
The Wake-Up-With-Britney-Spears Alarm Clock
Final Project Report
December 9, 1999

E157
Professor Harris

Cody Machler and Tom Heberlein

2

Abstract

The scope of this project is to build a digital alarm clock, operating on a 24-hour clock

display. It will be constructed from the E157 FPGA board, standard resistors and

transistors, a 16-button keypad, three E157 7-segment displays, and an alarm, built out of

a Britney Spears keychain. All components will be connected through a breadboard.

Excluding the alarm, they will also operate on the same power supply. The alarm will

have its own battery based power source, supplied with the alarm hardware. All

hardware, such as decoders and counters, will be coded for in Verilog and loaded onto

the FPGA. The user will be able to set the clock time and alarm time, as well as other

check the alarm time and turn the alarm on and off.

3

Introduction

Most people rely on some model of alarm clock to get their day started.

However, whether the alarm is a buzzer, a beeper, or a radio, everybody has most likely

experienced sleeping through the alarm. The cause of this problem may be that the alarm

is not annoying enough or the user hit the snooze button. For these reasons, we planned

to build an alarm clock with a very annoying alarm and no snooze button.

Our digital alarm clock, operating on a 24-hour clock (1:00PM = 13:00) will

feature many of the same functions found on standard alarm clocks, such as settable

clock time, settable alarm time, and alarm display.

The major hardware components are the FPGA, the keypad, the alarm, and three

7-segment display panels. The overall interaction of the hardware can be seen in the

following block diagram.

ALARM

FPGA

KEYPAD

7-SEGMENT
DISPLAYS

4

New Hardware

The only hardware implemented in our design that was not used in the E157 labs

is the Britney Spears musical key chain that we used for our alarm. The key chain

operates on battery power, so it wasn’t necessary to draw power from the project’s power

supply (Three PCS Type L1154 1.5V batteries). The retail key chain can play one of two

songs, depending on the position of a switch. To play the selected song, the user pushes a

button. To stop the song, the user pushes that same button again.

In order to incorporate Britney into our alarm clock, we had to design a way to

bypass the key chain’s mechanical switch and use an electrical switch in its place. With

the electrical switch in place, a signal from the FPGA could then turn the song on and off.

We soldered a wire to each lead of the latching on/off switch. When these wires were

connected, the song was activated. After disconnecting them, when they were connected

again, the song was deactivated.

To hardwire the alarm to the clock, we attached the leads to a transistor on the

breadboard. The transistor base was connected to an FPGA output, while the collector

and emitter were connected to the leads from the alarm. The FPGA signal controlled

when the transistor opened and closed. Because the alarm is latching, it changes state

every time the transistor turns on and completes the circuit. To sound the alarm, we sent

our 1 Hz clock signal to the transistor, which turned on and then off. As a result, the

alarm sounded. To turn the alarm off, the transistor receives another clock signal.

From FPGA
ALARM

B

C

E

5

Schematics

All of our project’s components interfaced with each other through the

breadboard. The setup is very similar to that of Lab 4. The main difference is the

manner in which the displays were wired. We used seven output pins on the FPGA board

to drive six digits. We could have used 21, but we chose to use seven to decrease the

number of active pins.

6

FPGA Design

The entire logic is encoded onto the FPGA. The top level module is in alarmclock.v.

This module has the following inputs (note all the pins are summarized in Appendix A):

• clk – This is the 2 MHz oscillator on the FPGA board, hardwired to pin 13.
We programmed our system to just use the 1 MHz jumper on it.

• reset – This is the reset button on the board, hardwired to pin 7.
• alarmoff – This is DIP switch 1, hardwired to pin 3. It is actually the alarm

on/off switch, but when it is high, we want the alarm off.
• timeset – This is DIP switch 2, hardwired to pin 4. It is used to enable the

keypad input as a new time, and display this input on the 7-segment displays.
• alarmset – This is DIP switch 3, hardwired to pin 5. It is used to enable the

keypad input as a new alarm time, and display this input on the 7-segment
displays.

• alarmcheck – This is DIP switch 4, hardwired to pin 6. It is used to check the
alarm time by displaying it to the 7-segment displays.

• rows [3:0] – These are the four wires from the keypad that are used to check
which keys are being pressed. They are wired from pins 29, 26, 25, and 27,
respectively.

It has the following outputs:

• columns [3:0] – These are the columns being polled to the keypad. They are
wired from pins 20, 23, 24, and 28, respectively.

• sevenseg [6:0] – These are the 7 segments of the display, which are wired to
all six 7-segment displays, with synchronized transistor base outputs. They
are wired from pins 77-83, respectively.

• hourleft – The base driver for the leftmost display transistor. Pin 35.
• hourright – The base driver for the 2nd display from the left. Pin 36.
• minleft – The base driver for the 3rd display from the left. Pin 37.
• minright – The base driver for the 4th display from the left. Pin 38.
• secleft – The base driver for the 5th display from the left. Pin 39.
• secright – The base driver for the rightmost display transistor. Pin 40.
• decimalpoint – The output to H1 on the rightmost 7-segment display. This

corresponds to the decimal point on the rightmost display, which we use to
indicate the alarm is on. Pin 14.

• secondclk – This is a 1 Hz output, used for debugging purposes. Outputs to
LED1, which is hardwired to pin 61.

• alarm – This is the signal that is supposed to drive the alarm. It is wired to
LED 6, which is hardwired to pin 68.

The top level module has the following functions:

7

• It handles inputs and outputs from the board.

• It calls all the other modules

• It decodes the 3-bit transistor signal from the multiplexeddisplays module,
into 6 individual signals. (Lines 30-35)

• It determines when to set the alarm off (this SHOULD happen when the alarm
time equals the clock time, but we didn’t get this working). (Line 38)

• It toggles the alarm. Because our alarm uses a latching switch, we need to
turn the alarm signal off right after turning it on. This happens as soon as the
alarm time no longer equals the clock time. This ensures we get a one-second
switch signal. When the user sets alarmoff to high, it should simply asserts
the alarm signal again. There may be a problem with this. If the user turns
the alarmoff to high, a constant current will flow through the transistor and
alarm. If this is too much of a current, the alarm may get hot and die. We
didn’t experiment with the upper limitations of the time to drive the alarm.
(Lines 40-48)

• It controls the outputs to the display and new time registers. It picks which set
of numbers should be displayed, and then these numbers are decoded and
displayed. Depending on the mode, the display shows the current time, the
alarm time, or the input from the keypad. We did not implement the storage
of keypad input into the new time registers. We did not figure out how to do
this until after the project was due. (Lines 52-108)

All the other modules were relatively simple, and some were modifications of

E157 lab modules, so we will not go into depth here. A quick listing follows:

• onesec – gives a 1 Hz signal
• keypad – handles keypad in/outs
• pollkeypad – obtains keypad in/outs
• clkslow – a slow clock for debouncing use
• decode_row_column – decodes keypad in/outs into hex numbers
• multiplexeddisplays – takes 6 decimal inputs and outputs them on 7-segment

LED’s using only one 7-bit output, and 6 transistor wires (an extension of the
multiplexed display)

• decadecounter – counts to ten, starts over
• sixcounter – counts to six, starts over
• hourscounter – counts to 24, starts over

8

Results

The clock works. We ran the clock for 02 hours: 03 minutes: 00 seconds, with no
detectable error. However, we can not set the clock as implemented. This could be
rather easily implemented with an enabled set of registers, similar to a multi-bit adder,
with carryin/out signals. Unfortunately, we realized this too late. This was the most
difficult part of the design, as everything else is either working or almost working. This
we did not get coded at all.

The alarm works when triggered. However, we were unable to get the trigger
working. We are not sure why this is the case.

The alarm time was not checkable, but this was an error noted in the comments in
the code. In our implemented version, we had line 90-96 of the alarmclock module
taking illegal inputs. We believe this is fixed in the code, but it is untested.

The alarm time was programmable though.

We changed several things from our original proposal. The first was our alarm.
We originally proposed using some kind of D/A conversion, but when we thought about
the prospect of waking up with Britney Spears, we could not resist the urge to tear apart
one of her products and plug it into an electrical circuit.

The other main thing we changed was our hardware. We originally proposed to
use two HC11 boards, and quickly realized we only needed one. When we realized we
did not need the HC11 boards at all, we continued trying to figure out how we would use
them, but after some frustrating coding attempts, finally decided to get something
working on the FPGA boards, since we understand those best.

We also changed the inputs from the user, originally intending to use the DIP
switches, changing our minds to use the keypad input (which we said in our
presentation), and then changed back to the DIP switches.

9

 Parts List

Part Source Vendor Part # Price
MCD, Music on the Go
Keychain (Britney
Spears: “… I Will Be
There”)

WalMart ST-85001 $10.74

10

Appendices

Pinout List
NET "alarmoff" LOC = "P3";
NET "timeset" LOC = "P4";
NET "alarmset" LOC = "P5";
NET "alarmcheck" LOC = "P6";
NET "reset" LOC = "P7";
NET "clk" LOC = "P13";
NET "decimalpoint" LOC = "P14";
NET "columns<3>" LOC = "P20";
NET "columns<2>" LOC = "P23";
NET "columns<1>" LOC = "P24";
NET "rows<1>" LOC = "P25";
NET "rows<2>" LOC = "P26";
NET "rows<0>" LOC = "P27";
NET "columns<0>" LOC = "P28";
NET "rows<3>" LOC = "P29";
NET "hourleft" LOC = "P35";
NET "hourright" LOC = "P36";
NET "minleft" LOC = "P37";
NET "minright" LOC = "P38";
NET "secleft" LOC = "P39";
NET "secright" LOC = "P40";
NET "secondclk" LOC = "P61";
NET "alarm" LOC = "P68";
NET "sevenseg<0>" LOC = "P77";
NET "sevenseg<1>" LOC = "P78";
NET "sevenseg<2>" LOC = "P79";
NET "sevenseg<3>" LOC = "P80";
NET "sevenseg<4>" LOC = "P81";
NET "sevenseg<5>" LOC = "P82";
NET "sevenseg<6>" LOC = "P83";

11

Code

module alarmclock (clk, reset, timeset, alarmset, alarmcheck, alarmoff,
rows, columns, sevenseg, hourleft, hourright, minleft, minright,
secleft, secright, decimalpoint, secondclk, alarm) ;

input clk, reset;
input alarmoff, timeset, alarmset, alarmcheck; // The 4 DIP switch
inputs for the 4 display modes
input [3:0] rows; // rows sensed in the keypad polling
output [3:0] columns; // columns polled on the keypad
output [6:0] sevenseg; // 7-segments (a-g)
output hourleft, hourright, minleft, minright, secleft, secright ; //
transistors
output decimalpoint ; // Represents alarm On
output secondclk ; // 1 Hz clock to drive HC11 counter (when
it is implemented)
output alarm ; // high when alarm sounds

wire secondclk ; // 1 Hz clock

onesec seconds (reset, clk, secondclk) ;

wire hourleft, hourright, minleft, minright, secleft, secright ;
wire [6:0] sevenseg;
wire [2:0] transistor ; //picks which of 6 transistors is active
wire [3:0] columns;
reg [3:0] hourtens, hourones, mintens, minones, sectens, secones ; //
4-bit values of display digits
wire [3:0] hourten, hourone, minten, minone, secten, secone ; // 4-bit
values of counter digits (for clk only)
wire alarmen ; // Alarm Enable
reg alarm ;

reg [3:0] alarmhourten, alarmhourone, alarmminten, alarmminone,
alarmsecten, alarmsecone ; // registers that hold the alarm time
reg [3:0] timehourten, timehourone, timeminten, timeminone, timesecten,
timesecone ; // the 6 digits of the clock in normal operation
wire [3:0] timesethourten, timesethourone, timesetminten,
timesetminone, timesetsecten, timesetsecone ; //the 6 digits of the
clock in timeset or alarmset operation

assign hourleft = ~(transistor[2] & ~transistor[1] & transistor[0]) ;
// These 6 signals are used for multiplexing the display
assign hourright = ~(transistor[2] & ~transistor[1] & ~transistor[0]) ;
assign minleft = ~(~transistor[2] & transistor[1] & transistor[0]) ;
assign minright = ~(~transistor[2] & transistor[1] & ~transistor[0]) ;
assign secleft = ~(~transistor[2] & ~transistor[1] & transistor[0]) ;
assign secright = ~(~transistor[2] & ~transistor[1] & ~transistor[0]) ;

assign decimalpoint = ~alarmoff ;
assign alarmen = ~alarmoff & ((alarmhourten && hourten) & (alarmhourone
&& hourone) & (alarmminten && minten) & (alarmminone && minone) &
(alarmsecten && secten) & (alarmsecone && secone)) ; // Should alarm
when alarm time == clock time

12

always @(alarmen) // alarm toggling (doesn't work -- unsimulated)
begin // we used both edges of alarmen, because the alarm is
latching, meaning it turns on/off only on posedge of its switch

if (alarm)
alarm <= 1'b0 ;

else if (alarmoff)
alarm <= 1'b0 ;

else
alarm <= 1'b1 ;

end

// The following handles the clock display. Hourtens, etc is what is
sent to the decoder for display

always @(posedge clk or posedge reset)
begin

if (reset)
begin

hourtens <= 4'b0000 ;
hourones <= 4'b0000 ;
 mintens <= 4'b0000 ;
 minones <= 4'b0000 ;
 sectens <= 4'b0000 ;
 secones <= 4'b0000 ;

end
else if (timeset)
begin

//?? (How do we
store a time -- figured out, but not implemented, 12/9 -TMH)

hourtens <= timesethourten ; // Timesethourten, etc is the
last 6 digits of the keypad input

hourones <= timesethourone ;
mintens <= timesetminten ;
minones <= timesetminone ;
sectens <= timesetsecten ;
secones <= timesetsecone ;

end
else if (alarmset)
begin

hourtens <= timesethourten ;
hourones <= timesethourone ;
mintens <= timesetminten ;
minones <= timesetminone ;
sectens <= timesetsecten ;
secones <= timesetsecone ;

alarmhourten <= timesethourten ; // This stores the keypad
input into the alarm time

alarmhourone <= timesethourone ;
alarmminten <= timesetminten ;
alarmminone <= timesetminone ;
alarmsecten <= timesetsecten ;
alarmsecone <= timesetsecone ;

end
else if (alarmcheck)
begin

13

hourtens <= alarmhourten ; // Changed 12/9/99 to
alarmhourten (this may work for display)

hourones <= alarmhourone ;
mintens <= alarmminten ;
minones <= alarmminone ;
sectens <= alarmsecten ;
secones <= alarmsecone ;

end
else
begin

hourtens <= hourten ; // Simple 1 second ticking clock!
hourones <= hourone ;
mintens <= minten ;
minones <= minone ;
sectens <= secten ;
secones <= secone ;

end

end

// The keypad module polls the keypad for settable times. It is always
active, and any check of the outputs displays the 6 digits on displays
keypad getnewtime (reset, clk, rows, columns, timesethourten,
timesethourone, timesetminten, timesetminone, timesetsecten,
timesetsecone) ;
// multiplexeddisplays decodes the 6 digits to a single 7-bit output
and a 3-bit transistor value
multiplexeddisplays hourminsec (clk, reset, hourtens, hourones,
mintens, minones, sectens, secones, transistor, sevenseg) ;

// The following is what we used for our 00:00:00 to 23:59:59 counter.
The bad design of this didn't allow settable inputs
decadecounter seco (secondclk, reset, secone) ;
sixcounter sect (~secone[3], reset, secten) ;
decadecounter mino (~secten[2], reset, minone) ;
sixcounter mint (~minone[3], reset, minten) ;
hourscounter hours (~minten[2], reset, hourone, hourten) ;

endmodule

14

module onesec (reset, clk, slowclk) ;

input reset, clk; //input clock should be 1 MHz
output slowclk ; // runs at 1 Hz

wire halfsecreset ; // resets the counter every half-second
reg slowclk ;
reg [18:0] slowclkbits ; // 19 bits > 500,000 = 7A120

assign halfsecreset = slowclkbits[18] && slowclkbits[17] &&
slowclkbits[16] && slowclkbits[15]&& slowclkbits[13]&& slowclkbits[8]&&
slowclkbits[5];
// Use below for sim, above for implementation
//assign halfsecreset = slowclkbits[5];

always @(posedge clk)
begin
if (reset)
begin

slowclkbits <= 19'h00000 ;
slowclk <= 0 ;

end
else
if (halfsecreset)
begin

slowclkbits <= 19'h00000 ; // begin count until slowclk toggles
again (half-second)

slowclk <= ~slowclk ;
end
else
 slowclkbits <= slowclkbits + 1 ;
end

endmodule

15

module keypad (reset, clk, rows, columns, display5, display4, display3,
display2, display1, display0) ;

input reset ;
input clk ;
input [3:0] rows ; // row sensor for keypad
output [3:0] columns ; // column polling for keypad
output [3:0] display5, display4, display3, display2, display1, display0
; // These output the last 6 keypresses

wire [3:0] columns ;
wire slowclk ; // If this runs slower than 5 ms, but fast enough to
catch any keypress, it debounces!

reg rowlow, previousrowlow ; // FSM states that establish whether a
key was pressed on the last cycle or not
reg [3:0] newnumber ; // most recent keypress
reg [3:0] display5, display4, display3, display2, display1, display0 ;

//newdisplay == display0, last display ==> display1, etc

always @(posedge slowclk)
begin

rowlow = ~&rows ; // if a key is pressed, a row falls low, and
this stops polling
end

always @(posedge slowclk or posedge reset)
begin

if (reset)
begin

display5 = 4'b1000 ;
display4 = 4'b1000 ;
display3 = 4'b1000 ;
display2 = 4'b1000 ;
display1 = 4'b1000 ;
display0 = 4'b1000 ;

previousrowlow = 0 ;
end
else if (rowlow == 1 && previousrowlow == 0) // when rowlow goes

high (key is pressed), number shift
begin

display5 = display4 ;
display4 = display3 ;
display3 = display2 ;
display2 = display1 ;
display1 = display0 ;
display0 = newnumber ;
previousrowlow = rowlow ;

end
else

previousrowlow = rowlow ;
end

clkslow getnewclock (reset, clk, slowclk) ; // gets "debouncer" clock
pollkeypad poll (reset, slowclk, rows, columns) ; // polls the keypad

16

decode_row_column RC (reset, slowclk, rows, columns, newnumber) ; //
decodes keypad signals into hex number

endmodule

//
//
//

module pollkeypad (reset, clk, rows, columns) ;

input reset ;
input clk ;
input [3:0] rows ;
output [3:0] columns ;

wire freeze ;

reg [3:0] columns ;

assign freeze = ~& rows ; // if no debouncing needed, then when a row
falls low, polling is frozen.

always @(posedge clk or posedge reset)
begin

if (reset)
columns <= 4'b1110 ;

else
if (~freeze)
begin

columns[0] <= columns[3] ; // toggles through columns when
no row falls low

columns[1] <= columns[0] ;
columns[2] <= columns[1] ;
columns[3] <= columns[2] ;

end

end
endmodule

17

module clkslow (reset, clk, slowclk) ;

input reset, clk;
output slowclk ;

reg [13:0] slowclkbits ; // 14 bits = 8 ms clock (slower than
debouncer need...shouldn't need a debouncer)

assign slowclk = slowclkbits[13] ;

always @(posedge clk or posedge reset)
begin
if (reset)

slowclkbits = 13'b0000000000000 ;
else
 slowclkbits = slowclkbits + 1 ;

end

endmodule

18

module decode_row_column (reset, clk, row, column, number) ;

// Takes 4-bit row and column inputs, and determines the corresponding
hex number value

input clk, reset ;
input [3:0] row, column ;
output [3:0] number ;

reg [3:0] number ;

always @(posedge clk or posedge reset)
 if (reset)
 number = 4'b1000 ;
 else
 if (row == 4'b1110) // 1, 2, 3, C
 case (column)
 4'b1110: number = 4'b0001 ;
 4'b1101: number = 4'b0010 ;
 4'b1011: number = 4'b0011 ;
 4'b0111: number = 4'b1100 ;
 endcase // NOTE: this still decodes hex values,
although
 else // when these are sent to the display
decoder, they are sent blank
 if (row == 4'b1101) // 4, 5, 6, D
 case (column)
 4'b1110: number = 4'b0100 ;
 4'b1101: number = 4'b0101 ;
 4'b1011: number = 4'b0110 ;
 4'b0111: number = 4'b1101 ;
 endcase
 else
 if (row == 4'b1011) // 7, 8, 9, E
 case (column)
 4'b1110: number = 4'b0111 ;
 4'b1101: number = 4'b1000 ;
 4'b1011: number = 4'b1001 ;
 4'b0111: number = 4'b1110 ;
 endcase
 else
 if (row == 4'b0111) // A, 0, B, F
 case (column)
 4'b1110: number = 4'b1010 ;
 4'b1101: number = 4'b0000 ;
 4'b1011: number = 4'b1011 ;
 4'b0111: number = 4'b1111 ;
 endcase

endmodule

19

module multiplexeddisplays (clk, reset, hourtens, hourones, mintens,
minones, sectens, secones, transistor, dataout) ;

input clk, reset;
input [3:0] hourtens, hourones; // The 6 inputs that drive the
displays
input [3:0] mintens, minones;
input [3:0] sectens, secones;
output [2:0] transistor ; // Picks which of 6 transistors is
active
output [6:0] dataout ; // The data out from the correctly chosen
decoded data (to the Cathodes).

reg [3:0] decoderin ;
wire [2:0] transistor ;
reg [6:0] dataout ;
reg [9:0] slowclkbits ;

// gfe_dcba reversed, so bit 6 = F, 0 = A
parameter BLNK = 7'b111_1111;
parameter ZERO = 7'b100_0000;
parameter ONE = 7'b111_1001;
parameter TWO = 7'b010_0100;
parameter THREE = 7'b011_0000;
parameter FOUR = 7'b001_1001;
parameter FIVE = 7'b001_0010;
parameter SIX = 7'b000_0010;
parameter SEVEN = 7'b111_1000;
parameter EIGHT = 7'b000_0000;
parameter NINE = 7'b001_1000;

wire six ;

assign transistor = slowclkbits[9:7] ; // toggles at a fast enough
rate that it fires each transistor more than 30 Hz
assign six = transistor[2] & transistor[1] ; //at 6, goes back to
transistor 0

always @(posedge clk)
begin

if (reset)
decoderin <= secones ;

else if (six)
decoderin <= secones ;

else if (transistor == 3'b000)
decoderin <= secones ;

else if (transistor == 3'b001)
decoderin <= sectens ;

else if (transistor == 3'b010)
decoderin <= minones ;

else if (transistor == 3'b011)
decoderin <= mintens ;

else if (transistor == 3'b100)
decoderin <= hourones ;

else if (transistor == 3'b101)
decoderin <= hourtens ;

end

20

always @(posedge clk)
begin

if (reset)
slowclkbits <= 0 ;

else if (six)
slowclkbits <= 0 ;

else
slowclkbits <= slowclkbits + 1 ;

end

// This is the 7-Seg Display
always @ (decoderin)

case (decoderin)
0: dataout <= ZERO;
1: dataout <= ONE;
2: dataout <= TWO;
3: dataout <= THREE;
4: dataout <= FOUR;
5: dataout <= FIVE;
6: dataout <= SIX;
7: dataout <= SEVEN;
8: dataout <= EIGHT;
9: dataout <= NINE;
default: dataout <= BLNK;

endcase

endmodule

21

// The following counters count our time. They are NOT programmable,
which caused us trouble

module decadecounter(clk, reset, number);

input clk, reset ;
output [3:0] number ; // counts from 0-9

wire ten ;
reg [3:0] number ;

assign ten = number[3] && number[1] ; // At ten, resets to zero

always @(posedge clk or posedge reset or posedge ten)
begin

if (ten)
begin

number <= 4'b0000 ;
end
else
if (reset)
begin

number <= 4'b0000 ;
end
else
begin

number <= number + 1 ;
end

end

endmodule

module sixcounter(clk, reset, number);

input clk, reset ;
output [3:0] number ; // counts from 0-6

wire six ;
reg [3:0] number ;

assign six = number[2] && number[1] ; // at six, resets to zero

always @(posedge clk or posedge reset or posedge six)
begin

if (six)
begin

number <= 4'b0000 ;
end
else
if (reset)
begin

number <= 4'b0000 ;
end
else
begin

number <= number + 1 ;
end

22

end

endmodule

module hourscounter(clk, reset, onesdigit, tensdigit);

input clk, reset ;
output [3:0] onesdigit;
output [3:0] tensdigit;

wire ten ;
wire twentyfour ;
reg [3:0] onesdigit ;
reg [3:0] tensdigit ;

assign ten = onesdigit[3] && onesdigit[1] ; // at ten, adds one to
tensdigit
assign twentyfour = tensdigit[1] && onesdigit[2] ; // at twentyfour,
resets to zero

always @(posedge clk or posedge reset or posedge ten or posedge
twentyfour)
begin

if (twentyfour)
begin

onesdigit <= 4'b0000 ;
tensdigit <= 4'b0000 ;

end
else
if (ten)
begin

onesdigit <= 4'b0000 ;
tensdigit <= tensdigit + 1 ;

end
else
if (reset)
begin

onesdigit <= 4'b0000 ;
tensdigit <= 4'b0000 ;

end
else
begin

onesdigit <= onesdigit + 1 ;
end

end

endmodule

