begin

if(hit == 1) begin /1if second straight
occurence. .

//find the inputted colum and row in case statenents

case(cycl e)

: nuni{ 3:2] = linel
11: nuni 3:2] = line2
13: nuni 3:2] = line3;
14: nuni 3: 2] = |ine4;
endcase
case(pol I)

: nuni 1: 0] = li ne4;
11: nun{1:0] = linel
13: nuni{1: 0] = line3;
14: nun{1:0] = line2
endcase

/[/if it was a nunber input..

if(num< 11 & num!= 3) begin

if(plus || mnus) begin //if on 2nd nunber
dig2_ 7 =dig2_6; //shift all nunbers over
dig2_6 = dig2_5;
dig2_ 5 = dig2_4;
dig2_4 = dig2_3;
dig2_3 = dig2_2;
dig2_2 = dig2_1;

17

dig2_1 = dig2_0;

//and map new nunber

case(num
0: dig2_0 = _one;
1: dig2_ 0 = fou;
2: dig2_0 = _sev;
4. dig2_ 0 = _two;
5: dig2 0 = fiv;
6: dig2_ 0 = _eig;
7. dig2_ 0 = _zer;
8: dig2 0 = _thr;
9: dig2 0 = _six;
10: dig2_ 0 = nin;
endcase
end
el se begin //if on first nunber
di g7 = dig6; //shift nunbers over
di g6 = dig5;
di g5 = dig4;
di g4 = dig3;
di g3 = digz;
di g2 = digil;
di gl = dig0;
//and map new nunber
case(num
0: di g0 = _one;
1: dig0 = _fou;
2: di g0 = _sev;
4: dig0 = _two;
5: digo = _fiv;
6: dig0 = _eig;
7: di g0 = _zer;
8: dig0 = _thr;
9: dig0 = _six;
10: dig0 = _nin;
endcase
end
hit = 2; /lincrement hit so that we only
/] sense one input
end
else if (num== 11) begin /1logic for clear

18

cycle = col 1, //set all variables
//to default val ues

di g0 = _zer;
digl = _zer;
dig2 = _zer;
di g3 = _zer;
dig4 = _zer;
digb = _zer;
di g6 = _zer;
dig7 = _zer;
dig2_ 0 = _zer;
dig2_1 = _zer;
dig2 2 = _zer;
dig2_3 = _zer;
dig2_4 = _zer;
dig2 5 = _zer;
dig2_6 = _zer;
dig2_7 = _zer;
hit = 0;

mss = 0;

plus = 0;
mnus = 0

end
else if (num== 12) begin /llogic for +
if(!mnus) begin //if we aren't already
/1 doi ng subtract..
plus = 1; //we do add
hit = 2; /land increnment hit
end
end
else if (num== 13) begin //logic for -
if(!plus) begin //1if we aren't already
/1 doi ng an add..
m nus = 1; //we do subtract
hit = 2; /land increnment hit
end
end
else if (num == 15) begin /llogic for =
if(plus || mnus) begin //if we already chose
//to add or subtract..
equal s = 1; //we do equal s

19

hit = 2; //and increment hit

end
end
end
else if(hit == 0) begin /lif the first occurence of
entry,
//we get ready for second occurence
hit = 1, //this is debouncing |ogic
mss = 0;
end
end
else if(mss == 1) begin /1if no entry is seen we keep
/lcycling and polling
case(cycl e)
14: cycle = col 1,
7: cycle = col 2;
11: cycle = col 3;
13: cycle = col 4,
endcase
end
else if(mss == 0) begin //if no entry is seen for
first
//consecutive tine, we reset
mss = 1; /Ipolling variables mss and hit
hit = 0;
end
endnodul e

20

[l author: Mark Hol | and

/] program operator.v

[l purpose: to performeither addition or subtraction on two inputted
nunbers.

nodul e operator(cl k2, trigger, reset, plus, mnus, equals, dig0, digl
dig2, dig3, dig4, dig5, dig6, dig7, dig2 0, dig2_1, dig2_2, dig2_3,
dig2_4, dig2_5, dig2_6, dig2_7, ansO, ansl, ans2, ans3, ans4, ans5,
ans6, ans7, LED);

i nput [2:0] clk2; /Iy clock

i nput trigger; //the trigger for operation
i nput reset; /1 gl obal reset

i nput pl us; /lvariable for adding

i nput m nus; /lvariable for subtracting
i nput equal s; /lvariable for equals

nput [3:0] digoO; //the first inputted nunber, in
nput [3:0] digl; /] binary encoded deci nal

nput [3:0] dig2;
nput [3:0] dig3;
nput [3:0] dig4;
nput [3:0] didg5;
nput [3:0] didg6;
nput [3:0] dig7;

nput [3:0] dig2_0; //the second inputted nunber,
n
nput [3:0] dig2_1; /1 binary encoded deci ma

nput [3:0] dig2_2;
nput [3:0] dig2_3;
nput [3:0] dig2_4;
nput [3:0] dig2_5;
nput [3:0] dig2_6;
nput [3:0] dig2_7;

out put [4:0] anso; //the answer, in binary
encoded
out put [4:0] ansi; /I deci mal

out put [4:0] ans2;
out put [4:0] ans3;
out put [4:0] ans4;
out put [4:0] ans5;
out put [4:0] ans6;
out put [4:0] ans7;

out put LED; /loverfl ow and negative indicator

reg [4:0] ansO; /lregisters for ans
reg [4:0] ansi;
reg [4:0] ans2;
reg [4:0] ans3;
reg [4:0] ans4;
reg [4:0] ans5;
reg [4:0] ansé6;

21

reg [4:0] ans7;

reg [3:0] nunt;
reg [3:0] nun;

reg [7:0] enable;

reg c_in;
reg c_out;
reg [4:0] sum

//other necessary registers

//1ogic for overflow (addi ng) and negative (subtracting)

assign LED = cl k2[2] && clk2[1l] && clk2[0] && c_out && equals;

par aneter def = 5'b0_0000; //default for ans

al ways @ posedge trigger or posedge reset)

if(reset) begin /[1if reset..

ans0 = def; //reset all variabl es
ansl = def;

ans2 = def;

ans3 = def;

ans4 = def;

ansb5 = def;

ans6 = def;

ans7 = def;

numl = 4' b0000;

nunm = 4' b0000;

sum = 5' b0_0000;
enabl e = 8" b0000_0000;

c_in = 0;
c_out = 0;
end
el se if(equals) begin /1if equals, perform
operation

/1on each of eight clock cycles in clk2[2:0] | choose a different

deci mal

/I place to operate on

/I choose decimal digit fromfirst nunber

case(cl k2[2:0])

0: nuni = di g0;
1: nuni = digl
2: nunl = di g2;

22

3: nunl = dig3;

4: nunil = di g4;

5: nunl = dig5;

6: nunl = di g6;

7: nunl = dig7;
endcase

/I choose decimal digit from second nunber

case(cl k2[2:0])

0: nun = dig2_0;
1: nun? = dig2_1;
2: nun? = dig2_2;
3: nun? = dig2_3;
4: nun? = di g2_4;
5: nun? = di g2_5;
6: nun? = di g2_6;
7: nun? = dig2_7,;
endcase

//set the one hot encoded enable line for controlling the answer
register

case(cl k2[2:0])

0: enabl e = 8' b0000_ 0001
1: enabl e = 8' b0000_0010;
2: enabl e = 8' b0000_0100;
3: enabl e = 8' b0000_1000;
4: enabl e = 8' b0001_0000;
5: enabl e = 8' b0010_0000;
6: enabl e = 8' b0100_0000;
7: enabl e = 8' b1000_0000;
endcase

/11f working on first digit there is no carry in

case(enabl e[0])

0: c_in = c_out;
1: cin = 0;
endcase
i f(plus) begin /1if doing plus..
sum = numl + nun® + c_in; //add the nunbers al ong
c_out = 0; /Iwith c_in, set c_out

23

i f(sum > 9) begin /1if we have carry. ..

sum = sum - 10; //subtract 10 from sum
c_out = 1; /lset c_out =1
end
end
el se if(m nus) begin //if doing mnus...
sum = numl - nun2 + 10 - c_in; //add by assum ng
a borrow
c_out = 1;
i f(sum > 9) begin //if don't need to borrow
sum = sum - 10; /I make necessary
corrections
c_out = 0O;
end
end

/I These if statements map t he answers to the proper output
register (digit)

i f(enabl e[0])
ansO = sum
i f(enable[1])
ansl = sum
i f(enable[2])
ans2 = sum
i f(enabl e[3])
ans3 = sum
i f(enabl e[4])
ans4 = sum
i f(enabl e[5])
ans5 = sum
i f(enabl e[6])
ans6é = sum

i f(enable[7])

24

ans7 = sum

end

endnodul e

/ [aut hor :

nmodul e mapper (cl k2,

Mar k Hol | and
/] program mapper.vV
/] pur pose:

to map nunbers to display segments for the display

reset, dig0O, digl, dig2, dig3, dig4, digs

dig6, dig7, dig2 0, dig2_1, dig2_2, dig2_ 3, dig2_4, dig2_5, dig2_6,
dig2_7, ans0, ansl
key3, key4, key5, key6, key7, plus, mnus, equals);

key2,

nput
nput

nput

nput
nput
nput
nput
nput
nput
nput
nput

nput
nput
nput
nput
nput
nput
nput
nput

nput
nput
nput
nput
nput
nput
nput
nput

out put
out put
out put
out put
out put
out put
out put
out put

i nput
i nput

[2:0]

cl k2;

trigger;

reset;

pl us;
m nus;

di g0;
di g1;
di g2;
di g3;
di g4;
di g5;
di g6;
di g7;

di g2_0;
dig2_1;
di g2_2;
di g2_3;
di g2_4;
di g2_5;
di g2_6;
dig2_7;

anso;
ansli;
ans?2;
ans3;
ans4;
ans5;
anseo;
ans’;

keyO;
keyl;
key2;
key3;
key4;
key5;
key®6;
key7;

i nput equal s;

reg [6:0] key;

reg [6:0] keyO;

ans2, ans3, ans4, ans5, ans6, ans7, key0O, keyl,

/1sl ow cl ock
/1trigger clock

/1 gl obal reset

/I binary encoded decinmal digits for
[/first nunber

/I binary encoded decinmal digits for
[/ second nunber

/1 binary encoded decinmal digits for
[answer

/I mappings for what | amcurrently
/1 di spl ayi ng

/loperators, + - =

/lregister for key currently being
/I mapped

26

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg
reg

reg [3:0]
tenp var
reg [7:0]

par anet er
as

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

al ways @ posedge

reset...

keyl;
key2;
key3;
key4;
key5;
key®6;
key7;

/lregister for holding the nunbers
//to map

t enpO;
tenpl,
tenp2,
t enp3;
t enp4,
t enp5;
t enp6;
tenp7,

hol d; /lregister for holding specific

enabl e; //enable contols the witing to key0-7

def = 7'b111 1111, /1 t he mappi ngs for each digit,

_one /1
_two
_thr
_fou
_fiv
_SiXx
_sev
_eig
_nin
_zer

7' b100_1111;
7' b001_0010;
7' b000_0110;
7' b100_1100;
7' b010_0100;
7' b010_0000;
7' b000_1111;
7' b000_0000;
7' b000_1100;
7' b000_0001;

they are sent to the display

trigger or posedge reset) /lon trigger or

if(reset) begin /[1if reset...
temp0 = 4' b00O0O; //set all variables
templ = 4' b000O; //to default
tenmp2 = 4' b000O;
temp3 = 4' b000O;
tenmp4 = 4' b000O;
temp5 = 4' b000O;
tenmp6 = 4' b000O;
tenmp7 = 4' b000O;
key = def;
key0 = def;
keyl = def;
key2 = def;
key3 = def;

27

SO

key4
key5
key6
key7

hol d
enabl

D

end
el se begin
i f (equals)

t enpO
tenpl
tenp2
tenp3
t enp4
t enp5
t enp6
tenp7

end

else if (plu

t enpO
tenpl
tenp2
tenp3
t enp4
t enp5
t enp6
tenp7

end

el se begin

t enpO
tenpl
tenp2
tenp3
t enp4
t enp5
t enp6
tenp7

end
case(cl k2[2:

0:
1:

2:

def ;
def ;

o Q
@D D
— —

In s

' b00O0O0;
g’

begi n

anso;
ansi;
ans?2;
ans3;
ans4;
ansb;
anso;
ans’;

b0000_0000;

//if operation is conplete..

//map answer to tenp

S || mnus) begin //if on second nunber

di g2_0;
di g2_1;
di g2_2;
di g2_3;
di g2_4;
di g2_5;
di g2_6;
dig2_7;

di g0;
di g1;
di g2;
di g3;
di g4;
di g5;
di g6;
di g7;

hol d
hol d

hol d

/I map second nunber to tenp

//if on first number

t enpO;
tenpl,

tenp2,

28

/[/map first nunber to tenp

/I dependi ng on cl ock, wll
//operate on specific digit,

[/ put proper digit in hold

3: hold = tenp3;
4: hol d = tenp4;
5: hol d = t enp5;
6: hol d = t enp6;
7: hold = tenp7;
endcase
case(cl k2[2:0])
0: enabl e = 8 b0000_0001; //set enable for
mappi ng
1: enabl e = 8 b0000_0010; //the output according
to
2: enabl e = 8 b0000_0100; //the input
3: enabl e = 8' b0000_1000;
4: enabl e = 8 b0001_0000;
5: enabl e = 8' b0010_0000;
6: enabl e = 8' b0100_0000;
7: enabl e = 8' b1000_0000;
endcase
case(hol d)
0: key = _zer; /I map the nunber to the
1: key = _one; /1display logic
2: key = _two;
3: key = _thr;
4: key = _fou;
5: key = fiv;
6: key = _six;
7: key = _sev;
8: key = _eig;
9: key = _nin;
endcase

//map the display logic to the proper display variable so that it
Puts //the nunber in the right digit place
i f(enabl e[0])
key0 = key;
i f(enable[1])
keyl = key;
i f(enable[2])
key2 = key;
i f(enabl e[3])

key3 = key;

29

i f(enabl e[4])

key4 = key;

i f(enabl e[5])

key5 = key;

i f(enabl e[6])

key6 = key;

i f(enable[7])

key7 = key;

end

endnodul e

30

[l author: Mark Hol | and
[/ program display.v
[l purpose: to send the display information/ mappings to the display LEDs

nmodul e di splay(cl k2, trigger, reset, keyO, keyl, key2, key3, key4,
key5, key6, key7, digit);

nput [2:0] clk2; //clock for nultiplexing

nput trigger; //trigger for operation (clock)
nput reset; /1 gl obal reset

nput [6:0] keyO; //the display mappings, for 8 digits

nput [6:0] keyl;

nput [6:0] key2;

nput [6:0] key3;

nput [6:0] key4;

nput [6:0] key5;

nput [6:0] key6;

nput [6:0] key7;

output [6:0] digit; //the current outputted display
mappi ng,

//to proper display digit

reg [6:0] digit;

paraneter def = 7'b011_0110; //display mapping if in reset
al ways @ posedge trigger or posedge reset) /lat trigger or
reset...
if(reset) /[1if reset...
digit = def; //set variable to defaults
el se /] otherw se. .

case(cl k2[2: 0]

3' b00O0: digit = keyO; /lassign the
3' b0O1: digit = keyl, / I mappi ng of
3' b010: digit = key2, /] segnments to
3' b011: digit = key3; //the newy
3' b100: digit = key4, /] pressed button
3' b101: digit = keyb;
3' b110: digit = key6;
3' b111: digit = key7,
endcase
endnodul e

31

[l author: Mark Hol | and
/I program display2.v
/] purpose: to turn the proper digit on in the nmultiplexed display

nmodul e di spl ay2(cl k2, trigger, reset, high);

i nput [2:0] clk2; //clock for multiplexing

i nput trigger; //trigger for operation (clock)
i nput reset; /1 gl obal reset

out put [7:0] high; //for pulling a digit high

reg [7:0] high

al ways @ posedge trigger or posedge reset) /lon trigger or
reset...
if(reset) /[1if reset...
high = 8 b1111 1110; //set to default
el se /] otherw se. .

case(cl k2[2:0])

3' b00O0: high = 8 bl1111 1110; [lpull the
correct
3' b001: high = 8 bl1111 1101; //digit high (0
her e
3' b010: high = 8 bl1111 1011; [/ for high)
3' b011: high = 8 bl1111 0111
3' b100: high = 8 bl1110_1111
3' b101: high = 8 b1101_1111
3' bl10: high = 8 b1011_1111
3'bl1l1: high = 8 b0111_1111
def aul t: high = 8 bl1111 1110
endcase
endnodul e

32

Appendix B

This Appendix includes the Verilog file for the multiplier that did not get included into my design.

33

[l author: Mark Hol | and
/] program operator.v
/I purpose: to performmultiplication on two inputted nunbers.

nmodul e operator(cl k3, trigger, reset, equals, dig0, digl, dig2, dig3,
di g4, dig5, dig6, dig7, dig2 0, dig2_1, dig2_2, dig2_ 3, dig2_4, dig2_5,
dig2_6, dig2_7, ansO, ansl, ans2, ans3, ans4, ans5, ans6, ans7, LED);

i nput [7:0] clKks3; /1 my huge cl ock

i nput trigger; //the trigger for operation
i nput reset; /1 gl obal reset

i nput equal s; /lvariable for equals

nput [3:0] digoO; //the first inputted nunber, in
nput [3:0] digl; /I binary encoded deci nal

nput [3:0] dig2;
nput [3:0] dig3;
nput [3:0] dig4;
nput [3:0] didg5;
nput [3:0] didg6;
nput [3:0] dig7;

nput [3:0] dig2_0; //the second inputted nunber,
n
nput [3:0] dig2_1; /1 binary encoded deci ma

nput [3:0] dig2_2;
nput [3:0] dig2_3;
nput [3:0] dig2_4;
nput [3:0] dig2_5;
nput [3:0] dig2_6;
nput [3:0] dig2_7;

out put [3:0] anso; //the answer, in binary
encoded
out put [3:0] ansi; /I deci mal

out put [3:0] ans2?;
out put [3:0] ans3;
out put [3:0] ans4;
out put [3:0] ans5;
out put [3:0] anse6;
out put [3:0] ans7;

out put LED; //overflow indicator

reg [3:0] anso; /lregisters for ans
reg [3:0] ansi;
reg [3:0] ans2;
reg [3:0] ans3;
reg [3:0] ans4;
reg [3:0] ans5;
reg [3:0] ansé6;
reg [3:0] ans7;

reg LED,

reg [3:0] tenp_ans; //the tenporary register that
//maps to reg0 - reg?

reg [63: 0] answer _binary; //the total answer in binary

reg [31:0] mult; //the multiplier (powers of 10)
/1in binary

reg [31: 0] bin_nunt; //the first inputted nunber

and

reg [63: 0] bin_nun®; //second inputted nunber in

bi nary

reg [31: 0] sum //sum maps to bin_num vars

reg [3:0] nunt; //the current binary encoded
//decimal | am working on

/I paraneters for all of the multipliers

paraneter one = 32' b0000_0000_0000_0000_0000_0000_0000_0001

paraneter ten 32' bOO0O0O_0000_0000_0000_0000_0000_0000_1010;

par aneter one_hundred = 32' bOO0O0O_0000_0000_0000_0000_0000_0110_0100;
par anet er one_t housand = 32' bOO0O0_0000_0000_0000_0000_0011_1110_1000;
paraneter ten_thousand = 32' b0000_0000_0000_0000_0010_0111 0001_0000;
par anet er one_hundred_t housand =

32' bOO0O0O_0000_0000_0001_1000_0110_1010_0000;

paraneter one_mllion = 32'b0000_0000_0000_1111 0100_0010_0100_0000;
paraneter ten_mllion = 32'b0000_0000_1001_1000_1001_0110_1000_0000;

/I paraneters for the default val ues

par anet er ans_def
par anet er sum def
par anet er bi g_def
64' b00O00_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_00
00_0000_0000;

4' b000O;
32' b00O00_0000_0000_0000_0000_0000_0000_0000;

/11 input two 8-digit nunbers where each digit is in binary encoded
decimal. | then

//turn the two nunbers into decinmal nunbers, multiply them by each

ot her, and nmap

//the result back into binary encoded decimal digits. | reuse the sane
har dwar e

/las often as possible which is why the clock is 8 bits wide. A
mulitiplication

//woul d take approximately half a second to do.

al ways @ posedge trigger or posedge reset) //on trigger or reset

if(reset) begin /[1if reset...
ans0 = ans_def; /lreset all variables
ansl = ans_def;
ans2 = ans_def;
ans3 = ans_def;

35

ans4 = ans_def;
ansb5 = ans_def;
ans6 = ans_def;
ans7 = ans_def;

tenp_ans = ans_def;

nunl = ans_def;

sum = sum def;

bi n_nunl = sum def;

bi n_nun? = big_def;

mult = sum def;
answer _bi nary = big_def;

LED = 0;
end
el se if(equal s) begin /1if equals, perform
operation
//during the first 32 clock cycles | map each binary
encoded
//decimal digit to a straight binary nunber and keep a
runni ng
/1 sum of the conpl ete nunber.
/lafter every 8 cycles | conplete one of the two digits
if(!'clk3[5] && 'clk3[6] && 'clk3[7]) begin
case(cl k3[3:0]) /I choose which digit
0: nunil = di go0;
1: nuni = digl
2: nunil = di g2;
3: nunl = dig3;
4: nunl = di g4;
5: nunil = dig5;
6: nunil = di g6;
7: nunl = dig7;
8: nunil = dig2_0;
9: nunl = dig2_1;
10: nunl = dig2_2;
11: nunl = dig2_3;
12: nunl = di g2_4;
13: nunl = di g2_5;
14: nunil = di g2_6;
15: nunl = dig2_7,;
endcase
case(cl k3[2:0]) /I choose the proper
mul tiplier
0: mult = one;
1: milt = ten;
2: mult = one_hundred,;

36

3: mult = one_t housand;
4. mult = ten_thousand;
5: mult = one_hundred_t housand
6: mult = one_mllion
7. mult = ten_mllion
endcase

//map the digit to straight binary, add to running

sum
i f(numl[0])
sum = sum + nul t;
numl = nunil >> 1
mult = mult << 1
i f(numl[0])
sum = sum + nul t;
numl = nunil >> 1
mult = mult << 1
i f(numl[0])
sum = sum + nul t;
numl = nunil >> 1
mult = mult << 1
i f(numl[0])
sum = sum + nul t;
numl = nunil >> 1
mult = mult << 1
/lafter 8 cycles | store the sumas a conpleted
nunber

i f(clk3[0] & clk3[1] && clk3[2]) begin

i f(clk3[3])

bi n_nunl = sum
el se

bi n_nun2 = sum

end

end

37

//on the next 32 cycles | multiply the two binary nunbers
//together, giving ne the result of the nultiplication
else if(clk3[5] && !'clk3[6] && !'clk3[7]) begin
i f(bin_numl[O0])
answer _bi nary = answer _bi nary + bi n_nun®;

bin_numl = {0, bin_numl[31:1]};
bi n_nun?2 = {bi n_nun?[30: 0], O0};

end

/11 use 128 clock cycles to map the binary answer back into

/Ibinary encoded decimal digits. 1In all, | use 256 cl ock
cycl es
/1of trigger, which takes about .5 seconds
else if(clk3[7]) begin
case(cl k3[6:4]) // choose proper multiplier
0: mult = one;
1: milt = ten;
2: mult = one_hundred,;
3: mult = one_t housand;
4. mult = ten_thousand;
5: mult = one_hundred_t housand
6: mult = one_mllion
7. mult = ten_mllion
endcase
/[/if 1 can pull out a multiplier I do so and
/lincrement the proper binary encoded decimal digit
i f(answer _binary > mult) begin
answer _binary = answer_binary - mult;
tenp_ans = tenp_ans + 1;
if(tenp_ans > 9)
LED = 1;
end
/1At the proper tines | map the digits back to the
out put

/lregisters, ansO - ans7

if(lclk3[6] & !clk3[5] && !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

38

ansO = tenp_ans;

if(!clk3[6] & !clk3[5] &% clk3[4] &% clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ansl = tenp_ans;

if(!clk3[6] & clk3[5] & !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans2 = tenp_ans;

i f(!clk3[6] & clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans3 = tenp_ans;

if(clk3[6] & !clk3[5] & !clk3[4] &% clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans4 = tenp_ans;

i f(clk3[6] & !clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ansb5 = tenp_ans;

i f(clk3[6] & clk3[5] &% !clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans6 = tenp_ans;

i f(clk3[6] & clk3[5] && clk3[4] && clk3[3] &&
clk3[2] && clk3[1] && clk3[0])

ans7 = tenp_ans;
end

end

endnodul e

39

