
Simon Says
Final Project Report
December 9, 1999

E157

David Honeycutt and Jerry Kurtze

Abstract:

Simon Says is a simple game in which three lights are lit up in a random pattern beginning with one entry
and a player is asked to repeat the pattern. Upon successful repetition of the pattern, the pattern length is
increased by one and the player is again asked to repeat the pattern. This project prototypes an
implementation of the game Simon Says consisting of a keypad, microcontroller, FPGA and seven-segment
display. When the game begins, the player chooses one of three speeds at which to play. The
microcontroller accepts this input and generates one random entry for the pattern. It then sends a signal to
the FPGA to light up the corresponding LED, and waits for input from the FPGA, which decodes key
presses on the keypad. Upon successful repetition, the microcontroller generates another random entry for
the pattern and again sends signals to the FPGA to light up the LEDs. The game continues in this fashion
until the player incorrectly repeats the pattern. When the game ends, a high score is output on a seven-
segment display.

2

Introduction
At the beginning of the final project, we knew that we wanted to make a game. After thinking

about some possibilities for games, we remembered playing Simon Says as kids. We thought about how

the design would work, and decided that Simons Says would be a fun, and manageable project.

The Simon Says game functions as follows. Upon power up, the game waits for the user to press a

speed key before play begins. The three speed keys (discussed below) are labeled on the keypad. Upon

starting, the game turns on one of the LEDs for two seconds (assuming slowest speed), turns it back off,

and wait for the user to repeat this pattern by pushing one of the colored buttons on the keypad. If the

player does this successfully, the game continues. The same first LED turns on for two seconds, then turns

off. Next, a second LED turns on for two seconds, then turns off, and again the game waits for the player

to repeat the pattern of LEDs lit by pushing buttons on the keypad. The game continues, adding one more

LED to the pattern, until the player incorrectly repeats the pattern of LEDs lit. The pattern of LEDs lit is

random and unique for each game.

When the game ends, the seven-segment display outputs the high score, which is updated if the

game that just ended had the largest sequence of LEDs since the game was turned on. The seven-segment

display maintains its output until a new game is started. There are also be three speed keys on the keypad.

The user selects the speed of game play by pushing one of the speed keys. Once a speed key is pressed, the

game automatically begins. The player can begin another game by pushing one of the speed buttons after

the game ends.

Main Subsystems & Division between FPGA and Microprocessor:

The FPGA is used for glue logic and driving both the seven-segment display and the LEDs. The

microcontroller is used to control the flow of the program and to make calculations. A block diagram of

the overall system is included on page 4. The following is a breakdown of the functions for the FPGA and

the microcontroller:

FPGA
• Debounce and Interpret Key pad presses & Send decoded signal to the MC
• Send signals to 3 game LEDs (controlled by microcontroller)
• Output high score to seven segment display (high score sent from microcontroller)
• Create clock signal for speed of game (sent to microcontroller)
• Generate random sequence of three numbers to be sent to microcontroller

3

• Drives correct and incorrect answer LEDs

 Microcontroller
• Controls overall flow of game play
• Generates new LED to add to pattern based on random number polled from the FPGA
• Check keypad inputs sent from FPGA against table in stack
• Keeps track of high score
• Controls game LED light-up and associated timing
• Controls correct/incorrect LEDs

In addition to the logic included in the FPGA and microcontroller, there is some use of logic on the

breadboard to drive the seven-segment display and the keyboard. The seven-segment display is

multiplexed using two transistors. By using a clock and a not of the same clock, it is possible to use the

transistors and seven outputs from the FPGA to drive both of the seven-segment displays (each of the seven

outputs from the FPGA drives a single part of the seven segment display). When one clock is high, the

other is low, and thus one transistor is on while the other is off. Therefore, even though both of the seven-

segment displays are receiving the same signal, only one outputs the signal. By alternating the output from

the FPGA at the same speed that the transistors are turned on and off, two signals can be sent out through

the same seven outputs from the FPGA and are displayed separately on each of the seven-segment displays.

The clock used to control this system runs at 2MHz, thus the time that the LEDs are off is undetectable by

the naked eye.

The keypad functions by using the concept of polling. Four pins are sequentially polled, one pin

receiving a low signal while the other three pins receive a high signal. The low signal continuously

switches from one input pin to the next. When a key is pressed, one of the output pins from the keypad will

be pulled low when the corresponding input pin receiving a low is connected to this output pin. By locking

the polling when this happens, you can determine exactly which button was pressed by knowing which

input pin is low and which output pin is pulled low. There are resistors connected to the output pins and

Vcc, which pull the output pins high in all other cases. It is important to be sure the polling is fast enough to

4

ensure that a key press will register.

5

Schematics

6

Microcontroller Design
The following is a description of the major software modules in the microcontroller. A detailed

description of the inputs and outputs of the microcontroller are included in a table below. Our
microcontroller code is included in the appendix. The major modules of the microcontroller are as follows:

Modules for Microcontroller:
• Set speed
• Create new LED for sequence
• Check user’s input sequence against stack
• Output high score

The following is a description of how the microcontroller functions:

Function of Microcontroller:

1) Initialize Port C and Declare Variable Names for Memory Locations

2) Clear Memory Locations

3) Loop to Monitor Port C and wait for a speed key to be pressed. Based on signal received, the
microcontroller sends a signal to Port B to a MUX in the FPGA and beings to receive the appropriate
clock signal.

4) Initialize stack by setting stack pointer, clear registers and Port E
5) Poll input from FPGA to acquire random number for new LED, add new LED to stack, and update

level
6) Output sequence to FPGA using the timer input from the FPGA and the stack values stored
7) Loop to monitor Port E waiting for input from the player. Check each key press against stack. If

incorrect goto Step 8. If whole sequence is repeated correctly, goto Step 5
8) Compare high score with last correctly completed level and change high score if necessary. Goto step

3.

Table Detailing Interaction between all Hardware:

Signal Name Direction FPGA
Pin

MC
Port

Description

MPLEDOUT[0] FPGA to MC 70 E6 Enable Signal signifying when a key
was pressed

MPLEDOUT[1] FPGA to MC 69 N/a Unused
MPLEDOUT[2:3] FPGA to MC 68, 67 C1, C0 Tells MC what speed to play the game
MPLEDOUT[4:6] MC to FPGA 66, 65, 62 E2, E1,

E0
Signifies Key presses when repeating
LED pattern

Key8654[0:3] Keypad to
FPGA

80, 81, 82,
84

N/a Signal from Keypad signifying key
pressed to Keypad decoder

Key7321[0:3] FPGA to
Keypad

77, 78, 79,
83

N/a Polling for Keypad

Seg_Out[0:6] FPGA to
Seven-Segment
Display

23, 24, 25,
26, 27, 28,
29

N/a Output to drive Seven-Segment Display

INCOR MC to FPGA 18 B1 Signal signifying if sequence entered by
player is right

INWRONG MC to FPGA 35 B0 Signal signifying if sequence entered by
player is wrong & game is over, also
clocks High Score flip-flops

7

OUTCOR FPGA to Green
LED

47 N/a Signal to drive LED (FPGA used as
buffer)

OUTWRONG FPGA to Red
LED

48 N/a Signal to drive LED (FPGA used as
buffer)

Rand_Out[0:1] FPGA to MC 45, 46 E4, E3 Microcontroller polls this signal to
produce new LED for pattern

SEL_LED MC to FPGA
38

B6 Select bit for Mux controlling if LEDs
are driven by User Key Presses or MC
pattern output

NEWPAT[0:2] MC to FPGA 39, 40, 44 B4, B3,
B2

Signal to LEDs to output sequence

LEDOUTCLK FPGA to MC 37 E5 Clock sent to MC to control game speed
LEDCLKSEL[0:1] MC to FPGA 19, 36 B7, B5 Tells the FPGA which clock to send to

MC for game speed (select of MUX)
HISCORE[0:5] MC to FPGA 57, 58, 59,

60, 7, 8
C2, C3,
C4, C5,
C6, C7

Outputs high score to FPGA

8

FPGA Design
As stated in the introduction, the FPGA is used for glue logic and driving both the seven-segment

display and the LEDs. The table included in the Microcontroller Design section details the inputs and
outputs of the FPGA. The following is a description of all the modules used in the FPGA. A data flow
chart for the FPGA is included on the next page .

Description of Modules in FPGA:

Top Level:
The top level module wires all the other modules together as seen on page X.
22 Bit Counter:
This module provides a delayed clock to the MC for game play speed, as well as a delayed clock for the
debouncer and the MUX used for polling the keypad.
1x4 DeMux:
MUX used for polling the keypad.
Debouncer:
The debouncer is used to debounce the signal from the keypad to ensure that each key press is only
interpreted once.
Keyboard Decoder:
This decodes the signal sent from the key pad to determine which key was pressed.
High Score Decoder:
This decodes the high score sent from the MC and sends output to the seven-segment display driver.
Flip Flops:
We used flip flops in different parts of the overall FPGA hardware design, as seen in the FPGA datapath
diagram below.
Seven Segment Display:
This module can effectively be divided into two modules: The seven segment display driver and the Key
press Output module.

• The seven segment display module takes input from the High Score Decoder and outputs this to
the seven-segment display.

• The Key Press Output module takes input from the Keypad Decoder and outputs to a MUX
controlling the game LEDs.

2x3 MUX:
This module selects if the microcontroller or key presses on the keypad are displayed on the game LEDs.
The select is controlled by the microcontroller.
3x1 MUX:
This module outputs one of three clocks coming from the 22 bit counter. The select is controlled by the
microcontroller.
2 Bit Counter:
This module counts the numbers 0, 1 and 2 sequentially, looping back to 0 after 2. This signal is sent to the
MC for generating the random pattern of LEDs.

9

10

Results
We were able to complete the design and produced a functional version of Simon Says. The only

change we made to our specification is that the available game play speeds are 2s, 1s and 0.5s instead of

1.5s, 1s and 0.5s. We made this change because it reduced the number of output pins necessary on the

FPGA and input pins necessary on the MC.

Microcontroller Problems:

We had to write the software to run the microprocessor (MC) from scratch. Our first step was to

attempt to read signals from the FPGA telling the MC what key had been pressed. The problems we had

with this dealt with the key press signal sent from the FPGA. Our first problem was that, by sending a

control signal that went high when a key was pressed, we could not tell if a colored key was pressed after

the first colored key was pressed. This was because the signal was programmed to be high even after the

key was no longer being pressed. To fix this problem, we used the enable signal from the Debouncer

section of Lab 4. This solved the problem since the enable signal is high for a certain amount of time after

the key is pressed. During our testing with this signal we found that on one key press, our stack would

become full. The MC program was running fast enough, that it could detect one key press as many key

presses. To fix this problem, we created code to only detect a key press on the positive edge of enable, thus

recording the key press only once. Later, we eliminated using the enable signal, since the microcontroller

is running fast enough to detect a key press without the enable signal. By simply looking for a positive

edge on any of the three LED signals from the FGPA, we could detect a key press, and this design was

simpler.

Once we were able to read in key presses, we modified our code to check each key press against a

known pattern that was stored in the stack. In our first attempt to implement the stack, we found that you

cannot use the C### section of the MC memory, and eventually moved the stack to section D### of the

MC memory.

We initially decided to use the interrupt system to control the speed of the game. After

implementing this design, we realized that the interrupt system could run, at its slowest, at a speed of

approximately 16ms. Therefore, we decided to implement a 22-bit counter in the FPGA and output the

three highest bits as clocks to the microcontroller. These bits represent a 2s, 1s and 0.5s clocks. In order to

11

get this implementation to work, we had to MUX the three clocks and send a control signal from the MC to

the FPGA to select the appropriate clock. Using code in the MC to detect positive edges of these clocks,

we were able to control the timing for outputs to the LEDs.

Once we had the system fully implemented, the MC was incorrectly checking key presses against

the stack about 15% of the time. We realized that, in our MC code, we polled Port E twice in a row, using

the first value to know what button was pressed, and the second value to check if a button had been pressed

at all. The problem was that sometimes the button was pressed in-between these two polls of Port E, and

we were detecting a key press without knowing what key had been pressed. By switching the order of

these polls to Port E, we were able to fix the problem.

FPGA Problems:

Originally we had planned to use a Finite State Machine in the FPGA to control the flow of the

game. After considering this decision, we realized it was much easier to have the MC code control of the

game.

In our original implementation of using the signals from the key pad to control the game LEDs,

the LEDs stayed on after the key had been pressed. This was not a good implementation since pressing a

button twice in a row was not visible to the player. We needed to change the implementation so the LED

was on only during the time that the key was held down. In order to achieve this, we AND’ed the enable

signal produced by the debouncer with the output from the Keypad Decoder after it had passed through a

flip-flop. This produced the desired effect.

In our initial design for producing a random number to generate the LED pattern, we used a two

bit counter (the first two bits of the 22-bit counter) to count between 0 and 3. However, this

implementation was not optimal since it required us to find a way to deal with transferring four possible

inputs (0-3) to the three LEDs (red, yellow, green). We decided that it was easier to create a counter that

only counts between 0 and 2, and output this to the MC instead. This made the MC code to convert the

number to a LED press much simpler.

We had the INWRONG signal locked to Pin 50 during all of the early design. However, when we

implemented the High Score input in the FPGA, this created a problem concerning the internal layout of

the FPGA and what pins could and could not be provided a clock signal. After trying many other pins and

12

finding no success, we decided to speak to Professor Harris about the problem. He explained that the

FPGA can provide a clock signal to only some of the pins when the FPGA begins to be full, and it was

necessary for us to find out what pins could support a clock signal. We did this by looking at the .UCF file

produced by Xilinx after locking the device pins and leaving that one pin unlocked so the program would

correctly lock it. Then we opened up the .ucf file to see where the program locked the signal.

13

References
[1] Honeycutt & Kurtze, Lab 3: Multiplexed Display, Havey Mudd College, CA: 1999.
[2] Honeycutt & Kurtze, Lab 4: Keyboard Encoding, Havey Mudd College, CA: 1999.
[3] M68HC11 Reference Manual, USA: Motorola, 1991

14

Appendix A
0001 **
0002 *
0003 * FINAL PROJECT
0004 *
0005 **
0006
0007 ***** Variable Declarations
0008 1007 DDRC EQU $1007
0009 1003 PORTC EQU $1003
0010 100a PORTE EQU $100A
0011 1004 PORTB EQU $1004
0012 d004 LEVEL EQU $D004
0013 d003 NUMBPRESS EQU $D003
0014 d007 Z EQU $D007
0015 d008 CHECKA EQU $D008
0016 d009 CHECKB EQU $D009
0017 d00a SPEEDREG EQU $D00A
0018 d00b HIGHSCORE EQU $D00B
0019
0020 * Specifies to start writing memory

location $D100
0021 d100 ORG $D100
0022
0023 * SETS HIGH SCORE TO ZERO
0024 d100 86 00 LDAA #$00
0025 d102 b7 d0 0b STAA HIGHSCORE
0026
0027 *SET PORT C TO RECIEVE INPUT
0028 d105 86 fc SPEED LDAA #$FC
0029 d107 b7 10 07 STAA DDRC

 * Keep only neccessay bits
0030 d10a 86 03 LDAA #$03
0031 d10c b4 10 03 ANDA PORTC

 * Branch if speed is not selected
0032 d10f 27 f4 BEQ SPEED
**

 * Checks to see what speed is selected
**
0033
0034 d111 81 01 CMPA #$01
0035 d113 27 08 BEQ ONE
0036
0037 d115 81 02 CMPA #$02
0038 d117 27 08 BEQ HALF
0039 d119 86 a0 LDAA #$A0
0040 d11b 20 06 BRA ENDSPD
0041
0042 d11d 86 80 ONE LDAA #$80
0043 d11f 20 02 BRA ENDSPD
0044
0045 d121 86 20 HALF LDAA #$20
0046
0047
0048 d123 b7 d0 0a ENDSPD STAA SPEEDREG
0049 d126 b7 10 04 STAA PORTB

15

0050
0051
0052 *SET UP THE STACK AT D400
0053 d129 ce d3 00 LDX #$D300
0054 d12c 35 TXS
0055
0056
0057 d12d 86 00 LDAA #$00
0058 *INITIALIZE LOCATION FOR BUTTON PRESSED
0059 d12f b7 d0 03 STAA NUMBPRESS
0060 *INITIALIZE LOCATION FOR NUMBERS OF
CURRENT LEVEL
0061 d132 b7 d0 04 STAA LEVEL
0062
0063 *CLEARING PORTe
0064 d135 c6 00 LDAB #$00
0065 d137 f7 10 0a STAB PORTE
0066 *INITIALIZE MEMORY FOR DUPLICATE KEYPRESS

CHECKING
0067 d13a f7 d0 01 STAB $D001
0068 d13d f7 d0 02 STAB $D002
0069
0070 * Clear CHECK REGISTERS
0071 d140 f7 d0 08 STAB CHECKA
0072 d143 f7 d0 09 STAB CHECKB
0073
0074 *REGISTER FOR CREATING RANDOM NUMBER WHEN

INPUT OF $00 IS RECIEVED
0075 d146 c6 01 LDAB #$01
0076 d148 f7 d0 05 STAB $D005
0077
0078
0079
0080 *BRACH TO NEWLED TO CREATE FIRST LED INPUT

FOR THE GAME
0081 d14b 20 3b BRA NEWLED
0082
0083 *SECTION TO DECREMENT X UNTIL B IS ZERO
0084 d14d 09 DECR DEX
0085 d14e 5a DECB
0086 d14f 7e d1 72 JMP AGAIN
0087
0088
**
0089 * WAITING FOR INPUTS FROM FPGA
0090 d152 f6 d0 02 LOOP LDAB $D002
0091 *COPY NUMBER IN $D002 to $D001
0092 d155 f7 d0 01 STAB $D001
0093 *LOAD REG A AND B WITH CONTENTS OF PORTE
0094 d158 f6 10 0a LDAB PORTE
0095 d15b b6 10 0a LDAA PORTE
0096 *GET RID OF ALL BITS BUT 6TH IN B
0097 d15e c4 07 ANDB #$07
0098 *STORE THIS CONTROL BIT FOR KEPRESS

CHECKING LATER
0099 d160 f7 d0 02 STAB $D002

16

0100 *BRANCH TO LOOP IF CONTROL BIT LOW SINCE
MEANS NOT KEY PRESSED

0101 d163 27 ed BEQ LOOP
0102
0103 *LOAD LAST CONTROL BIT
0104 d165 f6 d0 01 LDAB $D001
0105 *IF LAST CONTROL BIT IS 0 THEN MEANS THERE

WAS KEYPRESS SO THEN CONTINUE ELSE
BRANCH LOOP

0106 d168 26 e8 BNE LOOP
0107
0108
0109
**
0110 * ONCE WE GET AN INPUT, WE NEED TO DEAL

WITH IT
0111
0112 *KEEP ONLY BITS [0:2]
0113 d16a 84 07 ANDA #$07
0114 d16c ce d2 ff LDX #$D2FF
0115 *LOAD BUTTONS PRESSED INTO B
0116 d16f f6 d0 03 LDAB NUMBPRESS
0117 *GOTO DECREMENT IF BUTTON PRESSED HAS NOT

BEEN FULLY SUBTRACTED FROM X, TO FINISH
DECREMENTING

0118 d172 26 d9 AGAIN BNE DECR
0119 *SUBTRACT WHAT IS IN X FROM A AND PUT IN A
0120 d174 b7 d0 10 STAA $D010
0121 d177 a0 00 SUBA 0,X
0122 *IF THE NUMBER IN X AND A ARE NOT THE SAME

GO TO INCOR SINCE THE USERS PATTERN WAS
WRONG

0123 d179 26 67 BNE INCOR
0124
0125 *LOAD IN THE NUMBER KEYPRESS TO INCREMENT

SINCE A NEW CORRECT KEY WAS INPUTED
0126 d17b f6 d0 03 LDAB NUMBPRESS
0127 d17e 5c INCB
0128 d17f f7 d0 03 STAB NUMBPRESS
0129 *LOAD THE CURRENT LEVEL INTO
0130 d182 b6 d0 04 LDAA LEVEL
0131 d185 10 SBA
0132 *IF THE CURRENT LEVEL AND THE NUMBER OF

BUTTONS PRESSED ARE DIFFERENT GOTO
LOOP, ELSE CONTINUE

0133 d186 26 ca BNE LOOP
0134
0135
0136

0137 *NOW SEND OUT SIGNAL TO PORT B TO SIGNIFY

THAT THE CORRECT PATTERN WAS ENTERED
0138 *CLEAR NON-IMPORTANT BITS

*************************** Section for generating next LED for pattern

17

0139 d188 86 18 NEWLED LDAA #$18
0140 d18a b4 10 0a ANDA PORTE

* Turns on Green LED cause correct
answer

0141 d18d c6 02 LDAB #$02
* Keeps the right speed select output to the

FPGA
0142 d18f fa d0 0a ORAB SPEEDREG
0143 d192 f7 10 04 STAB PORTB
0144
0145 *SHIFT BITS 3 & 4 TO BITS 0 AND 1
0146 *MUST CLEAR CARRY BIT SO IT DOES NOT GET

SHIFTED IN
0147 d195 44 LSRA
0148 d196 44 LSRA
0149 d197 44 LSRA
0150 d198 4c INCA
0151 d199 81 03 CMPA #$03
0152 d19b 26 02 BNE STACK
0153 d19d 86 04 LDAA #$04

* Load Number on Stack
0154 d19f 36 STACK PSHA

* Increase Level value by one
0155 d1a0 b6 d0 04 LDAA LEVEL
0156 d1a3 4c INCA
0157 d1a4 b7 d0 04 STAA LEVEL
0158 d1a7 86 00 LDAA #$00
0159 *INITIALIZE LOCATION FOR BUTTON PRESSED
0160 d1a9 b7 d0 03 STAA NUMBPRESS
0161 d1ac b7 d0 06 STAA $D006
0162 d1af b7 d0 07 STAA Z
0163 d1b2 18 ce d2 ff LDY #$D2FF
0164

* Check to see if the user has entered
the full sequence yet, if they have

then get newled
0165 d1b6 b6 d0 07 CHECK LDAA Z
0166 d1b9 4a DECA
0167 d1ba b1 d0 04 CMPA LEVEL
0168 d1bd 27 18 BEQ OFF
0169 ** Check to find posedge clock
0170 d1bf f6 d0 08 LOOP2 LDAB CHECKA
0171 d1c2 f7 d0 09 STAB CHECKB
0172 d1c5 86 20 LDAA #$20
0173 d1c7 b4 10 0a ANDA PORTE
0174 d1ca b7 d0 08 STAA CHECKA
0175 d1cd 27 f0 BEQ LOOP2
0176 d1cf b0 d0 09 SUBA CHECKB
0177 d1d2 27 eb BEQ LOOP2
0178
0179 **JUMP INTO Output Routine
0180 d1d4 7e d2 01 JMP OUT
0181

* Turns off all LED Lights
0182 d1d7 86 00 OFF LDAA #$00

* Keeps the right speed select output to the
FPGA

18

0183 d1d9 ba d0 0a ORAA SPEEDREG
0184 d1dc b7 10 04 STAA PORTB
0185 d1df 7e d1 52 JMP LOOP
0186
0187

**
0188 *SEND OUT SIGNAL TO PORT B TO SIGNIFY THAT

THE INCORRECT PATTERN WAS ENTERED
0189 d1e2 b6 d0 04 INCOR LDAA LEVEL
0190 d1e5 4a DECA

* Check to see if new score is high
score if it is write it over old high

score in memory location
0191 d1e6 b1 d0 0b CMPA HIGHSCORE
0192 d1e9 2d 03 BLT OUTSCRE
0193 d1eb b7 d0 0b STAA HIGHSCORE
0194 d1ee b6 d0 0b OUTSCRE LDAA HIGHSCORE
0195 d1f1 48 LSLA
0196 d1f2 48 LSLA

* Write high score to portc
0197 d1f3 b7 10 03 STAA PORTC
0198

* Turns on Red LED since game over
0199 d1f6 c6 01 LDAB #$01

* Keeps the right speed select output to the
FPGA

0200 d1f8 fa d0 0a ORAB SPEEDREG
0201 d1fb f7 10 04 STAB PORTB

* Go to speed to wait to start game again
0202 d1fe 7e d1 05 JMP SPEED
0203
0204
0205 * OUT ROUTINE

* This Routine controls the right LEDs being on
and off at the right time

0206 d201 b6 d0 06 OUT LDAA $D006
0207 d204 27 17 BEQ LEDOFF

* If last time the LED was off then need to
turn one on

0208 d206 18 a6 00 LDAA 0,Y
0209 d209 48 LSLA
0210 d20a 48 LSLA
0211 d20b c6 40 LDAB #$40
0212 d20d 1b ABA

* Keeps the right speed select output to the
FPGA

0213 d20e ba d0 0a ORAA SPEEDREG
0214 d211 b7 10 04 STAA PORTB

* Turn off LED
0215 d214 86 00 LDAA #$00
0216 d216 b7 d0 06 STAA $D006

* Now need to point to next place in stack
which has the next LED to light up

0217 d219 18 09 DEY

19

0218 d21b 20 14 BRA OUTEND
* if last time and LED was on we need to turn

it off
0219 d21d 86 40 LEDOFF LDAA #$40
0220 d21f ba d0 0a ORAA SPEEDREG
0221 d222 b7 10 04 STAA PORTB
0222 d225 86 01 LDAA #$01
0223 d227 b7 d0 06 STAA $D006
0224 d22a b6 d0 07 LDAA Z
0225 d22d 4c INCA
0226 d22e b7 d0 07 STAA Z
0227 d231 7e d1 b6 OUTEND JMP CHECK
0228 END D JMP CHECK

20

Appendix B
module Top_Level (CLK, Reset, Key8654, Key7321, MPLEDOUT, Seg_Out,
Not_CLK, CLK_Delay, INCOR, INWRONG,OUTCOR, OUTWRONG, Rand_Out, NEWPAT,
SEL_LED, LEDCLKSEL, LEDOUTCLK, HISCORE) ;

input INCOR, INWRONG; // Signals from MP to tell if
patter was right or wrong
input [0:2] NEWPAT ;
input CLK ;
input Reset ;
input [3:0] Key8654 ;
input SEL_LED ;
input [1:0] LEDCLKSEL ;
input [5:0] HISCORE ;

output OUTCOR, OUTWRONG; // Signal outputs to LED
signifying right/wrong pattern LEDs
output [3:0] Key7321 ;
output [0:6] MPLEDOUT ; // Control Signals
outputs to LEDs and MP
output [0:6] Seg_Out ;
output Not_CLK ;
output CLK_Delay ;
output [1:0] Rand_Out ;
output LEDOUTCLK ;

// add your declarations here
wire [0:6] KEYPRESSLED ;
wire [3:0] Poll ; // Wire between Demux
and Decoder
wire [1:0] Add ; // Wire between 18-Bit
Counter and Demux
wire BounceSignal ; // Wire created to allow for
a AND gate between Keypad inputs and Debounced Input
wire Enable ; // Wire used to connect Debounce,
Flip Flops and AND gate for Demux CLK
wire [7:0] UnDecoded ; // Wire created to combine all
Keyboard values to then send to Decoder
wire [3:0] FFdig1, FFdig2 ; // Wires to be inputs of Flip Flops
wire ClkMux ; // Wire created allow for AND gate
between Enable Wire and Demux
wire CLKDebounce ; // Wire created to Connect
14-Bit Counter and Debouncer
wire [3:0] key, FFkey, Num ;
wire [2:0] LEDCLK ;
wire [3:0] Dig1, Dig2 ;

// add your code here

// Buffer used to send a higher current to turn on the Right/Wrong
patternLEDs
assign OUTCOR = INCOR ;
assign OUTWRONG = INWRONG ;

21

// Create AND gate for to pause Demux when keypress found
assign ClkMux = (CLK && ~Enable) ;

// Connect Wire to output for outputing from Demux to Keypad
assign Key7321 = Poll ;

// Create AND gate of Keypad input
assign BounceSignal = (Key8654[0] && Key8654[1] && Key8654[2] &&
Key8654[3]) ;

// Combine Keypad Signals to one bus
assign UnDecoded[7] = Key8654[3] ;
assign UnDecoded[5] = Key8654[2] ;
assign UnDecoded[4] = Key8654[1] ;
assign UnDecoded[3] = Key8654[0] ;
assign UnDecoded[6] = Poll[3] ;
assign UnDecoded[2] = Poll[2] ;
assign UnDecoded[1] = Poll[1] ;
assign UnDecoded[0] = Poll[0] ;

// Control signal to let MP know a new key was pressed
assign MPLEDOUT[0] = Enable ;

assign MPLEDOUT[1:3] = KEYPRESSLED[1:3] ;

// 22 Bit Counter with last two bits outputing
Counter_22_Bit Counter_22 (CLK, Reset, Add, LEDCLK, CLKDebounce) ;

// 14 Bit Counter with last bit outputing
//Counter_14_Bit Counter_14 (CLK, Reset, CLKDebounce) ;

// Demux
Demux1x4 demux (ClkMux, Add, Poll, Reset) ;

// Debouncer
Debounce debouceA (BounceSignal, Enable, CLKDebounce, Reset) ;

// Keyboard Decoder
Keyboard_Decoder DecodeKey (UnDecoded, key) ;

//High Score Decoder
HSDECODER HighDecoder (HISCORE, Dig1, Dig2) ;

// Flip FlopC
Flip_Flop FF3c (key, FFkey, Reset, Enable) ;

// Flip FlopA
Flip_Flop FF1a (Dig1, FFdig1, Reset, INWRONG) ;

// Flip FlopB
Flip_Flop FF2a (Dig2, FFdig2, Reset, INWRONG) ;

assign Num[3]= FFkey[3] && Enable ;
assign Num[2]= FFkey[2] && Enable ;
assign Num[1]= FFkey[1] && Enable ;

22

assign Num[0]= FFkey[0] && Enable ;

// This is Lab 3 code for the Seven Segment Display
seven_seg segseven(Num, FFdig1, FFdig2, KEYPRESSLED[1:6], CLK, Seg_Out,
Not_CLK, CLK_Delay, Reset) ;

// This is the Two-Bit Random Number Generator
two_bit_counter Rand_Num_Gen(CLK, Rand_Out) ;

// MUX FOR LED OUTPUTS
MUX2X3 MUX(KEYPRESSLED[4:6], NEWPAT, SEL_LED, MPLEDOUT[4:6]) ;

//MUX FOR LED CLK OUTPUT
MUX3X1 MUXLED(LEDCLK[2], LEDCLK[1], LEDCLK[0], LEDCLKSEL, LEDOUTCLK) ;

endmodule

23

module seven_seg (SW, FFdig1, FFdig2, MPLEDOUT, CLK, Seg_Out, Not_CLK,
CLK_Delay, RESET) ;

input [3:0] SW, FFdig1, FFdig2 ;
input CLK ;
input RESET ;

output [1:6] MPLEDOUT ; // This is the LED Output and
the info signals to MP
reg [1:6] MPLEDOUT ;

output [0:6] Seg_Out ;
reg [0:6] Seg_Out ;

output Not_CLK ;
output CLK_Delay ;

reg [6:0] state ;

// add all declarations here

// abc_defg
parameter BLNK = 7'b111_1111;
parameter ZERO = 7'b000_0001;
parameter ONE = 7'b100_1111;
parameter TWO = 7'b001_0010;
parameter THREE = 7'b000_0110;
parameter FOUR = 7'b100_1100;
parameter FIVE = 7'b010_0100;
parameter SIX = 7'b010_0000;
parameter SEVEN = 7'b000_1111;
parameter EIGHT = 7'b000_0000;
parameter NINE = 7'b000_1100;
parameter A = 7'b000_1000;
parameter B = 7'b110_0000;
parameter C = 7'b011_0001;
parameter D = 7'b100_0010;
parameter E = 7'b011_0000;
parameter F = 7'b011_1000;

// wire from Mux to 7-seg decoder
wire [3:0] W1 ;

// This is the not of the clock for the one of the two transistors
assign Not_CLK = ~CLK_Delay ;

// This is the Mux
assign W1 = CLK_Delay ? FFdig1 : FFdig2;

// add your code here

//Adder
always @(posedge CLK or posedge RESET)

if (RESET) state = 0 ;
else state = state + 1;

24

// Output Logic
assign CLK_Delay = state[3] ;

// This is the LED Output and the info signals to MP
always @ (SW)

case (SW)
1: MPLEDOUT[1:6] <= 6'b000001 ;
2: MPLEDOUT[1:6] <= 6'b000010 ;
3: MPLEDOUT[1:6] <= 6'b000100 ;
4: MPLEDOUT[1:6] <= 6'b011000 ;
5: MPLEDOUT[1:6] <= 6'b001000 ;
6: MPLEDOUT[1:6] <= 6'b010000 ;
default: MPLEDOUT[1:6] <= 6'b000000 ;

endcase

// This is the 7-Seg Display
always @ (W1)

case (W1)
0: Seg_Out <= ZERO;
1: Seg_Out <= ONE;
2: Seg_Out <= TWO;
3: Seg_Out <= THREE;
4: Seg_Out <= FOUR;
5: Seg_Out <= FIVE;
6: Seg_Out <= SIX;
7: Seg_Out <= SEVEN;
8: Seg_Out <= EIGHT;
9: Seg_Out <= NINE;
10: Seg_Out <= A;
11: Seg_Out <= B;
12: Seg_Out <= C;
13: Seg_Out <= D;
14: Seg_Out <= E;
15: Seg_Out <= F;
default: Seg_Out <= BLNK;

endcase

endmodule

25

module Debounce (Input, Output, CLK, Reset) ;

input CLK, Reset ;
input Input ;
output Output ;

// add your declarations here
parameter Zero = 3'b000 ;
parameter One = 3'b001 ;
parameter Two = 3'b010 ;
parameter Three = 3'b011 ;
parameter Four = 3'b100 ;

reg [2:0] next_state ;
reg [2:0] state_reg ;

// add your code here

//Flip Flop
always @(posedge CLK)
begin

if (Reset) state_reg <= Zero ;
else state_reg <= next_state ;

end

//Next State Logic
always @(state_reg or Input)
begin

case (state_reg)
Zero: begin

if (Input) next_state <= One ;
else next_state <= Three ;

end
One: begin

if (Input) next_state <= Two ;
else next_state <= Three ;

end
Two: begin

if (Input) next_state <= Two ;
else next_state <= Three ;

end
Three: begin

if (Input) next_state <= One ;
else next_state <= Four ;

end
Four: begin

if (Input) next_state <= One ;
else next_state <= Four ;

end

default: next_state <= Zero;

endcase
end

// Output Logic

26

assign Output = ((state_reg == Four) || (Output && ~(state_reg == Two)
&& ~(state_reg == Zero))) ;

endmodule

27

module Demux1x4 (CLK, S, Output, Reset) ;

input [1:0] S ;
input CLK, Reset;
output [3:0] Output ;
reg [3:0] Output ;
// add your declarations here

// add your code here
always @(posedge CLK or posedge Reset)

if (Reset) Output [3:0] <= 4'b1111 ;
else begin

Output[3] <= ~(S[1] && S[0]) ;
Output[2] <= ~(S[1] && ~S[0]) ;
Output[1] <= ~(~S[1] && S[0]) ;
Output[0] <= ~(~S[1] && ~S[0]) ;

end
endmodule

28

module Keyboard_Decoder (Input, Output) ;

input [7:0] Input;
output [3:0] Output ;

reg [3:0] Output ;

// add your declarations here

// Output Parameters
parameter BLNK = 4'b1111 ;
parameter Six_Seven = 4'b0001 ;
parameter Six_Three = 4'b0010 ;
parameter Six_Two = 4'b0011 ;
parameter Six_One = 4'b1100 ;
parameter Four_Seven = 4'b0100 ;
parameter Four_Three = 4'b0101 ;
parameter Four_Two = 4'b0110 ;
parameter Four_One = 4'b1101 ;
parameter Five_Seven = 4'b0111 ;
parameter Five_Three = 4'b1000 ;
parameter Five_Two = 4'b1001 ;
parameter Five_One = 4'b1110 ;
parameter Eight_Seven = 4'b1010 ;
parameter Eight_Three = 4'b0000 ;
parameter Eight_Two = 4'b1011 ;
parameter Eight_One = 4'b1111 ;

// 8765_4321 Input Parameters
parameter Zero = 8'b0111_1011 ;
parameter One = 8'b1001_1111 ;
parameter Two = 8'b1101_1011 ;
parameter Three = 8'b1101_1101 ;
parameter Four = 8'b1011_0111 ;
parameter Five = 8'b1111_0011 ;
parameter Six = 8'b1111_0101 ;
parameter Seven = 8'b1010_1111 ;
parameter Eight = 8'b1110_1011 ;
parameter Nine = 8'b1110_1101 ;
parameter A = 8'b0011_1111 ;
parameter B = 8'b0111_1101 ;
parameter C = 8'b1101_1110 ;
parameter D = 8'b1111_0110 ;
parameter E = 8'b1110_1110 ;
parameter F = 8'b0111_1110 ;

// add your code here

always @(Input)
begin

case (Input)
Zero: Output = Eight_Three;
One: Output = Six_Seven ;
Two: Output = Six_Three ;
Three: Output = Six_Two ;
Four: Output = Four_Seven ;

29

Five: Output = Four_Three ;
Six: Output = Four_Two ;
Seven: Output = Five_Seven ;
Eight: Output = Five_Three ;
Nine: Output = Five_Two ;
A: Output = Eight_Seven ;
B: Output = Eight_Two ;
C: Output = Six_One ;
D: Output = Four_One ;
E: Output = Five_One ;
F: Output = Eight_One ;
default: Output = BLNK ;

endcase
end
endmodule

30

module Flip_Flop (Input, Output, Reset, CLK) ;

input [3:0] Input ;
input CLK, Reset ;
output [3:0] Output ;
reg [3:0] Output ;
// add your declarations here

// add your code here

// D Flip Flop with Asynchronous Reset
always @(posedge CLK or posedge Reset)
begin
 if (Reset) //asynchronous RESET active High
 Output = 4'b0000;
 else //use CLK rising edge
 Output = Input;
end

endmodule

31

module two_bit_counter (CLK, OUT) ;

input CLK ;
output [1:0] OUT ;

// add your declarations here
reg [1:0] OUT ;

// add your code here

//Adder
always @(posedge CLK)

begin
OUT = OUT + 1;
if (OUT==2'b11) OUT = 0 ;

end
endmodule

32

module MUX2X3 (IN1, IN2, SEL, OUT) ;

input [0:2] IN1 ;
input [0:2] IN2 ;
input SEL ;

output [0:2] OUT ;
reg [0:2] OUT ;
// add your declarations here

// add your code here

always @(SEL or IN1 or IN2)
begin
 case (SEL)
 0 : OUT = IN1 ;
 1 : OUT = IN2 ;

default : OUT = 0 ;
 endcase
end

endmodule

33

module Counter_22_Bit (CLK, Reset, Output, CLKOutputs, DebounceOut) ;

input CLK, Reset;
output [1:0] Output ;
output [2:0] CLKOutputs ;
output DebounceOut ;

// add your declarations here
reg [21:0] state ;

// add your code here

// Output Logic
assign Output[1] = state[16] ;
assign Output[0] = state[15] ;
assign DebounceOut = state[13] ;

assign CLKOutputs[0] = state[19] ;
assign CLKOutputs[1] = state[20] ;
assign CLKOutputs[2] = state[21] ;

//Adder
always @(posedge CLK or posedge Reset)
begin

if (Reset) state <= 0 ;
else state <= state + 1;

end

endmodule

34

module MUX3X1 (IN1, IN2, IN3, SEL, OUT) ;

input IN1 ;
input IN2 ;
input IN3 ;
input [1:0] SEL ;

output OUT ;
reg OUT ;
// add your declarations here

// add your code here

always @(SEL or IN1 or IN2 or IN3)
begin
 case (SEL)
 3 : OUT = IN1 ;
 1 : OUT = IN2 ;
 2 : OUT = IN3 ;

default : OUT = 0 ;
 endcase
end

endmodule

35

module MUX2X4 (IN1, SEL, OUT) ;

input [0:3] IN1 ;
input SEL ;

output [0:3] OUT ;
reg [0:3] OUT ;
// add your declarations here

// add your code here

always @(SEL or IN1)
begin
 case (SEL)
 0 : OUT = IN1 ;

default : OUT = 0 ;
 endcase
end

endmodule

36

module HSDECODER (Input, Output1, Output2) ;

input [5:0] Input;
output [3:0] Output1, Output2 ;

reg [3:0] Output1, Output2 ;

// add your declarations here

// add your code here
// This is the decoding for the "ones" digit of the seven segment
display
always @(Input)
begin

case (Input)
0: Output1 = 4'b0000 ;
1: Output1 = 4'b0001 ;
2: Output1 = 4'b0010 ;
3: Output1 = 4'b0011 ;
4: Output1 = 4'b0100 ;
5: Output1 = 4'b0101 ;
6: Output1 = 4'b0110 ;
7: Output1 = 4'b0111 ;
8: Output1 = 4'b1000 ;
9: Output1 = 4'b1001 ;
10: Output1 = 4'b0000 ;
11: Output1 = 4'b0001 ;
12: Output1 = 4'b0010 ;
13: Output1 = 4'b0011 ;
14: Output1 = 4'b0100 ;
15: Output1 = 4'b0101 ;
16: Output1 = 4'b0110 ;
17: Output1 = 4'b0111 ;
18: Output1 = 4'b1000 ;
19: Output1 = 4'b1001 ;
20: Output1 = 4'b0000 ;
21: Output1 = 4'b0001 ;
22: Output1 = 4'b0010 ;
23: Output1 = 4'b0011 ;
24: Output1 = 4'b0100 ;
25: Output1 = 4'b0101 ;
26: Output1 = 4'b0110 ;
27: Output1 = 4'b0111 ;
28: Output1 = 4'b1000 ;
29: Output1 = 4'b1001 ;
30: Output1 = 4'b0000 ;
31: Output1 = 4'b0001 ;
32: Output1 = 4'b0010 ;
33: Output1 = 4'b0011 ;
34: Output1 = 4'b0100 ;
35: Output1 = 4'b0101 ;
36: Output1 = 4'b0110 ;
37: Output1 = 4'b0111 ;
38: Output1 = 4'b1000 ;
39: Output1 = 4'b1001 ;
40: Output1 = 4'b0000 ;

37

41: Output1 = 4'b0001 ;
42: Output1 = 4'b0010 ;
43: Output1 = 4'b0011 ;
44: Output1 = 4'b0100 ;
45: Output1 = 4'b0101 ;
46: Output1 = 4'b0110 ;
47: Output1 = 4'b0111 ;
48: Output1 = 4'b1000 ;
49: Output1 = 4'b1001 ;
50: Output1 = 4'b0000 ;
51: Output1 = 4'b0001 ;
52: Output1 = 4'b0010 ;
53: Output1 = 4'b0011 ;
54: Output1 = 4'b0100 ;
55: Output1 = 4'b0101 ;
56: Output1 = 4'b0110 ;
57: Output1 = 4'b0111 ;
58: Output1 = 4'b1000 ;
59: Output1 = 4'b1001 ;
60: Output1 = 4'b0000 ;
61: Output1 = 4'b0001 ;
62: Output1 = 4'b0010 ;
63: Output1 = 4'b0011 ;
default: Output1 = 4'b1110 ;

endcase
end
// This is the decoding for the "tens" digit of the seven segment
display
always @(Input)
begin

case (Input)
0: Output2 = 4'b0000 ;
1: Output2 = 4'b0000 ;
2: Output2 = 4'b0000 ;
3: Output2 = 4'b0000 ;
4: Output2 = 4'b0000 ;
5: Output2 = 4'b0000 ;
6: Output2 = 4'b0000 ;
7: Output2 = 4'b0000 ;
8: Output2 = 4'b0000 ;
9: Output2 = 4'b0000 ;
10: Output2 = 4'b0001 ;
11: Output2 = 4'b0001 ;
12: Output2 = 4'b0001 ;
13: Output2 = 4'b0001 ;
14: Output2 = 4'b0001 ;
15: Output2 = 4'b0001 ;
16: Output2 = 4'b0001 ;
17: Output2 = 4'b0001 ;
18: Output2 = 4'b0001 ;
19: Output2 = 4'b0001 ;
20: Output2 = 4'b0010 ;
21: Output2 = 4'b0010 ;
22: Output2 = 4'b0010 ;
23: Output2 = 4'b0010 ;
24: Output2 = 4'b0010 ;
25: Output2 = 4'b0010 ;

38

26: Output2 = 4'b0010 ;
27: Output2 = 4'b0010 ;
28: Output2 = 4'b0010 ;
29: Output2 = 4'b0010 ;
30: Output2 = 4'b0011 ;
31: Output2 = 4'b0011 ;
32: Output2 = 4'b0011 ;
33: Output2 = 4'b0011 ;
34: Output2 = 4'b0011 ;
35: Output2 = 4'b0011 ;
36: Output2 = 4'b0011 ;
37: Output2 = 4'b0011 ;
38: Output2 = 4'b0011 ;
39: Output2 = 4'b0011 ;
40: Output2 = 4'b0100 ;
41: Output2 = 4'b0100 ;
42: Output2 = 4'b0100 ;
43: Output2 = 4'b0100 ;
44: Output2 = 4'b0100 ;
45: Output2 = 4'b0100 ;
46: Output2 = 4'b0100 ;
47: Output2 = 4'b0100 ;
48: Output2 = 4'b0100 ;
49: Output2 = 4'b0100 ;
50: Output2 = 4'b0101 ;
51: Output2 = 4'b0101 ;
52: Output2 = 4'b0101 ;
53: Output2 = 4'b0101 ;
54: Output2 = 4'b0101 ;
55: Output2 = 4'b0101 ;
56: Output2 = 4'b0101 ;
57: Output2 = 4'b0101 ;
58: Output2 = 4'b0101 ;
59: Output2 = 4'b0101 ;
60: Output2 = 4'b0110 ;
61: Output2 = 4'b0110 ;
62: Output2 = 4'b0110 ;
63: Output2 = 4'b0110 ;
default: Output2 = 4'b1110 ;

endcase
end
endmodule

