The Wake-Up-With-Britney-Spears Alarm Clock

Fina Project Report
December 9, 1999
E157
Professor Harris

Cody Machler and Tom Heberlein

Abstract

The scope of this project isto build adigital alarm clock, operating on a 24-hour clock
display. It will be constructed from the E157 FPGA board, standard resistors and
transistors, a 16-button keypad, three E157 7-segment displays, and an alarm, built out of
a Britney Spears keychain. All components will be connected through a breadboard.
Excluding the alarm, they will aso operate on the same power supply. The alarm will
have its own battery based power source, supplied with the alarm hardware. All
hardware, such as decoders and counters, will be coded for in Verilog and loaded onto
the FPGA. The user will be able to set the clock time and alarm time, as well as other

check the alarm time and turn the alarm on and off.

Introduction

Most people rely on some model of alarm clock to get their day started.

However, whether the darm is a buzzer, a beeper, or aradio, everybody has most likely
experienced deeping through the darm. The cause of this problem may be that the dlarm
IS not annoying enough or the user hit the snooze button. For these reasons, we planned
to build an alarm clock with a very annoying alarm and no snooze button.

Our digital darm clock, operating on a 24-hour clock (1:00PM = 13:00) will
feature many of the same functions found on standard alarm clocks, such as settable
clock time, settable alarm time, and alarm display.

The mgor hardware components are the FPGA, the keypad, the alarm, and three
7-segment display panels. The overall interaction of the hardware can be seen in the

following block diagram.

FPGA

7-SEGMENT
DISPLAYS

ALARM
KEYPAD

New Hardware

The only hardware implemented in our design that was not used in the E157 labs
isthe Britney Spears musical key chain that we used for our alarm. The key chain
operates on battery power, so it wasn't necessary to draw power from the project’s power
supply (Three PCS Type L1154 1.5V batteries). Theretail key chain can play one of two
songs, depending on the position of aswitch. To play the selected song, the user pushes a
button. To stop the song, the user pushes that same button again.

In order to incorporate Britney into our alarm clock, we had to design away to
bypass the key chain’s mechanical switch and use an electrical switch inits place. With
the electrical switch in place, asignal from the FPGA could then turn the song on and off.
We soldered awire to each lead of the latching on/off switch. When these wires were
connected, the song was activated. After disconnecting them, when they were connected
again, the song was deactivated.

To hardwire the alarm to the clock, we attached the leads to a transistor on the
breadboard. The transistor base was connected to an FPGA output, while the collector
and emitter were connected to the leads from the alarm. The FPGA signal controlled
when the transistor opened and closed. Because the darm islatching, it changes state
every time the transistor turns on and completes the circuit. To sound the alarm, we sent
our 1 Hz clock signal to the transistor, which turned on and then off. Asaresult, the

alarm sounded. To turn the aarm off, the transistor receives another clock signal.

From FPGA
ALARM

Schematics

All of our project’s components interfaced with each other through the
breadboard. The setup isvery similar to that of Lab 4. The main differenceisthe
manner in which the displays were wired. We used seven output pins on the FPGA board
to drive six digits. We could have used 21, but we chose to use seven to decrease the

number of active pins.

FPGA Design

The entire logic is encoded onto the FPGA. Thetop level module isin alarmclock.v.
This module has the following inputs (note all the pins are summarized in Appendix A):

clk — Thisisthe 2 MHz oscillator on the FPGA board, hardwired to pin 13.
We programmed our system to just use the 1 MHz jumper on it.

reset — Thisisthe reset button on the board, hardwired to pin 7.

alarmoff — Thisis DIP switch 1, hardwired to pin 3. It is actually the alarm
on/off switch, but when it is high, we want the alarm off.

timeset — Thisis DIP switch 2, hardwired to pin 4. It is used to enable the
keypad input as a new time, and display this input on the 7-segment displays.
alarmset — Thisis DIP switch 3, hardwired to pin 5. It is used to enable the
keypad input as a new alarm time, and display this input on the 7-segment
displays.

alarmcheck — Thisis DIP switch 4, hardwired to pin 6. It isused to check the
alarm time by displaying it to the 7-segment displays.

rows [3:0] — These are the four wires from the keypad that are used to check
which keys are being pressed. They are wired from pins 29, 26, 25, and 27,
respectively.

It has the following outputs:

columns [3:0] — These are the columns being polled to the keypad. They are
wired from pins 20, 23, 24, and 28, respectively.

sevenseg [6:0] — These are the 7 segments of the display, which are wired to
all six 7-segment displays, with synchronized transistor base outputs. They
are wired from pins 77-83, respectively.

hourleft — The base driver for the leftmost display transistor. Pin 35.
hourright — The base driver for the 2™ display from the left. Pin 36.

minleft — The base driver for the 3" display from the left. Pin 37.

minright — The base driver for the 4™ display from the left. Pin 38.

secleft — The base driver for the 5™ display from the left. Pin 39.

secright — The base driver for the rightmost display transistor. Pin 40.
decimal point — The output to H1 on the rightmost 7-segment display. This
corresponds to the decimal point on the rightmost display, which we use to
indicate the alaromison. Pin 14.

secondclk — Thisisa 1 Hz output, used for debugging purposes. Outputs to
LED1, which is hardwired to pin 61.

alarm — Thisisthe signal that is supposed to drive the alarm. It iswired to
LED 6, which is hardwired to pin 68.

The top level module has the following functions:

It handles inputs and outputs from the board.
It calls al the other modules

It decodes the 3-bit transistor signal from the multiplexeddisplays module,
into 6 individua signals. (Lines 30-35)

It determines when to set the alarm off (this SHOULD happen when the alarm
time equals the clock time, but we didn’t get thisworking). (Line 38)

It toggles the dlarm. Because our alarm uses a latching switch, we need to
turn the alarm signal off right after turning it on. This happens as soon as the
alarm time no longer equals the clock time. This ensures we get a one-second
switch signal. When the user sets alarmoff to high, it should simply asserts
the alarm signal again. There may be a problem with this. If the user turns
the alarmoff to high, a constant current will flow through the transistor and
aarm. If thisistoo much of a current, the darm may get hot and die. We
didn’t experiment with the upper limitations of the time to drive the alarm.
(Lines 40-48)

It controls the outputs to the display and new time registers. It picks which set
of numbers should be displayed, and then these numbers are decoded and
displayed. Depending on the mode, the display shows the current time, the
alarm time, or the input from the keypad. We did not implement the storage
of keypad input into the new time registers. We did not figure out how to do
this until after the project was due. (Lines 52-108)

All the other modules were relatively simple, and some were modifications of
E157 lab modules, so we will not go into depth here. A quick listing follows:

onesec — givesa 1l Hz signd

keypad — handles keypad in/outs

pollkeypad — obtains keypad in/outs

clksow — adow clock for debouncing use

decode_row_column — decodes keypad in/outs into hex numbers
multiplexeddisplays — takes 6 decimal inputs and outputs them on 7-segment
LED’s using only one 7-bit output, and 6 transistor wires (an extension of the
multiplexed display)

decadecounter — counts to ten, starts over

sixcounter — counts to six, starts over

hourscounter — counts to 24, starts over

Results

The clock works. We ran the clock for 02 hours: 03 minutes: 00 seconds, with no
detectable error. However, we can not set the clock asimplemented. This could be
rather easily implemented with an enabled set of registers, smilar to a multi-bit adder,
with carryin/out signals. Unfortunately, we realized thistoo late. Thiswas the most
difficult part of the design, as everything else is either working or amost working. This
we did not get coded at al.

The alarm works when triggered. However, we were unable to get the trigger
working. We are not sure why thisisthe case.

The alarm time was not checkable, but this was an error noted in the commentsin
the code. 1n our implemented version, we had line 90-96 of the alarmclock module
taking illegal inputs. We believe thisisfixed in the code, but it is untested.

The alarm time was programmabl e though.

We changed several things from our original proposal. The first was our alarm.
We originally proposed using some kind of D/A conversion, but when we thought about
the prospect of waking up with Britney Spears, we could not resist the urge to tear apart
one of her products and plug it into an eectrical circuit.

The other main thing we changed was our hardware. We originally proposed to
use two HC11 boards, and quickly realized we only needed one. When we realized we
did not need the HC11 boards at al, we continued trying to figure out how we would use
them, but after some frustrating coding attempts, finally decided to get something
working on the FPGA boards, since we understand those best.

We a so changed the inputs from the user, originaly intending to use the DIP
switches, changing our minds to use the keypad input (which we said in our
presentation), and then changed back to the DIP switches.

PartsList

Part

Source

Vendor Part #

Price

MCD, Music on the Go
Keychain (Britney
Spears: “...1 Will Be
There”)

WaMart

ST-85001

$10.74

Appendices

Pinout List

NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "

aarmoff"
timeset"
alarmset”
alarmcheck™
reset"

clk"

decimal point"
columns<3>"
columns<2>"
columns<1>"
rows<1>"
rows<z2>"
rows<0>"
columns<0>"
rows<3>"
hourl eft"
hourright"
minleft"
minright"

secl eft”
secright”
secondclk"
aarm"
sevenseg<0>"
sevenseg<l>"
sevenseg<2>"
sevenseg<3>"
sevenseg<4>"
sevenseg<5>"
sevenseg<6>"

LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="

P4,

P5";

P6";

p7;

P13";
P14";
P20";
pP23";
pP24";
pP25";
pP26";
p27";
p28";
pP29";
P35";
P36";
P37";
P38";
P39";
P40";
P61";
P68";
p77";
p78";
P79";
P80";
P81";
P82";
P83";

10

Code

nmodul e al arnctl ock (clk, reset, tinmeset, alarnset, alarntheck, alarnoff,
rows, colums, sevenseg, hourleft, hourright, mnleft, mnright,
secl eft, secright, decimal point, secondclk, alarm

i nput clk, reset;

i nput alarnoff, tineset, alarnset, alarncheck; // The 4 DIP switch
inputs for the 4 display nodes

input [3:0] rows; // rows sensed in the keypad polling

output [3:0] colums; // colums polled on the keypad

out put [6:0] sevenseqg; // 7-segnments (a-gQ)

out put hourleft, hourright, mnleft, mnright, secleft, secright ; //
transi stors

out put deci mal poi nt ; /1l Represents alarm On

out put secondcl k ; /1 1 Hz clock to drive HCl1 counter (when
it is inplenmented)

out put alarm; /1 high when al ar m sounds

wire secondcl k ; /1 1 Hz clock

onesec seconds (reset, clk, secondclk) ;

wire hourleft, hourright, mnleft, mnright, secleft, secright
wire [6:0] sevenseg

wire [2:0] transistor ; //picks which of 6 transistors is active
wire [3:0] colums

reg [3:0] hourtens, hourones, mntens, mnones, sectens, secones ; [/
4-bit values of display digits
wire [3:0] hourten, hourone, mnten, mnone, secten, secone ; [/ 4-bit

val ues of counter digits (for clk only)
wire alarnmen ; // A arm Enabl e
reg alarm;

reg [3:0] al armhourten, alarmhourone, alarnm nten, al arnm none,

al arnmsecten, alarnmsecone ; // registers that hold the alarmtime

reg [3:0] tinmehourten, tinmehourone, timem nten, timem none, tinesecten
timesecone ; // the 6 digits of the clock in normal operation

wire [3:0] tinesethourten, tinesethourone, tinesetm nten

ti meset m none, tinesetsecten, tinesetsecone ; //the 6 digits of the
clock in timeset or alarnset operation

assign hourleft = ~(transistor[2] & ~transistor[1l] & transistor[0]) ;
/1 These 6 signals are used for mnultiplexing the display
assign hourright = ~(transistor[2] & ~transistor[1l] & ~transistor[0]) ;

assign mnleft
assign mnright
assi gn secl eft
assi gn secright

~(~transistor[2] & transistor[1l] & transistor[0]) ;
~(~transistor[2] & transistor[1l] & ~transistor[O0]) ;
~(~transistor[2] & ~transistor[1l] & transistor[0]) ;
~(~transistor[2] & ~transistor[1l] & ~transistor[O0]) ;

assi gn deci mal point = ~al arnoff ;

assign alarnmen = ~alarnmoff & ((alarmhourten &% hourten) & (alarmnmhourone
&% hourone) & (alarmmnten & minten) & (alarmm none &% minone) &

(al arnsecten && secten) & (al arnsecone && secone)) ; // Should alarm
when alarmtinme == clock tine

11

always @alarnmen) // alarmtoggling (doesn't work -- unsimul ated)

begi n /1 we used both edges of alarnen, because the alarmis
[atching, meaning it turns on/off only on posedge of its switch
if (alarm

alarm<= 1'b0
else if (alarnoff)
alarm<= 1'b0
el se
alarm<= 1'b1l ;
end

/1 The follow ng handl es the cl ock display. Hourtens, etc is what is
sent to the decoder for display

al ways @ posedge cl k or posedge reset)

begi n

if (reset)

begi n
hourtens <= 4' b0000
hour ones <= 4' b0000
m ntens <= 4' b0000
m nones <= 4' b0000
sectens <= 4' b0000
secones <= 4' b0000

end

else if (timeset)

begi n

store a tine -- figured out, but not inplenmented, 12/9 -TM)
hourtens <= tinesethourten ; [/ Tinesethourten, etc is the
last 6 digits of the keypad i nput
hourones <= ti neset hour one
m nt ens <= timesetn nten
m nones <= tinmesetm none
sectens <= tinesetsecten
secones <= tinesetsecone
end
else if (alarnset)
begi n
hourtens <= tinesethourten
hourones <= ti neset hour one
m nt ens <= timesetn nten
m nones <= tinmesetm none
sectens <= tinesetsecten
secones <= tinesetsecone

al armhourten <= timesethourten ; // This stores the keypad
input into the alarmtine
al ar mhour one <= ti neset hour one
alarmminten <= tinesetmnten ;
al armmi none <= ti nmesetmn none
al arnsecten <= tinesetsecten ;
al arnsecone <= ti nesetsecone
end
el se if (al arntheck)
begi n

12

hourtens <= al arnmhourten ; // Changed 12/9/99 to
al armhourten (this may work for display)

hour ones <= al ar mhour one

m nt ens <= al armm nt en

m nones <= al ar mm none ;

sectens <= al arnsecten ;

secones <= al arnsecone

end
el se
begi n
hourtens <= hourten ; // Sinple 1 second ticking clock
hour ones <= hourone ;
mntens <= mnten ;
m nones <= mnone ;
sectens <= secten ;
secones <= secone ;
end
end
/1 The keypad nodul e polls the keypad for settable times. It is always

active, and any check of the outputs displays the 6 digits on displays
keypad getnewtine (reset, clk, rows, colums, timesethourten

ti meset hourone, tinesetm nten, tinmesetm none, tinesetsecten

ti meset secone) ;

/1 multiplexeddi spl ays decodes the 6 digits to a single 7-bit output
and a 3-bit transistor value

mul ti pl exeddi spl ays hourmi nsec (clk, reset, hourtens, hourones,

m ntens, mnones, sectens, secones, transistor, sevenseg) ;

/1 The following is what we used for our 00:00:00 to 23:59:59 counter
The bad design of this didn't allow settable inputs

decadecounter seco (secondclk, reset, secone) ;

si xcounter sect (~secone[3], reset, secten) ;

decadecounter mino (~secten[2], reset, mnone) ;

si xcounter mnt (~mnone[3], reset, mnten) ;

hour scounter hours (~minten[2], reset, hourone, hourten) ;

endnodul e

13

nmodul e onesec (reset, clk, slowlk) ;

input reset, clk; //input clock should be 1 Mz
output slowlk ; // runs at 1 Hz

wire hal fsecreset ; // resets the counter every half-second
reg slowclk ;
reg [18:0] slowclkbits ; // 19 bits > 500,000 = 7A120

assi gn hal fsecreset = slowcl kbits[18] && slowcl kbits[17] &&

sl owcl kbi t s[16] && sl owcl kbi t s[15] && sl owcl kbi t s[13] && sl owcl kbi t s 8] &&
sl owcl kbi t s[5] ;

/1 Use below for sim above for inplenentation

//assign hal fsecreset = slowcl kbits[5];

al ways @ posedge cl k)
begi n
if (reset)
begi n
sl owcl kbits <= 19' h00000
slowcl k <= 0 ;
end
el se
if (hal fsecreset)
begi n
sl owcl kbits <= 19' h00000 ; // begin count until slowlk toggles
agai n (hal f-second)
slowcl k <= ~sl owncl k

end
el se
sl owcl kbits <= slowcl kbits + 1
end
endnodul e

14

nmodul e keypad (reset, clk, rows, columms, display5, display4, display3
di spl ay2, displayl, display0)

i nput reset

i nput clk ;

input [3:0] rows ; // row sensor for keypad

output [3:0] columms ; // colum polling for keypad

out put [3:0] display5, display4, display3, display2, displayl, display0
; /] These output the last 6 keypresses

wire [3:0] colums
wire slowlk ; // If this runs slower than 5 nms, but fast enough to
catch any keypress, it debounces!

reg rom ow, previousrowmow ; // FSMstates that establish whether a
key was pressed on the |ast cycle or not

reg [3:0] newnunber ; // mpbst recent keypress

reg [3:0] displayb, display4, display3, display2, displayl, displayO ;
/I newdi spl ay == di spl ay0, |ast display ==> displayl, etc

al ways @ posedge sl owcl k)

begi n

rowlow = ~&ows ; [/ if a key is pressed, a rowfalls |low, and
this stops polling
end

al ways @ posedge sl owcl k or posedge reset)

begi n
if (reset)
begi n
di spl ay5 = 4' b1000
di spl ay4 = 4' b1000
di splay3 = 4' b1000
di splay2 = 4' b1000
di splayl = 4' b1000
di splay0 = 4' b1000
previ ousrow ow = O ;
end
else if (romow == 1 && previousrowmow == 0) // when row ow goes
hi gh (key is pressed), number shift
begi n
di spl ay5 = displ ay4 ;
di spl ay4 = di spl ay3
di spl ay3 = di spl ay2
di spl ay2 = displayl ;
di spl ayl = di spl ay0
di spl ay0 = newnumnber
previ ousrow ow = row ow ;
end
el se
previ ousrow ow = row ow ;
end
cl ksl ow get newcl ock (reset, clk, slowlk) ; // gets "debouncer" clock
pol | keypad poll (reset, slowlk, rows, colums) ; // polls the keypad

15

decode_row colum RC (reset, slowclk, rows, colums, newnunber) ; //
decodes keypad signals into hex nunber

endnodul e

(EEEEEEE bbb bbb rrrrrrrrbr
/1
(EEEEEEE bbb bbb bbb rrrrrrrrbr

nodul e pol | keypad (reset, clk, rows, colums)

i nput reset

i nput clk ;

input [3:0] rows ;
out put [3:0] columms ;

wire freeze ;
reg [3:0] colums ;

assign freeze = ~& rows ; // if no debouncing needed, then when a row
falls low, polling is frozen

al ways @ posedge cl k or posedge reset)
begi n
if (reset)
colums <= 4'b1110
el se
if (~freeze)
begi n
colums[0] <= colums[3] ; // toggles through col ums when
no row falls | ow
col ums[1] <= col ums][0]
col ums[2] <= col ums] 1]
col ums[3] <= col ums| 2]
end

end
endnodul e

16

nmodul e cl ksl ow (reset, clk, slowclk) ;

i nput reset, clk;
out put sl owclk ;

reg [13:0] slowclkbits ; // 14 bits = 8 nms clock (slower than
debouncer need...shouldn't need a debouncer)

assign slowl k = slowcl kbits[13] ;
al ways @ posedge cl k or posedge reset)
begi n
if (reset)
sl owcl kbits = 13' bOOO0O000000000

el se

sl owcl kbits = slowcl kbits + 1 ;
end

endnodul e

17

nmodul e decode_row colum (reset, clk, row, colum, numnber)

/1 Takes 4-bit row and columm inputs, and determ nes the correspondi ng
hex nunber val ue

i nput clk, reset ;
input [3:0] row, colum ;
out put [3:0] nunber ;

reg [3:0] nunber ;

al ways @ posedge cl k or posedge reset)
if (reset)
nunber = 4' b1000 ;
el se
if (row == 4'Db1110) /11, 2, 3, C
case (colum)

4' b1110: nunber = 4'b0001
4' b1101: nunber = 4' b0010 ;
4' b1011: nunber = 4'b0011
4' b0111: nunber = 4'b1100 ;
endcase /1 NOTE: this still decodes hex val ues,
al t hough
el se /1 when these are sent to the display

decoder, they are sent bl ank
if (row == 4'Db1101) /Il 4, 5 6, D
case (colum)

4' b1110: nunmber = 4' b0100 ;
4' p1101: nunmber = 4' b0101
4' b1011: nunmber = 4' b0110 ;
4' p0111: nunmber = 4'b1101
endcase
el se

if (row == 4'b1011) /17, 8, 9, E
case (colum)

4' b1110: nunmber = 4'b0111 ;
4' p1101: nunmber = 4' b1000 ;
4' b1011: nunmber = 4'bl1001 ;
4' b0111: nunmber = 4'bl1110 ;
endcase
el se

if (row == 4'b0111) /I A 0, B F
case (colum)

4' b1110: nunber = 4'b1010
4' p1101: nunmber = 4' b0000 ;
4' b1011: nunmber = 4'bl011 ;
4' b0111: nunmber = 4'bl111 ;
endcase
endnodul e

18

nmodul e nul ti pl exeddi spl ays (clk, reset, hourtens, hourones, m ntens,
m nones, sectens, secones, transistor, dataout) ;

i nput clk, reset;

input [3:0] hourtens, hourones; // The 6 inputs that drive the
di spl ays

input [3:0] mntens, mnones;

i nput [3:0] sectens, secones;

output [2:0] transistor ; /1 Picks which of 6 transistors is
active
out put [6:0] dataout ; /1 The data out fromthe correctly chosen

decoded data (to the Cathodes).

reg [3:0] decoderin ;
wre [2:0] transistor
reg [6: 0] dataout ;

reg [9:0] slowclkbits

/1 gfe_dcba reversed, so bit 6 = F, 0 = A

par anet er BLNK = 7'bl111 1111

par anet er ZERO = 7' b100_0000;

par anet er ONE = 7'b111 1001

par anet er TWO = 7'b010_0100;

par anet er THREE = 7' b011_0000;

par anet er FOUR = 7' b001_1001

par anet er FIVE = 7'b001_0010;

par anet er SIX = 7'b000_0010;

par anet er SEVEN = 7' b111 1000;

par anet er El GHT = 7' b000_0000;

par anet er NINE = 7'b001_1000;

wire six ;

assign transistor = slowl kbits[9:7] ; // toggles at a fast enough
rate that it fires each transistor nore than 30 Hz

assign six = transistor[2] & transistor[1] ; //at 6, goes back to

transistor O

al ways @ posedge cl k)
begi n
if (reset)
decoderi n <= secones
else if (six)
decoderi n <= secones
else if (transistor == 3' b000)
decoderi n <= secones
else if (transistor == 3'b001)
decoderi n <= sectens
else if (transistor == 3' b010)
decoderi n <= m nones

else if (transistor == 3'b011)
decoderin <= mntens

else if (transistor == 3'bl00)
decoderin <= hourones

else if (transistor == 3'bl01)

decoderin <= hourtens
end

19

al ways @ posedge cl k)

begi n

if (reset)

slowcl kbits <= 0 ;

else if (six)

el se

end

slowcl kbits <= 0 ;

sl owcl kbits <=

/1 This is the 7-Seg D spl ay

al ways @ (decoderin)
case (decoderin)

0:

CoNoahwOR

defaul t:

endcase

endnodul e

dat aout
dat aout
dat aout
dat aout
dat aout
dat aout
dat aout
dat aout
dat aout
dat aout
dat aout

slowcl kbits + 1 ;

ZERQ,
ONE;
TWO,
THREE;
FOUR;
FI VE;
Sl X;
SEVEN;
El GHT;
NI NE;
BLNK;

20

/1 The followi ng counters count our time. They are NOT progranmmabl e,
whi ch caused us trouble

nmodul e decadecounter(clk, reset, nunber);

i nput clk, reset ;
output [3:0] nunber ; // counts fromO0-9

wire ten ;
reg [3:0] nunber ;

assign ten = nunber[3] &% nunmber[1l] ; // At ten, resets to zero

al ways @ posedge cl k or posedge reset or posedge ten)
begi n
if (ten)
begi n
nunber <= 4' b0000 ;
end
el se
if (reset)
begi n
nunber <= 4' b0000 ;
end
el se
begi n
nunber <= nunber + 1 ;
end
end

endnodul e
nodul e sixcounter(clk, reset, nunber);

i nput clk, reset ;
output [3:0] nunber ; // counts fromO-6

wire six ;
reg [3:0] nunber ;

assign six = nunber[2] && number[1l] ; // at six, resets to zero

al ways @ posedge cl k or posedge reset or posedge siXx)
begi n
if (six)
begi n
nunber <= 4'b0000 ;
end
el se
if (reset)
begi n
nunber <= 4'b0000 ;
end
el se
begi n
nunber <= nunber + 1 ;
end

21

end
endnodul e
nmodul e hourscounter(clk, reset, onesdigit, tensdigit);

i nput clk, reset ;
output [3:0] onesdigit;
output [3:0] tensdigit;

wire ten ;

wire twentyfour ;

reg [3:0] onesdigit ;
reg [3:0] tensdigit ;

assign ten = onesdigit[3] &% onesdigit[1l] ; // at ten, adds one to
tensdigit

assign twentyfour = tensdigit[1l] &% onesdigit[2] ; // at twentyfour,
resets to zero

al ways @ posedge cl k or posedge reset or posedge ten or posedge
t went yf our)

begi n
if (twentyfour)
begi n
onesdi git <= 4'b0000
tensdigit <= 4'b0000 ;
end
el se
if (ten)
begi n
onesdi git <= 4'b0000
tensdigit <= tensdigit + 1 ;
end
el se
if (reset)
begi n
onesdi git <= 4'b0000
tensdigit <= 4'b0000 ;
end
el se
begi n
onesdigit <= onesdigit + 1
end
end
endnodul e

22

