

Final Project Report: Bead Maze with LED Matrix and Accelerometer
David Sobek and Jerry Liang
December 13th, 2019
E155 Microprocessor Systems: Design and Application

Abstract ​— The classic maze game (or sometimes referred to as the labyrinth game) is a small fun game where users rotate a small
board to orient a bead through a maze. This game comes in other varieties as well, such as a control scheme where the player
controls the orientation of the maze using two dials on the sides of the game. Our project aims to design a new version of this game,
digitizing a maze and bead with an LED matrix and detecting the orientation with an accelerometer to control the bead – making
the game more fun, flexible, colorful, and intriguing.

Introduction
Our goal of this project is to recreate an old school maze puzzle toy digitally. There are many

opportunities to enhance the classic maze game via a digital design, and it gives us the opportunity to learn how to
interface with LED matrices (or displays in general) and design complex digital systems. The play style of the
digital version of the game is very similar to the classic counterpart: Using a LIS3DH Triple-Axis Accelerometer,
we detect the orientation of the board and use the readings from this device to simulate the particle physics of the
bead. The brain of this operation is the ATSAM4S4B microcontroller we have been using for a good portion of
the class. This microcontroller calculates the state of the bead and game as it reads from the accelerometer and
updates the display by sending the new game state information to a Cyclone IV FPGA which dives the LED
matrix. Displayed in the block diagram below (Figure 1) is the basic structure of the digital maze game.

Block Diagram

Figure 1. The block diagram of the digital maze game. Displayed is the FPGA driving the LED matrix over 13
buses and the ATSAM microcontroller communicating with both the FPGA and LIS3DH Accelerometer over
SPI.

New Hardware

32x32 LED Matrix
Our first new hardware was the 32x32 LED matrix, which was particularly hard to work with because of

the lack of documentation. There are no official datasheets for the LED matrix and the official Adafruit tutorial
simply describes how to use their helper libraries and does not explain the operation of the LED matrix.
Thankfully, we were able to find more in depth tutorials online, namely one from Glen Alkin​[1]​, helping us

understand the matrix pinout and operation basics, and one from Ray’s Logic​[2]​, which pointed to datasheets of
shifters and drivers similar to those used in the Adafruit matrix.

How the panel works: The matrix is divided into upper 16 rows and lower 16 rows. Only two rows can be
driven at the same time, namely rows ​A​ and ​A+16​, where ​A​ is the address input ​A[3:0]​. To configure a row, we
shift data into the 3 shift registers for three bits of color: ​R0,G0,B0​ for row ​A​ and ​R1,G1,B1​ for row ​A+16​.
Then, we use the ​blank​ and ​latch​ signals to send the data from the shift registers to the LED drivers and then
display them. This results in a 1/16 duty cycle row multiplexed display.

A ​specific sequence​ of shifting data and toggling the ​blank​ and ​latch​ signals is required to produce
desired behavior in the LED matrix. Figuring out this sequence was by far the most difficult part of operating the
LED matrix. Our working understand of the sequence is as follows:

1) While rows ​A​ and ​A+16​ are being displayed, shift the data for the next row into the registers through the
R0,G0,B0,R1,G1,B1,sclk, ​and ​A[3:0]​ input pins. This is going to be 32 ​sclk​ cycles and
make sure to change the RGB pin values on the neg clock edge between ​sclk​ posedges.

2) Assert ​blank​. This will blank the display.
3) Assert and the de-assert ​latch​.
4) Update ​A[3:0]​ to the address of the rows you want to display next.
5) De-assert ​blank.
6) Wait for a certain duration for the LED row to shine with the programmed pattern. Then repeat step 1).

We encountered many pitfalls in this process. First, we assumed that we could repeatedly flash the same
address, as this would be necessary for binary coded modulation. However, when we did so, somehow the row
address would show the desired pattern for one cycle and then go black or even not show anything at all. This was
fixed when we flashed different addresses in successive sequences. Second, we assumed that we should update
A[3:0]​ before toggling ​latch​ because we thought ​latch​ sends data from the shift registers to the LED
drivers. We did so before step 1 so that we could also use the ​A​ variable to make assignment bits to the rgb pins.
However, this resulted in “doubled” matrix patterns that only were fixed when we strictly followed the Glen Alkin
tutorial and updated the ​A​ at step 4.

LIS3DH Triple-Axis Accelerometer
For this project, we also introduce a LIS3DH accelerometer. This accelerometer has a wide range of

configuration options from 8-bit to 12-bit resolution, ±2g/±4g/±8g/±16g selectable scaling, and multiple data rate
options and operates at 3.3 V. This device can be interfaced with over I​2​C or SPI. We found that this is a much
more established device and has much better documentation than the LED matrix. Adafruit provides a good
tutorial on its setup​[3]​ and the datasheet explains its operation well​[4]​. In the context of this project, we configured
the accelerometer to read the acceleration in two axes with 12-bit readings at a data rate of 400 Hz. Setting up the
accelerometer over SPI with this configuration involved writing to two of the device’s control registers and then
the accelerometer readings were read directly from the output registers on the board.

Schematic

Final Schematic

Figure 2. A schematic displaying the circuity between the components of the digital maze game.

FPGA System
The FPGA has three main functions in this project: driving the LED matrix, assigning colors to the

different components of the game, and receiving and storing game state data from the ATSAM microcontroller
over SPI.

Driving the LED Matrix
To drive the LED Matrix, we implement the input sequence described above using the FPGA. Our state

logic consists of a 7-bit counter ​col​, the 3-bitrow address and output ​A​, and state variable ​state​. To shift data
into the matrix in a rate that it can handle, we slowed down the clock speed for the matrix display module to 1/128
of the global clock, i.e. about 156kHz. To ensure that the matrix receives stable inputs on the posedge of the slow
clock, we update state values and outputs on the negedge. The counter ​col​ is incremented every cycle. The
general FSM is shown below (Figure 3).

Figure 3. The finite state machine that updates the LED matrix’s rows by shifting in RGB values and driving them

Note that ​after latch is de-asserted, while still in the ​UPDATE​ state, we update the ​A​ output to the row
we want to display (​A+1​). In the ​DRIVE​ state, no outputs are asserted and we simply wait until the counter
overflows to return to ​SHIFT​ and begin configuring the next address.

Color Assignment
We assign all wall pixels to blue. To do so, we read the two rows of the maze to drive from the memory

module using the ​nextA=A+1​ and then specific cells in those rows with the ​col​ counter. Why ​A+1​? Recall that
we can only update the row address to the desired address after unlatching. Thus, when we are shifting in the next
rows data, ​A​ is one less than the address we want to display next.

We assign the bead to green in the first 65 seconds of the game and red in the last 15 seconds. We do so
by setting both the red and green bits high when the ​nextA​ and ​col​ corresponds to the bead position. However,
for the green bit, there is an additional constraint that the countdown variable is greater than or equal to 3. The red
bit requires that the countdown variable is less than 3. Both the bead position and the countdown variable are rows
in memory, updatable by the microcontroller.

SPI Interface and Memory
The SPI interface on the FPGA side was implemented similarly to some of the other SPI slave devices we

have used in this class such as the digital temperature sensor in lab 6 and much like the accelerometer used in this
project where the master device reads and writes directly to the slave’s memory. This was made simpler though
because the FPGA’s main purpose is to drive the LED matrix, therefore we did not have to implement reading
from memory for the purpose of outputting the data over SPI. The protocol we implemented consisted of sending
5 bytes from the ATSAM to the FPGA. The first byte holds the address of the row in memory that will be written
to (although our memory is small enough to be encoded in 6 bits), and the following 4 bytes make up a word of
data that will replace the data in that row of memory. Implementing the SPI interface this way decreased the
complexity of the FPGA circuitry and generalized updating any visual element or values important for controlling
the display.

In our memory, three components of the game are stored. The first is the maze itself, taking up the first 32
rows in memory. Each wall of the maze is encoded as a single bit value determining if the wall exists in that
position in the LED matrix. A row in memory represents the row on the board and the most significant bit in a
row is the left most column on the matrix. Following these 32 words, the 32nd address is dedicated to the row and

column value of the bead and the final word contains the countdown timer. We had originally intended for our
memory to be made up of word aligned M9K units in the FPGA, however the final implementation of the memory
model involved making asynchronous reads in order to read two maze rows at a time, the bead, and the game
countdown timer. As it was pointed out to us, this implied that all of these values were stored in logic elements
(LE) instead of M9K units. This was not a problem however because we still had plenty of LEs free on the FPGA
and asynchronous reads saved us from adding more complexity to driving the LED matrix.

Microcontroller System
All game state logic and bead physics were implemented in the ATSAM microcontroller and then sent to

the FPGA to be displayed. The position of the bead is also determined by accelerometer readings, so the
microcontroller interfaces with the accelerometer to calculate the next game state.

Game Logic
The ATSAM waits 2 seconds after being turned on, during which it initializes the peripherals and

accelerometer and also allows the user to admire the beautiful start screen. The µMudd board DIP switch values
are read to store a hard or easy mode configuration, which will affect how the bead position is later updated. The
ATSAM then takes an initial accelerometer reading to calibrate to an initial “flat” level and begins the game by
sending the maze and the beginning bead position to the FPGA. Until the game ends, the ATSAM routinely
samples the accelerometer and uses the results to update the bead position with bead physics scheme.

The total duration of the game is 80 seconds. After every sending the update bead position, the ATSAM
also sends a countdown number to the FPGA. This is the number of seconds remaining in the game divided by 5,
hence starting at 15 (=79.9s divided by 5 and then cast to int) and ending on 0. This number is used by the FPGA
to alter the bead’s color from green to red when there are only 15 seconds left. Notice that a simple one bit flag
would also suffice for this functionality. The reason we chose to send over a 4 bit counter is that we originally
intended to use the counter to change the color of the maze walls using 4 bit binary coded modulation.

Finally, after the countdown is sent, the ASTAM checks if the bead position is at the exit position of the
maze. If so, it sends the start screen to the FPGA and ends execution. If the game time expires before the user
navigates out of the maze, the ATSAM writes a GAME OVER screen to the FPGA and ends execution. If the user
wishes to play the game again, the game can be restarted using the ATSAM reset button on the μMudd board to
start this game state logic over again.

Bead Physics
The ATSAM keeps track of the position and velocity of the bead. The accelerometer readings determine

how the bead’s velocity vector changes with each sample. The velocity vector is filtered through collision logic,
before it is used to update the bead’s position. We shall describe this process in greater detail below:

Acceleration:​ To start off a cycle of our bead physics, we first read 12 bits of acceleration data from the
accelerometer on the x and y axis. This is received by the ATSAM in 2 bytes as a left-justified two's complement
value. This is then casted to a signed short and shifted to remove the unused bits. From this value, velocity is then
calculated in its x and y components, scaling to best simulate gravity, and multiplying by the duration elapsed
between each accelerometer reading (a duration which we have set using a delay at the beginning of each loop).

Velocity:​ The ATSAM uses the new velocity to find the next position of the bead. To do so, it first zeros
components of the velocity vector that point to a wall. Next, it selects a direction to move the bead in. This will be
that of the non-zero velocity component. If there are two non-zero velocity components, it picks the direction with
the larger velocity or acceleration, depending on whether the hard or easy mode is set, respectively. The other
velocity component is zeroed.

Position:​ Finally, to update the bead position without allowing it to pass through walls, the ASTAM
linearly scans the matrix between the old position and the potential new position (old pos + time passed *

velocity) and sets the bead right before the first wall, if one exists. If no walls are detected in the scan, the bead is
simply updated to the new position.

Spi Interfaces
As mentioned previously, the ATSAM communicates to both the FPGA and accelerometer over SPI. This

was made fairly simple with the library given to us. These slave devices share common MISO, MOSI, and SPCK
buses, however they are selected by different chip enable buses. It would have been interesting to put these on the
same chip enable because the accelerometer is an active low device while the FPGA’s SPI interface is
implemented as an active high, however pins were not a limited resource two us, and so it was much simpler to
put them on separate pins.

Results
Our project was successful. We were able to create a maze game that produces all the behavior we set out

to create. It is also a portable handheld device, thanks to cardboard engineering and a battery pack. We received
great feedback and we are really happy with how it turned out.

While we delivered on all our promises, we had hoped to vary the colors of the walls using binary coded
modulation. However, to do so, we would need to flash the same address multiple times in a row, which we aren’t
sure is possible given our previous unsuccessful attempts despite producing expected waveforms. Thus, we
believe that accomplishing this would require a leap in our understanding of how the matrix works. Also, binary
coded modulation would require speeding up the matrix display module clock. The current clock frequency and
counter width leads to a 76Hz matrix refresh rate. To do binary coded modulation, we need to dwarf the time
shifting in data with the time driving the display (currently a 1:3 ratio). Thus, we need a much wider counter. To
maintain the refresh rate with a wider counter, we need a faster clock. Unfortunately, initial attempts at increasing
the matrix clock frequency resulted in severely corrupted display patterns. We believe that much more time and
experimentation are necessary for this undertaking.

Figure 4. Our final project’s form factor: The components are assembled on a cardboard box and can be powered
by a portable charger.

References
[1] Adkins, Glen. “RGB LED Panel Driver Tutorial.” RGB LED Panel Driver Tutorial, 2014,
https://bikerglen.com/projects/lighting/led-panel-1up/​.
[2] Ray's Logic. “Adafruit RGB LED matrix”, Adafruit RGB LED matrix,
http://rayslogic.com/propeller/Programming/AdafruitRGB/AdafruitRGB.htm​.
[3] Adafruit, “Adafruit LIS3DH Triple-Axis Accelerometer Breakout”, Adafruit LIS3DH Triple-Axis
Accelerometer Breakout, 2015, ​https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout​.
[4] STMicroelectronics, “MEMS digital output motion sensor: ultra-low-power high performance 3-axes ‘nano’
accelerometer”, LIS3DH datasheet, Dec. 2016, ​https://www.st.com/resource/en/datasheet/lis3dh.pdf​.

https://bikerglen.com/projects/lighting/led-panel-1up/
http://rayslogic.com/propeller/Programming/AdafruitRGB/AdafruitRGB.htm
https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout
https://www.st.com/resource/en/datasheet/lis3dh.pdf

Part List

Part Source Vendor Part # Price

32x32 RGB LED Matrix
Panel - 4mm Pitch

Adafruit PRODUCT ID: 607 $49.95

LIS3DH Triple-Axis
Accelerometer

Adafruit PRODUCT ID: 2809 $4.95

Appendix A: ATSAM C

final_project.c
/* final_project.c

*

* dsobek@g.hmc.edu

* jyliang@g.hmc.edu

* 11/20/2019

*

* Implements a maze game's state using a 32 by 32 LED matrix and accelerometer. */

#include​ ​"SAM4S4B.h"
#include​ ​"maze.h"
#include​ ​"bead.h"
#include​ ​<stdint.h>

// Pin assignments

#define​ ​ACCELEROMETER_CE_PIN​ PIO_PA10
#define​ ​FPGA_CE_PIN​ PIO_PA16
#define​ ​MODE_SWITCH_PIN​ PIO_PB0

// Addresses on the LIS3DH accelerometer

#define​ ​LIS3DH_CTRL_REG0​ ​0x1E
#define​ ​LIS3DH_CTRL_REG1​ ​0x20
#define​ ​LIS3DH_CTRL_REG4​ ​0x23
#define​ ​LIS3DH_OUT_X_L​ ​0x28
#define​ ​LIS3DH_OUT_Y_L​ ​0x2A
#define​ ​LIS3DH_OUT_Z_L​ ​0x2C

#define​ ​COUNTDOWN_DURATION​ ​80​ ​// seconds

#define​ ​CALIBRATE​ ​1​ ​// Boolean to determine if we should calibrate at startup

// read a byte from the accelerometer

uint8_t​ ​accelerometerRead​(​uint8_t​ ​addr​) {
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_LOW); ​// msb set high to specify a read
 ​uint16_t​ val = ​spiSendReceive16​((​0x80​ | addr) << ​8​);
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH);
 ​return​ val;
}

// read two bytes from the accelerometer

uint16_t​ ​accelerometerReadTwoBytes​(​uint8_t​ ​addr​) {
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_LOW);
 ​// msb set high to specify a read and 2nd msd to get multiple bytes
 ​// (incremented address)
 ​uint16_t​ val = ​spiSendReceive16​((​0xc0​ | addr) << ​8​) & ​0x00FF​;
 val = val | (​spiSendReceive​(​0x00​) << ​8​);
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH);
 ​return​ val;
}

// write a byte to the accelerometer

void​ ​accelerometerWrite​(​uint8_t​ ​addr​, ​uint8_t​ ​data​) {
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_LOW);
 ​spiSendReceive16​((addr << ​8​) | data);
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH);
}

void​ ​accelerometerInit​(​void​) {
 ​accelerometerWrite​(LIS3DH_CTRL_REG1, ​0x73​); ​// 400Hz
 ​accelerometerWrite​(LIS3DH_CTRL_REG4, ​0x08​); ​// 12 bits resolution
 ​// uint8_t who_am_i = accelerometerRead(0x0F); // 0x33 expected

}

void​ ​sendMaze​(Maze *​m​) {
 ​for​ (​int​ i = ​0​; i < ​32​; i++) {
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_HIGH);
 ​spiSendReceive​(i);
 ​spiSendReceive16​((​m​->​rows​[i] >> ​16​) & ​0x0000FFFF​);
 ​spiSendReceive16​(​m​->​rows​[i] & ​0x0000FFFF​);
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW);
 }

}

void​ ​sendBeadPosition​() {
 ​// y is row, x is col
 ​int​ x = (​int​) ​bead​.​pos​[​0​];
 ​int​ y = (​int​) ​bead​.​pos​[​1​];
 ​uint16_t​ bead_pos = ((y & ​0x1F​) << ​5​) | ((x & ​0x1F​));
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_HIGH);
 ​spiSendReceive​(​32​);
 ​spiSendReceive16​(​0​);
 ​spiSendReceive16​(bead_pos);
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW);
}

void​ ​sendRemainingTime​(​int​ ​counter​) {
 ​// y is row, x is col
 ​uint16_t​ count_down = ((counter) & ​0xF​);
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_HIGH);
 ​spiSendReceive​(​33​);
 ​spiSendReceive16​(​0​);
 ​spiSendReceive16​(count_down);
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW);
}

// update X, and Y accelerometer values

void​ ​getXY​(​int16_t​ *​x_val​, ​int16_t​ *​y_val​) {
 ​// Flipped because of the orientation of the accelerometer
 *x_val = ((​int16_t​) ​accelerometerReadTwoBytes​(LIS3DH_OUT_Y_L)) >> ​4​;
 *y_val = ((​int16_t​) ​accelerometerReadTwoBytes​(LIS3DH_OUT_X_L)) >> ​4​;
}

// Reads the state of the 0th dip switch and sets the game mode,

void​ ​setGameMode​(​void​) {
 ​bead​.​mode​ = ​pioDigitalRead​(MODE_SWITCH_PIN);
}

void​ ​game​(​void​) {
 ​// initialize maze
 ​sendMaze​(​init_maze​());
 ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]);
 ​sendBeadPosition​();

 ​int16_t​ x, y;
 ​int​ remaining_time = COUNTDOWN_DURATION * ​1000​;
 ​int​ ​delta_t​ = ​1000​ / SAMPLE_FREQ;

 ​// Set to easy or hard mode and calibrate the accelerometer.
 ​setGameMode​();
 ​if​ (CALIBRATE) {
 ​getXY​(&x, &y);
 ​calibrate_bead​(x, y);
 }

 ​while​(remaining_time > ​0​) {
 ​// send remaining time to word in FPGA

 ​tcDelayMillis​(​delta_t​);
 remaining_time -= ​delta_t​;
 ​getXY​(&x, &y);
 ​update_bead_velocity​(x, y);
 ​update_bead_position​(x, y);
 ​sendBeadPosition​();
 ​sendRemainingTime​(remaining_time / ​1000​ / ​5​); ​// transforms remaining time to 0 to 15
scale

 ​// if we reached final position
 ​if​ (​is_final_pos​((​int​) ​bead​.​pos​[​0​], (​int​) ​bead​.​pos​[​1​])) {
 ​sendMaze​(​start_screen​());
 ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]);
 ​sendBeadPosition​();
 ​return​;
 }

 }

 ​// send game over screen
 ​sendMaze​(​game_over​());
 ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]);
 ​sendBeadPosition​();
}

int​ ​main​(​void​) {
 ​// Initialize ATSAM peripherals
 ​samInit​();
 ​pioInit​();
 ​tcDelayInit​();
 ​spiInit​(MCK_FREQ/​244000​, ​1​, ​0​);
 ​// "clock divide" = master clock frequency / desired baud rate
 ​// the phase for the SPI clock is 1 and the polarity is 0

 ​// ce pin setup
 ​pioPinMode​(ACCELEROMETER_CE_PIN, PIO_OUTPUT);
 ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH);
 ​pioPinMode​(FPGA_CE_PIN, PIO_OUTPUT);
 ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW);

 ​// Dip switch setup
 ​pioPinMode​(MODE_SWITCH_PIN, PIO_INPUT);

 ​// Hardcoded in the fpga but send when atsam is reset
 ​sendMaze​(​start_screen​());
 ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]);
 ​sendBeadPosition​();

 ​// Let the startup screen be shown for a couple seconds
 ​tcDelaySeconds​(​1​);
 ​// Accelerometer Setup
 ​accelerometerInit​();
 ​tcDelaySeconds​(​1​);

 ​// Game logic
 ​game​();

 ​return​ ​0​;
}

maze.h
/* maze.h

*

* dsobek@g.hmc.edu

* jyliang@g.hmc.edu

* 11/20/2019

*

* Contains the maze, collision logic, and several other screens to

* display. */

#ifndef​ ​MAZE_H
#define​ ​MAZE_H

#include​ ​<stdint.h>

typedef​ ​struct​ {
 ​uint32_t​ ​rows​[​32​];
 ​int8_t​ ​begin_pos​[​2​];
 ​int8_t​ ​end_pos​[​2​];
} ​Maze​;

Maze maze;

Maze​*​ ​init_maze​(​void​) {
 ​maze​.​rows​[​0​] = ​0xFFFFFFFF​;
 ​maze​.​rows​[​1​] = ​0x84000401​;
 ​maze​.​rows​[​2​] = ​0xBFDFDFBD​;
 ​maze​.​rows​[​3​] = ​0xA0081005​;
 ​maze​.​rows​[​4​] = ​0x8FFBFFF5​;
 ​maze​.​rows​[​5​] = ​0xA8100115​;
 ​maze​.​rows​[​6​] = ​0xABF7DFD5​;
 ​maze​.​rows​[​7​] = ​0xAA144047​;
 ​maze​.​rows​[​8​] = ​0xAADDFFDD​;
 ​maze​.​rows​[​9​] = ​0xAAD11451​;
 ​maze​.​rows​[​10​] = ​0xA8945155​;
 ​maze​.​rows​[​11​] = ​0xEAB55755​;
 ​maze​.​rows​[​12​] = ​0xAAA74115​;
 ​maze​.​rows​[​13​] = ​0xAAADEF55​;
 ​maze​.​rows​[​14​] = ​0xAAA40255​;
 ​maze​.​rows​[​15​] = ​0x8AB7EFF5​;
 ​maze​.​rows​[​16​] = ​0xAA904115​;
 ​maze​.​rows​[​17​] = ​0xABD77F54​;
 ​maze​.​rows​[​18​] = ​0xA8440457​;
 ​maze​.​rows​[​19​] = ​0xABF5FDD5​;
 ​maze​.​rows​[​20​] = ​0xAA150551​;
 ​maze​.​rows​[​21​] = ​0xA8D55D57​;
 ​maze​.​rows​[​22​] = ​0xAE544145​;
 ​maze​.​rows​[​23​] = ​0xA2DDFF75​;
 ​maze​.​rows​[​24​] = ​0xBE544055​;
 ​maze​.​rows​[​25​] = ​0x8BD5EFD1​;
 ​maze​.​rows​[​26​] = ​0xA8040115​;
 ​maze​.​rows​[​27​] = ​0xAFF7FF75​;
 ​maze​.​rows​[​28​] = ​0xE0001015​;
 ​maze​.​rows​[​29​] = ​0xAFFEFEFD​;
 ​maze​.​rows​[​30​] = ​0x80100009​;
 ​maze​.​rows​[​31​] = ​0xFFFFFFFF​;

 ​maze​.​begin_pos​[​0​] = ​1​;
 ​maze​.​begin_pos​[​1​] = ​17​;
 ​maze​.​end_pos​[​0​] = ​31​;
 ​maze​.​end_pos​[​1​] = ​17​;

 ​return​ &maze;
}

// Returns 1 if the given coordinates is a wall or outside the maze.

int​ ​is_wall​(​int​ ​x​, ​int​ ​y​) {
 ​return​ x > ​31​ || x < ​0​ || y > ​31​ || y < ​0​ ||
 (((​maze​.​rows​[y] >> (​31​ - x)) & ​1​) == ​1​);
}

// Returns 1 if the given coordinates is in the winning position.

int​ ​is_final_pos​(​int​ ​x​, ​int​ ​y​) {
 ​return​ x == ​maze​.​end_pos​[​0​] && y == ​maze​.​end_pos​[​1​];
}

Maze​*​ ​start_screen​(​void​) {
 ​maze​.​rows​[​0​] = ​0x0​;
 ​maze​.​rows​[​1​] = ​0x0​;
 ​maze​.​rows​[​2​] = ​0x00186000​;
 ​maze​.​rows​[​3​] = ​0x001ce000​;
 ​maze​.​rows​[​4​] = ​0x0014a000​;
 ​maze​.​rows​[​5​] = ​0x0017a000​;
 ​maze​.​rows​[​6​] = ​0x00132000​;
 ​maze​.​rows​[​7​] = ​0x00100000​;
 ​maze​.​rows​[​8​] = ​0x00100000​;
 ​maze​.​rows​[​9​] = ​0x0​;
 ​maze​.​rows​[​10​] = ​0x0​;
 ​maze​.​rows​[​11​] = ​0x18c47df0​;
 ​maze​.​rows​[​12​] = ​0x1dce0500​;
 ​maze​.​rows​[​13​] = ​0x175b0900​;
 ​maze​.​rows​[​14​] = ​0x125111f0​;
 ​maze​.​rows​[​15​] = ​0x105f2100​;
 ​maze​.​rows​[​16​] = ​0x10514100​;
 ​maze​.​rows​[​17​] = ​0x10517df0​;
 ​maze​.​rows​[​18​] = ​0x0​;
 ​maze​.​rows​[​19​] = ​0x0​;
 ​maze​.​rows​[​20​] = ​0x0​;
 ​maze​.​rows​[​21​] = ​0x0​;
 ​maze​.​rows​[​22​] = ​0x0​;
 ​maze​.​rows​[​23​] = ​0x02800670​;
 ​maze​.​rows​[​24​] = ​0x02800540​;
 ​maze​.​rows​[​25​] = ​0x02800570​;
 ​maze​.​rows​[​26​] = ​0x02800510​;
 ​maze​.​rows​[​27​] = ​0x0ee00670​;
 ​maze​.​rows​[​28​] = ​0x0​;
 ​maze​.​rows​[​29​] = ​0x0​;
 ​maze​.​rows​[​30​] = ​0x0​;
 ​maze​.​rows​[​31​] = ​0x0​;

 ​maze​.​begin_pos​[​0​] = ​13​;
 ​maze​.​begin_pos​[​1​] = ​14​;

 ​return​ &maze;
}

Maze​*​ ​game_over​(​void​) {
 ​maze​.​rows​[​0​] = ​0x0​;
 ​maze​.​rows​[​1​] = ​0x0​;
 ​maze​.​rows​[​2​] = ​0x0​;
 ​maze​.​rows​[​3​] = ​0x0​;
 ​maze​.​rows​[​4​] = ​0x0​;
 ​maze​.​rows​[​5​] = ​0x7E38447E​;
 ​maze​.​rows​[​6​] = ​0xFE7CEEFE​;
 ​maze​.​rows​[​7​] = ​0xC0EEEEC0​;
 ​maze​.​rows​[​8​] = ​0xC0C6FEC0​;
 ​maze​.​rows​[​9​] = ​0xDEC6FEFC​;
 ​maze​.​rows​[​10​] = ​0xCEC6FEFC​;
 ​maze​.​rows​[​11​] = ​0xC6FED6C0​;

 ​maze​.​rows​[​12​] = ​0xC6EEC6C0​;
 ​maze​.​rows​[​13​] = ​0xFEC6C6FE​;
 ​maze​.​rows​[​14​] = ​0x7CC6C67E​;
 ​maze​.​rows​[​15​] = ​0x0​;
 ​maze​.​rows​[​16​] = ​0x0​;
 ​maze​.​rows​[​17​] = ​0x7CC67E7C​;
 ​maze​.​rows​[​18​] = ​0xFEC6FEFE​;
 ​maze​.​rows​[​19​] = ​0xFEC6C0FE​;
 ​maze​.​rows​[​20​] = ​0xC6C6C0C6​;
 ​maze​.​rows​[​21​] = ​0xC6C6FCC6​;
 ​maze​.​rows​[​22​] = ​0xC6C6FCC6​;
 ​maze​.​rows​[​23​] = ​0xC6C6C0FC​;
 ​maze​.​rows​[​24​] = ​0xC6EEC0F8​;
 ​maze​.​rows​[​25​] = ​0xFE7CFEDC​;
 ​maze​.​rows​[​26​] = ​0x7C387ECE​;
 ​maze​.​rows​[​27​] = ​0x0​;
 ​maze​.​rows​[​28​] = ​0x0​;
 ​maze​.​rows​[​29​] = ​0x0​;
 ​maze​.​rows​[​30​] = ​0x0​;
 ​maze​.​rows​[​31​] = ​0x0​;

 ​maze​.​begin_pos​[​0​] = ​11​;
 ​maze​.​begin_pos​[​1​] = ​8​;

 ​return​ &maze;
}

#endif​ // MAZE_H

bead.h
/* bead.h

*

* dsobek@g.hmc.edu

* jyliang@g.hmc.edu

* 11/20/2019

*

* Contains the bead that the user will control with the accelerometer. This

* file contains the logic for updating the bead position in the board and

* detecting collisions with the maze wall. */

#ifndef​ ​BEAD_H
#define​ ​BEAD_H

#include​ ​"maze.h"
#include​ ​<stdint.h>
#include​ ​<math.h>

#define​ ​GRAVITY​ ​1​ // m/s
#define​ ​SAMPLE_FREQ​ ​10​ // Frequency of accelerometer reads in Hz.
#define​ ​CELL_DISTANCE​ ​0.004​ // The distance between LEDs in the matrix in meters.
#define​ ​MAX_RAW_ACCEL​ ​0x07FF​ // The max value the the accelerometer will return.
 // Dependent on bytes of resolution in accelerometer.

// Kinematic data for a bead

// pos: x and y position in LED matrix (in units of LEDs)

// vel: x and y velocity in LED matrix (in units of m/s)

// accel_base: raw accelerometer data for calibrating.

typedef​ ​struct​ {
 ​float​ ​pos​[​2​];
 ​float​ ​vel​[​2​];
 ​int16_t​ ​accel_base​[​2​];
 ​int​ mode;​ // 0 is easy, 1 is hard.
} ​Bead​;

Bead bead;

// Initializes the bead with the starting position.

void​ ​init_bead​(​int​ ​x​, ​int​ ​y​) {
 ​bead​.​pos​[​0​] = (​float​) x;
 ​bead​.​pos​[​1​] = (​float​) y;
 ​bead​.​vel​[​0​] = ​0​;
 ​bead​.​vel​[​1​] = ​0​;
 ​bead​.​accel_base​[​0​] = ​0​;
 ​bead​.​accel_base​[​1​] = ​0​;
 ​bead​.​mode​ = ​0​;
}

// Set the calibration data.

void​ ​calibrate_bead​(​int16_t​ ​x_accel​, ​int16_t​ ​y_accel​) {
 ​bead​.​accel_base​[​0​] = x_accel;
 ​bead​.​accel_base​[​1​] = y_accel;
}

/**

* Takes in acceleration sensor data, transforms it, and then

* updates the velocity vector of the the bead.

*/

void​ ​update_bead_velocity​(​int16_t​ ​x_accel​, ​int16_t​ ​y_accel​) {
 ​float​ ​accel_vec​[​2​];
 ​float​ t = ​1​ / (​float​) SAMPLE_FREQ;​ // how long it has been since the last accelerometer
read.

 ​accel_vec​[​0​] = (​float​) (​bead​.​accel_base​[​0​]-x_accel) * GRAVITY / MAX_RAW_ACCEL;

 ​accel_vec​[​1​] = (​float​) (​bead​.​accel_base​[​1​]-y_accel) * GRAVITY / MAX_RAW_ACCEL;

 // Update velocity vector v = v0 + a * t

 ​bead​.​vel​[​0​] = ​bead​.​vel​[​0​] + (​accel_vec​[​0​] * t);
 ​bead​.​vel​[​1​] = ​bead​.​vel​[​1​] + (​accel_vec​[​1​] * t);
}

/**

* Takes in the new velocity vector of the bead. Sets the velocity of

* immobile directions of the bead to zero. Updates the position with the

* velocity of the free direction.

*

* If there are multiple free directions, we chose the dominant direction

* with the greater acceleration.

*/

void​ ​update_bead_position​(​int16_t​ ​x_accel​, ​int16_t​ ​y_accel​) {
 ​int​ old_x = (​int​) ​bead​.​pos​[​0​];
 ​int​ old_y = (​int​) ​bead​.​pos​[​1​];

 // zero_out velocity direction that can't move

 ​if​ (​is_wall​(old_x + (​bead​.​vel​[​0​] > ​0​ ? ​1​ : -​1​), old_y)) {
 ​bead​.​pos​[​0​] = ​floor​(​bead​.​pos​[​0​]);
 ​bead​.​vel​[​0​] = ​0​;
 }

 ​if​ (​is_wall​(old_x, old_y + (​bead​.​vel​[​1​] > ​0​ ? ​1​ : -​1​))) {
 ​bead​.​pos​[​0​] = ​floor​(​bead​.​pos​[​0​]);
 ​bead​.​vel​[​1​] = ​0​;
 }

 // choose direction for bead to move

 ​int​ direction = ​bead​.​vel​[​0​] == ​0​;​ // 0 if vel[0] is non-zero, 1 if vel[0] is 0
 // if both directions are free, choose direction with more acceleration

 ​if​ (​bead​.​vel​[​0​] != ​0​ && ​bead​.​vel​[​1​] != ​0​) {
 ​if​ (​bead​.​mode​) {​ // HARD mode
 direction = ​abs​(​bead​.​vel​[​0​]) < ​abs​(​bead​.​vel​[​1​]);​ // 0 if x is larger, 1 if y is
larger

 }

 ​else​ {​ // EASY mode
 direction = ​abs​(​bead​.​accel_base​[​0​]-x_accel) < ​abs​(​bead​.​accel_base​[​1​]-y_accel);
 }

 ​bead​.​vel​[!direction] = ​0​;
 }

 ​if​ (​bead​.​vel​[​0​] == ​0​ && ​bead​.​vel​[​1​] == ​0​) {
 ​return​;
 }

 ​float​ t = ​1.0​/SAMPLE_FREQ;
 ​float​ old_pos = ​bead​.​pos​[direction];
 ​float​ new_pos = ​bead​.​pos​[direction] + (​bead​.​vel​[direction] * t) / CELL_DISTANCE;

 // loop to make bead stop before wall

 // assumes that we start at a non_wall position

 ​for​ (
 ​int​ i = old_pos;
 (​bead​.​vel​[direction] > ​0​ && i < new_pos) || (​bead​.​vel​[direction] < ​0​ && i >= (​int​)
new_pos);

 i += (​bead​.​vel​[direction] > ​0​ ? ​1​ : -​1​)
) {

 // if we reach a wall, then stop at previous position

 ​if​ (
 (direction == ​0​ && ​is_wall​(i, (​int​) ​bead​.​pos​[​1​])) ||
 (direction == ​1​ && ​is_wall​((​int​) ​bead​.​pos​[​0​], i))
) {

 ​bead​.​pos​[direction] = (​float​) i + (old_pos < new_pos ? -​1.0​ : ​1.0​);

 bead​.​vel​[direction] = ​0​;
 ​return​;
 }

 }

 // if no wall is crossed, simply update position to new_pos

 ​bead​.​pos​[direction] = new_pos;
}

#endif​ // BEAD_H

Appendix B: FPGA SystemVerilog

fpga.sv
module​ ​testbench​();
 logic​ clk, reset;
 ​/** LED Matrix I/O **/
 logic​ latch, blank, R0, G0, B0, R1, G1, B1, A0, A1, A2, A3, matrix_shift_clk;

 ​fpga​ ​dut​(clk, reset, latch, blank,
 R0, G0, B0, R1, G1, B1, A0, A1, A2, A3,

 matrix_shift_clk);

 ​// initialize test
 ​initial
 ​begin
 reset <= ​1​; # ​22​; reset <= ​0​;
 ​end
 ​// generate clock to sequence tests
 ​always
 ​begin
 clk <= ​1​; # ​5​; clk <= ​0​; # ​5​;
 ​end

endmodule

///

// fpga

// top level module for the fpga size of the maze game

//

///

module​ ​fpga​(​input​ ​logic​ clk, reset,
 ​/** SPI I/O **/
 ​input​ ​logic​ ce,
 ​input​ ​logic​ sck,
 ​input​ ​logic​ sdi,
 ​output​ ​logic​ sdo,
 ​/** LED Matrix I/O **/
 ​output​ ​logic​ latch, blank,
 ​output​ ​logic​ R0, G0, B0, R1, G1, B1, ​// RGB Values
 ​output​ ​logic​ A0, A1, A2, A3, ​// Row Address
 ​output​ ​logic​ matrix_shift_clk); ​// Shift Register Clock

 ​// Busses for expanding display module output
 logic​ [​2​:​0​] RGB0, RGB1; ​// Two pixel values
 logic​ [​3​:​0​] A; ​// The Address

 ​// Busses for outputting memory to display module
 logic​ [​31​:​0​] row0, row1;
 logic​ [​15​:​0​] bead;

 ​// Busses for updating memory
 logic​ [​31​:​0​] data, wd;
 logic​ [​5​:​0​] addr, wa;
 logic​ we;
 logic​ [​3​:​0​] count_down;

 ​// SPI I/O
 ​spi​ ​io​(ce, sck, sdi, sdo, addr, data);

 ​// Update RAM with maze and update bead location
 ​update_mem_control​ ​mem_control​(clk, reset, ce, addr, data, wa, wd, we);

 ​// Memory Module
 ​mem​ ​m​(clk, reset,
 we, wa, wd,

 A + ​1​,
 row0, row1, bead,

 count_down);

 ​// Matrix Flashing Module
 ​matrix​ ​display​(clk, reset,
 row0, row1,

 count_down,

 bead,

 latch, blank, RGB0, RGB1, A, matrix_shift_clk);

 ​// Output decomposition for wiring clarity
 ​assign​ {R0, G0, B0} = RGB0;
 ​assign​ {R1, G1, B1} = RGB1;
 ​assign​ {A3, A2, A1, A0} = A;

endmodule

///

// matrix

// module for flashing the led matrix.

//

// Flash row A and A + 16 at the same time. First shift in data then

// blank, latch, change address to desired address, unblank

//

// Takes in the slow clock. Takes 128 cycles to shift data into 2

// rows of the matrix and then display the rows. As there are 32 rows

// to flash, this gives us a 1/16 duty cycle for the display.

//

// Thus, the display is refreshed every 16 * 128 = 2048 slow clock

// cycles, which is a frequency about 76Hz.

//

///

module​ ​matrix​(​input​ ​logic​ clk, reset,
 ​input​ ​logic​ [​31​:​0​] row0, row1,
 ​input​ ​logic​ [​3​:​0​] count_down,
 ​input​ ​logic​ [​9​:​0​] bead,
 ​output​ ​logic​ latch, blank,
 ​output​ ​logic​ [​2​:​0​] RGB0, RGB1,
 ​output​ ​logic​ [​3​:​0​] A,
 ​output​ ​logic​ shift_clock);
 ​typedef enum​ ​logic​[​1​:​0​] {SHIFT, UPDATE, DRIVE} ​statetype​;
 ​statetype​ state, nextstate;

 logic​ [​6​:​0​] col, nextcol;
 logic​ slow_clock;
 logic​ [​3​:​0​] nextA;

 ​slow_clock​ ​sc​(clk, reset, slow_clock);

 ​// always_ff @(negedge clk, posedge reset) begin
 ​always_ff​ @(​negedge​ slow_clock, ​posedge​ reset) ​begin
 ​if​ (reset) ​begin
 state = SHIFT;

 col = ​0​;
 A = ​15​;
 ​end​ ​else​ ​begin
 state <= nextstate;

 col <= nextcol;

 ​if​ (col == ​36​) A <= nextA;
 ​else​ A <= A;

 ​end
 ​end

 ​// Next State logic
 ​always_comb
 ​case​ (state)
 SHIFT: ​if​ (col == ​31​) nextstate = UPDATE;
 ​else​ nextstate = SHIFT;
 UPDATE: ​if​ (col == ​40​) nextstate = DRIVE;
 ​else​ nextstate = UPDATE;
 DRIVE: ​if​ (&col) nextstate = SHIFT;
 ​else​ nextstate = DRIVE;
 ​default​: nextstate = SHIFT;
 ​endcase

 ​// always increment col / counter
 ​always_comb
 ​if​ (reset) nextcol = ​1​;
 ​else​ nextcol = col + ​1​;

 ​assign​ nextA = A + ​1​;

 ​assign​ RGB0 = {state == SHIFT && bead[​9​:​5​] == nextA && bead[​4​:​0​] == col && count_down < ​3​,
 state == SHIFT && bead[​9​:​5​] == nextA && bead[​4​:​0​] == col && count_down >=
3​,
 state == SHIFT && row0[​31​ - col]};
 ​assign​ RGB1 = {state == SHIFT && bead[​9​:​5​] == nextA + ​16​ && bead[​4​:​0​] == col && count_down
< ​3​,
 state == SHIFT && bead[​9​:​5​] == nextA + ​16​ && bead[​4​:​0​] == col && count_down
>= ​3​,,
 state == SHIFT && row1[​31​ - col]};

 ​assign​ blank = (state == UPDATE);
 ​assign​ latch = (state == UPDATE && col > ​32​ && col < ​36​);
 ​// assign shift_clock = (state == SHIFT && clk);
 ​assign​ shift_clock = (state == SHIFT && slow_clock);

endmodule

///

// slow_clock

// Slows down the clock for the LED matrix display

// logic. FPGA original frequency is 40MHz. This slows

// it down by a factor of 128 to 156.25kHz.

//

///

module​ ​slow_clock​(​input​ ​logic​ clk, reset,
 ​output​ ​logic​ slow_clock);
 logic​ [​32​-​1​:​0​] q, nextq;
 ​always_ff​ @(​posedge​ clk)
 ​if​ (reset) q <= ​0​;
 ​else​ q <= nextq;
 ​assign​ nextq = q + ​1​;
 ​assign​ slow_clock = (q[​7​] == ​1​);
endmodule

///

// mem

// Memory module that stores the latest wall pixel

// positions of the maze and the bead position

// in the maze.

//

// 32 words for the maze state (0x00 - 0x0F)

// 1 word for the bead state (0x20)

// unused (0x21 - 0xFF)

//

///

module​ ​mem​(
 ​input​ ​logic​ clk, reset,
 ​input​ ​logic​ we, ​// write enable
 ​input​ ​logic​ [​5​:​0​] wa, ​// write address
 ​input​ ​logic​ [​31​:​0​] wd, ​// write data
 ​input​ ​logic​ [​5​:​0​] ad,
 ​output​ ​logic​ [​31​:​0​] row0,
 ​output​ ​logic​ [​31​:​0​] row1,
 ​output​ ​logic​ [​9​:​0​] bead,
 ​output​ ​logic​ [​3​:​0​] count_down);

 logic​ [​31​:​0​] MAZE[​33​:​0​]; ​// last address is the bead (only uses the 10 LSBs, 5 for row and
5 for col)

 ​initial
 ​$readmemb​(​"startup_screen.dat"​, MAZE);

 ​// { unused bits, ROW, COLUMN } NOTE: both start from 0!
 ​// assign bead = {6'b000000, 5'b10001, 5'b00001}; // initialize bead at starting position

 ​assign​ row0 = MAZE[ad[​3​:​0​]]; ​// maze address space limited to 0x00-0x1F
 ​assign​ row1 = MAZE[ad[​3​:​0​] + ​16​];
 ​assign​ bead = MAZE[​32​][​9​:​0​];
 ​assign​ count_down = MAZE[​33​][​3​:​0​];

 ​always_ff​ @(​posedge​ clk)
 ​if​ (we) MAZE[wa] <= wd;
endmodule

///

// spi

// SPI interface. Copied from lab 7.

// Only 40 bits are received at a time:

// 2 unused bits + 6 address bits + 32 bits for data

//

///

module​ ​spi​(​input​ ​logic​ ce,
 ​input​ ​logic​ sck,
 ​input​ ​logic​ sdi,
 ​output​ ​logic​ sdo,
 ​output​ ​logic​ [​5​:​0​] addr,
 ​output​ ​logic​ [​31​:​0​] data);

 ​// 38 bits in shift register: 6 for address, 32 for data
 ​always_ff​ @(​posedge​ sck)
 ​if​ (ce) {addr, data} = {addr[​4​:​0​], data, sdi};

 ​// fpga slave only reads/ram is written to (sdo not connected to anything on board)
 ​assign​ sdo = ​1'b0​;
endmodule

///

// update_mem_control

// Module for determining how memory is updated from spi

// data. Pretty simple logic here for now. In previous versions

// this was much more complicated.

//

///

module​ ​update_mem_control​(​input​ ​logic​ clk,
 ​input​ ​logic​ reset,

 ​input​ ​logic​ ce,
 ​input​ ​logic​ [​5​:​0​] addr,
 ​input​ ​logic​ [​31​:​0​] data,
 ​output​ ​logic​ [​5​:​0​] wa,
 ​output​ ​logic​ [​31​:​0​] wd,
 ​output​ ​logic​ we);

 logic​ wasce; ​// used to find when ce first goes low

 ​always_ff​ @(​posedge​ clk, ​posedge​ reset) ​begin
 ​if​ (reset) ​begin
 wasce <= ​1'b0​;
 ​end​ ​else​ ​begin
 wasce <= ce;

 ​end
 ​end

 ​assign​ we = (wasce & ~ce); ​// write when ce goes low
 ​assign​ wa = addr;
 ​assign​ wd = data;
endmodule

Appendix C: The Maze and Solution

