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Abstract ​— The classic maze game (or sometimes referred to as the labyrinth game) is a small fun game where users rotate a small                        
board to orient a bead through a maze. This game comes in other varieties as well, such as a control scheme where the player                        
controls the orientation of the maze using two dials on the sides of the game. Our project aims to design a new version of this game,                          
digitizing a maze and bead with an LED matrix and detecting the orientation with an accelerometer to control the bead – making                     
the game more fun, flexible, colorful, and intriguing. 

Introduction 
Our goal of this project is to recreate an old school maze puzzle toy digitally. There are many 

opportunities to enhance the classic maze game via a digital design, and it gives us the opportunity to learn how to 
interface with LED matrices (or displays in general) and design complex digital systems. The play style of the 
digital version of the game is very similar to the classic counterpart: Using a LIS3DH Triple-Axis Accelerometer, 
we detect the orientation of the board and use the readings from this device to simulate the particle physics of the 
bead. The brain of this operation is the ATSAM4S4B microcontroller we have been using for a good portion of 
the class. This microcontroller calculates the state of the bead and game as it reads from the accelerometer and 
updates the display by sending the new game state information to a Cyclone IV FPGA which dives the LED 
matrix. Displayed in the block diagram below (Figure 1) is the basic structure of the digital maze game. 
 

Block Diagram 

 
Figure 1. The block diagram of the digital maze game. Displayed is the FPGA driving the LED matrix over 13 
buses and the ATSAM microcontroller communicating with both the FPGA and LIS3DH Accelerometer over 
SPI. 

New Hardware 

32x32 LED Matrix 
Our first new hardware was the 32x32 LED matrix, which was particularly hard to work with because of 

the lack of documentation. There are no official datasheets for the LED matrix and the official Adafruit tutorial 
simply describes how to use their helper libraries and does not explain the operation of the LED matrix. 
Thankfully, we were able to find more in depth tutorials online, namely one from Glen Alkin​[1]​, helping us 

 



 
 
understand the matrix pinout and operation basics, and one from Ray’s Logic​[2]​, which pointed to datasheets of 
shifters and drivers similar to those used in the Adafruit matrix. 

How the panel works: The matrix is divided into upper 16 rows and lower 16 rows. Only two rows can be 
driven at the same time, namely rows ​A​ and ​A+16​, where ​A​ is the address input ​A[3:0]​. To configure a row, we 
shift data into the 3 shift registers for three bits of color: ​R0,G0,B0​ for row ​A​ and ​R1,G1,B1​ for row ​A+16​. 
Then, we use the ​blank​ and ​latch​ signals to send the data from the shift registers to the LED drivers and then 
display them. This results in a 1/16 duty cycle row multiplexed display. 

A ​specific sequence​ of shifting data and toggling the ​blank​ and ​latch​ signals is required to produce 
desired behavior in the LED matrix. Figuring out this sequence was by far the most difficult part of operating the 
LED matrix. Our working understand of the sequence is as follows: 

1) While rows ​A​ and ​A+16​ are being displayed, shift the data for the next row into the registers through the 
R0,G0,B0,R1,G1,B1,sclk, ​and ​A[3:0]​ input pins. This is going to be 32 ​sclk​ cycles and 
make sure to change the RGB pin values on the neg clock edge between ​sclk​ posedges. 

2) Assert ​blank​. This will blank the display. 
3) Assert and the de-assert ​latch​. 
4) Update ​A[3:0]​ to the address of the rows you want to display next. 
5) De-assert ​blank. 
6) Wait for a certain duration for the LED row to shine with the programmed pattern. Then repeat step 1). 

We encountered many pitfalls in this process. First, we assumed that we could repeatedly flash the same 
address, as this would be necessary for binary coded modulation. However, when we did so, somehow the row 
address would show the desired pattern for one cycle and then go black or even not show anything at all. This was 
fixed when we flashed different addresses in successive sequences. Second, we assumed that we should update 
A[3:0]​ before toggling ​latch​ because we thought ​latch​ sends data from the shift registers to the LED 
drivers. We did so before step 1 so that we could also use the ​A​ variable to make assignment bits to the rgb pins. 
However, this resulted in “doubled” matrix patterns that only were fixed when we strictly followed the Glen Alkin 
tutorial and updated the ​A​ at step 4. 
 

LIS3DH Triple-Axis Accelerometer 
For this project, we also introduce a LIS3DH accelerometer. This accelerometer has a wide range of 

configuration options from 8-bit to 12-bit resolution, ±2g/±4g/±8g/±16g selectable scaling, and multiple data rate 
options and operates at 3.3 V. This device can be interfaced with over I​2​C or SPI. We found that this is a much 
more established device and has much better documentation than the LED matrix. Adafruit provides a good 
tutorial on its setup​[3]​ and the datasheet explains its operation well​[4]​. In the context of this project, we configured 
the accelerometer to read the acceleration in two axes with 12-bit readings at a data rate of 400 Hz. Setting up the 
accelerometer over SPI with this configuration involved writing to two of the device’s control registers and then 
the accelerometer readings were read directly from the output registers on the board. 

 



 
 

Schematic 

Final Schematic 

 
Figure 2. A schematic displaying the circuity between the components of the digital maze game.  

FPGA System 
The FPGA has three main functions in this project: driving the LED matrix, assigning colors to the 

different components of the game, and receiving and storing game state data from the ATSAM microcontroller 
over SPI. 

Driving the LED Matrix 
To drive the LED Matrix, we implement the input sequence described above using the FPGA. Our state 

logic consists of a 7-bit counter ​col​, the 3-bitrow address and output ​A​, and state variable ​state​. To shift data 
into the matrix in a rate that it can handle, we slowed down the clock speed for the matrix display module to 1/128 
of the global clock, i.e. about 156kHz. To ensure that the matrix receives stable inputs on the posedge of the slow 
clock, we update state values and outputs on the negedge. The counter ​col​ is incremented every cycle. The 
general FSM is shown below (Figure 3). 

 



 
 

 
Figure 3. The finite state machine that updates the LED matrix’s rows by shifting in RGB values and driving them 

Note that ​after latch is de-asserted, while still in the ​UPDATE​ state, we update the ​A​ output to the row 
we want to display (​A+1​). In the ​DRIVE​ state, no outputs are asserted and we simply wait until the counter 
overflows to return to ​SHIFT​ and begin configuring the next address. 

Color Assignment 
We assign all wall pixels to blue. To do so, we read the two rows of the maze to drive from the memory 

module using the ​nextA=A+1​ and then specific cells in those rows with the ​col​ counter. Why ​A+1​? Recall that 
we can only update the row address to the desired address after unlatching. Thus, when we are shifting in the next 
rows data, ​A​ is one less than the address we want to display next. 

We assign the bead to green in the first 65 seconds of the game and red in the last 15 seconds. We do so 
by setting both the red and green bits high when the ​nextA​ and ​col​ corresponds to the bead position. However, 
for the green bit, there is an additional constraint that the countdown variable is greater than or equal to 3. The red 
bit requires that the countdown variable is less than 3. Both the bead position and the countdown variable are rows 
in memory, updatable by the microcontroller. 

SPI Interface and Memory 
The SPI interface on the FPGA side was implemented similarly to some of the other SPI slave devices we 

have used in this class such as the digital temperature sensor in lab 6 and much like the accelerometer used in this 
project where the master device reads and writes directly to the slave’s memory. This was made simpler though 
because the FPGA’s main purpose is to drive the LED matrix, therefore we did not have to implement reading 
from memory for the purpose of outputting the data over SPI. The protocol we implemented consisted of sending 
5 bytes from the ATSAM to the FPGA. The first byte holds the address of the row in memory that will be written 
to (although our memory is small enough to be encoded in 6 bits), and the following 4 bytes make up a word of 
data that will replace the data in that row of memory. Implementing the SPI interface this way decreased the 
complexity of the FPGA circuitry and generalized updating any visual element or values important for controlling 
the display. 

In our memory, three components of the game are stored. The first is the maze itself, taking up the first 32 
rows in memory. Each wall of the maze is encoded as a single bit value determining if the wall exists in that 
position in the LED matrix. A row in memory represents the row on the board and the most significant bit in a 
row is the left most column on the matrix. Following these 32 words, the 32nd address is dedicated to the row and 

 



 
 
column value of the bead and the final word contains the countdown timer. We had originally intended for our 
memory to be made up of word aligned M9K units in the FPGA, however the final implementation of the memory 
model involved making asynchronous reads in order to read two maze rows at a time, the bead, and the game 
countdown timer. As it was pointed out to us, this implied that all of these values were stored in logic elements 
(LE) instead of M9K units. This was not a problem however because we still had plenty of LEs free on the FPGA 
and asynchronous reads saved us from adding more complexity to driving the LED matrix.  

Microcontroller System 
All game state logic and bead physics were implemented in the ATSAM microcontroller and then sent to 

the FPGA to be displayed. The position of the bead is also determined by accelerometer readings, so the 
microcontroller interfaces with the accelerometer to calculate the next game state. 

Game Logic 
The ATSAM waits 2 seconds after being turned on, during which it initializes the peripherals and 

accelerometer and also allows the user to admire the beautiful start screen. The µMudd board DIP switch values 
are read to store a hard or easy mode configuration, which will affect how the bead position is later updated. The 
ATSAM then takes an initial accelerometer reading to calibrate to an initial “flat” level and begins the game by 
sending the maze and the beginning bead position to the FPGA. Until the game ends, the ATSAM routinely 
samples the accelerometer and uses the results to update the bead position with bead physics scheme. 

The total duration of the game is 80 seconds. After every sending the update bead position, the ATSAM 
also sends a countdown number to the FPGA. This is the number of seconds remaining in the game divided by 5, 
hence starting at 15 (=79.9s divided by 5 and then cast to int) and ending on 0. This number is used by the FPGA 
to alter the bead’s color from green to red when there are only 15 seconds left. Notice that a simple one bit flag 
would also suffice for this functionality. The reason we chose to send over a 4 bit counter is that we originally 
intended to use the counter to change the color of the maze walls using 4 bit binary coded modulation. 

Finally, after the countdown is sent, the ASTAM checks if the bead position is at the exit position of the 
maze. If so, it sends the start screen to the FPGA and ends execution. If the game time expires before the user 
navigates out of the maze, the ATSAM writes a GAME OVER screen to the FPGA and ends execution. If the user 
wishes to play the game again, the game can be restarted using the ATSAM reset button on the μMudd board to 
start this game state logic over again. 

Bead Physics 
The ATSAM keeps track of the position and velocity of the bead. The accelerometer readings determine 

how the bead’s velocity vector changes with each sample. The velocity vector is filtered through collision logic, 
before it is used to update the bead’s position. We shall describe this process in greater detail below: 

Acceleration:​ To start off a cycle of our bead physics, we first read 12 bits of acceleration data from the 
accelerometer on the x and y axis. This is received by the ATSAM in 2 bytes as a left-justified two's complement 
value. This is then casted to a signed short and shifted to remove the unused bits. From this value, velocity is then 
calculated in its x and y components, scaling to best simulate gravity, and multiplying by the duration elapsed 
between each accelerometer reading (a duration which we have set using a delay at the beginning of each loop). 

Velocity:​ The ATSAM uses the new velocity to find the next position of the bead. To do so, it first zeros 
components of the velocity vector that point to a wall. Next, it selects a direction to move the bead in. This will be 
that of the non-zero velocity component. If there are two non-zero velocity components, it picks the direction with 
the larger velocity or acceleration, depending on whether the hard or easy mode is set, respectively. The other 
velocity component is zeroed. 

Position:​ Finally, to update the bead position without allowing it to pass through walls, the ASTAM 
linearly scans the matrix between the old position and the potential new position (old pos + time passed * 

 



 
 
velocity) and sets the bead right before the first wall, if one exists. If no walls are detected in the scan, the bead is 
simply updated to the new position. 

Spi Interfaces 
As mentioned previously, the ATSAM communicates to both the FPGA and accelerometer over SPI. This 

was made fairly simple with the library given to us. These slave devices share common MISO, MOSI, and SPCK 
buses, however they are selected by different chip enable buses. It would have been interesting to put these on the 
same chip enable because the accelerometer is an active low device while the FPGA’s SPI interface is 
implemented as an active high, however pins were not a limited resource two us, and so it was much simpler to 
put them on separate pins.  

Results 
Our project was successful. We were able to create a maze game that produces all the behavior we set out 

to create. It is also a portable handheld device, thanks to cardboard engineering and a battery pack. We received 
great feedback and we are really happy with how it turned out. 

While we delivered on all our promises, we had hoped to vary the colors of the walls using binary coded 
modulation. However, to do so, we would need to flash the same address multiple times in a row, which we aren’t 
sure is possible given our previous unsuccessful attempts despite producing expected waveforms. Thus, we 
believe that accomplishing this would require a leap in our understanding of how the matrix works. Also, binary 
coded modulation would require speeding up the matrix display module clock. The current clock frequency and 
counter width leads to a 76Hz matrix refresh rate. To do binary coded modulation, we need to dwarf the time 
shifting in data with the time driving the display (currently a 1:3 ratio). Thus, we need a much wider counter. To 
maintain the refresh rate with a wider counter, we need a faster clock. Unfortunately, initial attempts at increasing 
the matrix clock frequency resulted in severely corrupted display patterns. We believe that much more time and 
experimentation are necessary for this undertaking. 
 

 

 



 
 
Figure 4. Our final project’s form factor: The components are assembled on a cardboard box and can be powered 
by a portable charger.  
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Part List 

Part Source Vendor Part # Price 

32x32 RGB LED Matrix 
Panel - 4mm Pitch 

Adafruit PRODUCT ID: 607 $49.95 

LIS3DH Triple-Axis 
Accelerometer 

Adafruit PRODUCT ID: 2809 $4.95 

 

  

 



 
 

Appendix A: ATSAM C 

final_project.c 
/* final_project.c 

* 

* dsobek@g.hmc.edu 

* jyliang@g.hmc.edu 

* 11/20/2019 

* 

* Implements a maze game's state using a 32 by 32 LED matrix and accelerometer. */ 

 

#include​ ​"SAM4S4B.h" 
#include​ ​"maze.h" 
#include​ ​"bead.h" 
#include​ ​<stdint.h> 
 

// Pin assignments 

#define​ ​ACCELEROMETER_CE_PIN​ PIO_PA10 
#define​ ​FPGA_CE_PIN​ PIO_PA16 
#define​ ​MODE_SWITCH_PIN​ PIO_PB0 
 

// Addresses on the LIS3DH accelerometer 

#define​ ​LIS3DH_CTRL_REG0​  ​0x1E 
#define​ ​LIS3DH_CTRL_REG1​  ​0x20 
#define​ ​LIS3DH_CTRL_REG4​  ​0x23 
#define​ ​LIS3DH_OUT_X_L​ ​0x28 
#define​ ​LIS3DH_OUT_Y_L​ ​0x2A 
#define​ ​LIS3DH_OUT_Z_L​ ​0x2C 
 

#define​ ​COUNTDOWN_DURATION​ ​80​ ​// seconds 
 

#define​ ​CALIBRATE​ ​1​ ​// Boolean to determine if we should calibrate at startup 
 

// read a byte from the accelerometer 

uint8_t​ ​accelerometerRead​(​uint8_t​ ​addr​) { 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_LOW); ​// msb set high to specify a read 
   ​uint16_t​ val = ​spiSendReceive16​((​0x80​ | addr) << ​8​); 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH); 
   ​return​ val; 
} 

 

// read two bytes from the accelerometer 

uint16_t​ ​accelerometerReadTwoBytes​(​uint8_t​ ​addr​) { 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_LOW); 
   ​// msb set high to specify a read and 2nd msd to get multiple bytes 
   ​// (incremented address) 
   ​uint16_t​ val = ​spiSendReceive16​((​0xc0​ | addr) << ​8​) & ​0x00FF​; 
   val = val | (​spiSendReceive​(​0x00​) << ​8​); 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH); 
   ​return​ val; 
} 

 

// write a byte to the accelerometer 

void​ ​accelerometerWrite​(​uint8_t​ ​addr​, ​uint8_t​ ​data​) { 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_LOW); 
   ​spiSendReceive16​((addr << ​8​) | data); 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH); 
} 

 

void​ ​accelerometerInit​(​void​) { 
   ​accelerometerWrite​(LIS3DH_CTRL_REG1, ​0x73​); ​// 400Hz 
   ​accelerometerWrite​(LIS3DH_CTRL_REG4, ​0x08​); ​// 12 bits resolution 
   ​// uint8_t who_am_i = accelerometerRead(0x0F); // 0x33 expected 

 



 
 
} 

 

void​ ​sendMaze​(Maze *​m​) { 
   ​for​ (​int​ i = ​0​; i < ​32​; i++) { 
       ​pioDigitalWrite​(FPGA_CE_PIN, PIO_HIGH); 
       ​spiSendReceive​(i); 
       ​spiSendReceive16​((​m​->​rows​[i] >> ​16​) & ​0x0000FFFF​); 
       ​spiSendReceive16​(​m​->​rows​[i] & ​0x0000FFFF​); 
       ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW); 
   } 

} 

 

void​ ​sendBeadPosition​() { 
   ​// y is row, x is col 
   ​int​ x = (​int​) ​bead​.​pos​[​0​]; 
   ​int​ y = (​int​) ​bead​.​pos​[​1​]; 
   ​uint16_t​ bead_pos = ((y & ​0x1F​) << ​5​) | ((x & ​0x1F​)); 
   ​pioDigitalWrite​(FPGA_CE_PIN, PIO_HIGH); 
   ​spiSendReceive​(​32​); 
   ​spiSendReceive16​(​0​); 
   ​spiSendReceive16​(bead_pos); 
   ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW); 
} 

 

void​ ​sendRemainingTime​(​int​ ​counter​) { 
   ​// y is row, x is col 
   ​uint16_t​ count_down = ((counter) & ​0xF​); 
   ​pioDigitalWrite​(FPGA_CE_PIN, PIO_HIGH); 
   ​spiSendReceive​(​33​); 
   ​spiSendReceive16​(​0​); 
   ​spiSendReceive16​(count_down); 
   ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW); 
} 

 

// update X, and Y accelerometer values 

void​ ​getXY​(​int16_t​ *​x_val​, ​int16_t​ *​y_val​) { 
   ​// Flipped because of the orientation of the accelerometer 
   *x_val = ((​int16_t​) ​accelerometerReadTwoBytes​(LIS3DH_OUT_Y_L)) >> ​4​; 
   *y_val = ((​int16_t​) ​accelerometerReadTwoBytes​(LIS3DH_OUT_X_L)) >> ​4​; 
} 

 

// Reads the state of the 0th dip switch and sets the game mode, 

void​ ​setGameMode​(​void​) { 
   ​bead​.​mode​ = ​pioDigitalRead​(MODE_SWITCH_PIN); 
} 

 

void​ ​game​(​void​) { 
   ​// initialize maze 
   ​sendMaze​(​init_maze​()); 
   ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]); 
   ​sendBeadPosition​(); 
 

   ​int16_t​ x, y; 
   ​int​ remaining_time = COUNTDOWN_DURATION * ​1000​; 
   ​int​ ​delta_t​ = ​1000​ / SAMPLE_FREQ; 
 

   ​// Set to easy or hard mode and calibrate the accelerometer. 
   ​setGameMode​(); 
   ​if​ (CALIBRATE) { 
       ​getXY​(&x, &y); 
       ​calibrate_bead​(x, y); 
   } 

 

   ​while​(remaining_time > ​0​) { 
       ​// send remaining time to word in FPGA 

 



 
 
       ​tcDelayMillis​(​delta_t​); 
       remaining_time -= ​delta_t​; 
       ​getXY​(&x, &y); 
       ​update_bead_velocity​(x, y); 
       ​update_bead_position​(x, y); 
       ​sendBeadPosition​(); 
       ​sendRemainingTime​(remaining_time / ​1000​ / ​5​); ​// transforms remaining time to 0 to 15 
scale 

 

       ​// if we reached final position 
       ​if​ (​is_final_pos​((​int​) ​bead​.​pos​[​0​], (​int​) ​bead​.​pos​[​1​])) { 
           ​sendMaze​(​start_screen​()); 
           ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]); 
           ​sendBeadPosition​(); 
           ​return​; 
       } 

   } 

   ​// send game over screen 
   ​sendMaze​(​game_over​()); 
   ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]); 
   ​sendBeadPosition​(); 
} 

 

int​ ​main​(​void​) { 
   ​// Initialize ATSAM peripherals 
   ​samInit​(); 
   ​pioInit​(); 
   ​tcDelayInit​(); 
   ​spiInit​(MCK_FREQ/​244000​, ​1​, ​0​); 
   ​// "clock divide" = master clock frequency / desired baud rate 
   ​// the phase for the SPI clock is 1 and the polarity is 0 
 

   ​// ce pin setup 
   ​pioPinMode​(ACCELEROMETER_CE_PIN, PIO_OUTPUT); 
   ​pioDigitalWrite​(ACCELEROMETER_CE_PIN, PIO_HIGH); 
   ​pioPinMode​(FPGA_CE_PIN, PIO_OUTPUT); 
   ​pioDigitalWrite​(FPGA_CE_PIN, PIO_LOW); 
  

   ​// Dip switch setup 
   ​pioPinMode​(MODE_SWITCH_PIN, PIO_INPUT); 
 

   ​// Hardcoded in the fpga but send when atsam is reset 
   ​sendMaze​(​start_screen​()); 
   ​init_bead​(​maze​.​begin_pos​[​0​], ​maze​.​begin_pos​[​1​]); 
   ​sendBeadPosition​(); 
 

   ​// Let the startup screen be shown for a couple seconds 
   ​tcDelaySeconds​(​1​); 
   ​// Accelerometer Setup 
   ​accelerometerInit​(); 
   ​tcDelaySeconds​(​1​); 
 

   ​// Game logic 
   ​game​(); 
 

   ​return​ ​0​; 
}  

 



 
 

maze.h 
/* maze.h 

* 

* dsobek@g.hmc.edu 

* jyliang@g.hmc.edu 

* 11/20/2019 

* 

* Contains the maze, collision logic, and several other screens to 

* display. */ 

 

#ifndef​ ​MAZE_H 
#define​ ​MAZE_H 
 

#include​ ​<stdint.h> 
 

typedef​ ​struct​ { 
   ​uint32_t​ ​rows​[​32​]; 
   ​int8_t​ ​begin_pos​[​2​]; 
   ​int8_t​ ​end_pos​[​2​]; 
} ​Maze​; 
 

Maze maze; 

 

Maze​*​ ​init_maze​(​void​) { 
   ​maze​.​rows​[​0​] = ​0xFFFFFFFF​; 
   ​maze​.​rows​[​1​] = ​0x84000401​; 
   ​maze​.​rows​[​2​] = ​0xBFDFDFBD​; 
   ​maze​.​rows​[​3​] = ​0xA0081005​; 
   ​maze​.​rows​[​4​] = ​0x8FFBFFF5​; 
   ​maze​.​rows​[​5​] = ​0xA8100115​; 
   ​maze​.​rows​[​6​] = ​0xABF7DFD5​; 
   ​maze​.​rows​[​7​] = ​0xAA144047​; 
   ​maze​.​rows​[​8​] = ​0xAADDFFDD​; 
   ​maze​.​rows​[​9​] = ​0xAAD11451​; 
   ​maze​.​rows​[​10​] = ​0xA8945155​; 
   ​maze​.​rows​[​11​] = ​0xEAB55755​; 
   ​maze​.​rows​[​12​] = ​0xAAA74115​; 
   ​maze​.​rows​[​13​] = ​0xAAADEF55​; 
   ​maze​.​rows​[​14​] = ​0xAAA40255​; 
   ​maze​.​rows​[​15​] = ​0x8AB7EFF5​; 
   ​maze​.​rows​[​16​] = ​0xAA904115​; 
   ​maze​.​rows​[​17​] = ​0xABD77F54​; 
   ​maze​.​rows​[​18​] = ​0xA8440457​; 
   ​maze​.​rows​[​19​] = ​0xABF5FDD5​; 
   ​maze​.​rows​[​20​] = ​0xAA150551​; 
   ​maze​.​rows​[​21​] = ​0xA8D55D57​; 
   ​maze​.​rows​[​22​] = ​0xAE544145​; 
   ​maze​.​rows​[​23​] = ​0xA2DDFF75​; 
   ​maze​.​rows​[​24​] = ​0xBE544055​; 
   ​maze​.​rows​[​25​] = ​0x8BD5EFD1​; 
   ​maze​.​rows​[​26​] = ​0xA8040115​; 
   ​maze​.​rows​[​27​] = ​0xAFF7FF75​; 
   ​maze​.​rows​[​28​] = ​0xE0001015​; 
   ​maze​.​rows​[​29​] = ​0xAFFEFEFD​; 
   ​maze​.​rows​[​30​] = ​0x80100009​; 
   ​maze​.​rows​[​31​] = ​0xFFFFFFFF​; 
 

   ​maze​.​begin_pos​[​0​] = ​1​; 
   ​maze​.​begin_pos​[​1​] = ​17​; 
   ​maze​.​end_pos​[​0​] = ​31​; 
   ​maze​.​end_pos​[​1​] = ​17​; 
 

   ​return​ &maze; 
} 

 



 
 
 

// Returns 1 if the given coordinates is a wall or outside the maze. 

int​ ​is_wall​(​int​ ​x​, ​int​ ​y​) { 
   ​return​ x > ​31​ || x < ​0​ || y > ​31​ || y < ​0​ || 
          (((​maze​.​rows​[y] >> (​31​ - x)) & ​1​) == ​1​); 
} 

 

// Returns 1 if the given coordinates is in the winning position. 

int​ ​is_final_pos​(​int​ ​x​, ​int​ ​y​) { 
   ​return​ x == ​maze​.​end_pos​[​0​] && y == ​maze​.​end_pos​[​1​]; 
} 

 

Maze​*​ ​start_screen​(​void​) { 
   ​maze​.​rows​[​0​] = ​0x0​; 
   ​maze​.​rows​[​1​] = ​0x0​; 
   ​maze​.​rows​[​2​] = ​0x00186000​; 
   ​maze​.​rows​[​3​] = ​0x001ce000​; 
   ​maze​.​rows​[​4​] = ​0x0014a000​; 
   ​maze​.​rows​[​5​] = ​0x0017a000​; 
   ​maze​.​rows​[​6​] = ​0x00132000​; 
   ​maze​.​rows​[​7​] = ​0x00100000​; 
   ​maze​.​rows​[​8​] = ​0x00100000​; 
   ​maze​.​rows​[​9​] = ​0x0​; 
   ​maze​.​rows​[​10​] = ​0x0​; 
   ​maze​.​rows​[​11​] = ​0x18c47df0​; 
   ​maze​.​rows​[​12​] = ​0x1dce0500​; 
   ​maze​.​rows​[​13​] = ​0x175b0900​; 
   ​maze​.​rows​[​14​] = ​0x125111f0​; 
   ​maze​.​rows​[​15​] = ​0x105f2100​; 
   ​maze​.​rows​[​16​] = ​0x10514100​; 
   ​maze​.​rows​[​17​] = ​0x10517df0​; 
   ​maze​.​rows​[​18​] = ​0x0​; 
   ​maze​.​rows​[​19​] = ​0x0​; 
   ​maze​.​rows​[​20​] = ​0x0​; 
   ​maze​.​rows​[​21​] = ​0x0​; 
   ​maze​.​rows​[​22​] = ​0x0​; 
   ​maze​.​rows​[​23​] = ​0x02800670​; 
   ​maze​.​rows​[​24​] = ​0x02800540​; 
   ​maze​.​rows​[​25​] = ​0x02800570​; 
   ​maze​.​rows​[​26​] = ​0x02800510​; 
   ​maze​.​rows​[​27​] = ​0x0ee00670​; 
   ​maze​.​rows​[​28​] = ​0x0​; 
   ​maze​.​rows​[​29​] = ​0x0​; 
   ​maze​.​rows​[​30​] = ​0x0​; 
   ​maze​.​rows​[​31​] = ​0x0​; 
 

   ​maze​.​begin_pos​[​0​] = ​13​; 
   ​maze​.​begin_pos​[​1​] = ​14​; 
 

   ​return​ &maze; 
} 

 

Maze​*​ ​game_over​(​void​) { 
   ​maze​.​rows​[​0​] = ​0x0​; 
   ​maze​.​rows​[​1​] = ​0x0​; 
   ​maze​.​rows​[​2​] = ​0x0​; 
   ​maze​.​rows​[​3​] = ​0x0​; 
   ​maze​.​rows​[​4​] = ​0x0​; 
   ​maze​.​rows​[​5​] = ​0x7E38447E​; 
   ​maze​.​rows​[​6​] = ​0xFE7CEEFE​; 
   ​maze​.​rows​[​7​] = ​0xC0EEEEC0​; 
   ​maze​.​rows​[​8​] = ​0xC0C6FEC0​; 
   ​maze​.​rows​[​9​] = ​0xDEC6FEFC​; 
   ​maze​.​rows​[​10​] = ​0xCEC6FEFC​; 
   ​maze​.​rows​[​11​] = ​0xC6FED6C0​; 

 



 
 
   ​maze​.​rows​[​12​] = ​0xC6EEC6C0​; 
   ​maze​.​rows​[​13​] = ​0xFEC6C6FE​; 
   ​maze​.​rows​[​14​] = ​0x7CC6C67E​; 
   ​maze​.​rows​[​15​] = ​0x0​; 
   ​maze​.​rows​[​16​] = ​0x0​; 
   ​maze​.​rows​[​17​] = ​0x7CC67E7C​; 
   ​maze​.​rows​[​18​] = ​0xFEC6FEFE​; 
   ​maze​.​rows​[​19​] = ​0xFEC6C0FE​; 
   ​maze​.​rows​[​20​] = ​0xC6C6C0C6​; 
   ​maze​.​rows​[​21​] = ​0xC6C6FCC6​; 
   ​maze​.​rows​[​22​] = ​0xC6C6FCC6​; 
   ​maze​.​rows​[​23​] = ​0xC6C6C0FC​; 
   ​maze​.​rows​[​24​] = ​0xC6EEC0F8​; 
   ​maze​.​rows​[​25​] = ​0xFE7CFEDC​; 
   ​maze​.​rows​[​26​] = ​0x7C387ECE​; 
   ​maze​.​rows​[​27​] = ​0x0​; 
   ​maze​.​rows​[​28​] = ​0x0​; 
   ​maze​.​rows​[​29​] = ​0x0​; 
   ​maze​.​rows​[​30​] = ​0x0​; 
   ​maze​.​rows​[​31​] = ​0x0​; 
 

   ​maze​.​begin_pos​[​0​] = ​11​; 
   ​maze​.​begin_pos​[​1​] = ​8​; 
 

   ​return​ &maze; 
} 

 

#endif​ // MAZE_H 
  

 



 
 

bead.h 
/* bead.h 

* 

* dsobek@g.hmc.edu 

* jyliang@g.hmc.edu 

* 11/20/2019 

* 

* Contains the bead that the user will control with the accelerometer. This 

* file contains the logic for updating the bead position in the board and 

* detecting collisions with the maze wall. */ 

 

#ifndef​ ​BEAD_H 
#define​ ​BEAD_H 
 

#include​ ​"maze.h" 
#include​ ​<stdint.h> 
#include​ ​<math.h> 
 

#define​ ​GRAVITY​ ​1​ // m/s 
#define​ ​SAMPLE_FREQ​ ​10​  // Frequency of accelerometer reads in Hz. 
#define​ ​CELL_DISTANCE​ ​0.004​ // The distance between LEDs in the matrix in meters. 
#define​ ​MAX_RAW_ACCEL​ ​0x07FF​  // The max value the the accelerometer will return. 
                               // Dependent on bytes of resolution in accelerometer. 

 

// Kinematic data for a bead 

// pos: x and y position in LED matrix (in units of LEDs) 

// vel: x and y velocity in LED matrix (in units of m/s) 

// accel_base: raw accelerometer data for calibrating. 

typedef​ ​struct​ { 
   ​float​ ​pos​[​2​]; 
   ​float​ ​vel​[​2​]; 
   ​int16_t​ ​accel_base​[​2​]; 
   ​int​ mode;​ // 0 is easy, 1 is hard. 
} ​Bead​; 
 

Bead bead; 

 

// Initializes the bead with the starting position. 

void​ ​init_bead​(​int​ ​x​, ​int​ ​y​) { 
   ​bead​.​pos​[​0​] = (​float​) x; 
   ​bead​.​pos​[​1​] = (​float​) y; 
   ​bead​.​vel​[​0​] = ​0​; 
   ​bead​.​vel​[​1​] = ​0​; 
   ​bead​.​accel_base​[​0​] = ​0​; 
   ​bead​.​accel_base​[​1​] = ​0​; 
   ​bead​.​mode​ = ​0​; 
} 

 

// Set the calibration data. 

void​ ​calibrate_bead​(​int16_t​ ​x_accel​, ​int16_t​ ​y_accel​) { 
   ​bead​.​accel_base​[​0​] = x_accel; 
   ​bead​.​accel_base​[​1​] = y_accel; 
} 

 

/** 

* Takes in acceleration sensor data, transforms it, and then 

* updates the velocity vector of the the bead. 

*/ 

void​ ​update_bead_velocity​(​int16_t​ ​x_accel​, ​int16_t​ ​y_accel​) { 
   ​float​ ​accel_vec​[​2​]; 
   ​float​ t = ​1​ / (​float​) SAMPLE_FREQ;​ // how long it has been since the last accelerometer 
read. 

 

   ​accel_vec​[​0​] = (​float​) (​bead​.​accel_base​[​0​]-x_accel) * GRAVITY / MAX_RAW_ACCEL; 

 



 
 
   ​accel_vec​[​1​] = (​float​) (​bead​.​accel_base​[​1​]-y_accel) * GRAVITY / MAX_RAW_ACCEL; 
 

   // Update velocity vector v = v0 + a * t 

   ​bead​.​vel​[​0​] = ​bead​.​vel​[​0​] + (​accel_vec​[​0​] * t); 
   ​bead​.​vel​[​1​] = ​bead​.​vel​[​1​] + (​accel_vec​[​1​] * t); 
} 

 

/** 

* Takes in the new velocity vector of the bead. Sets the velocity of 

* immobile directions of the bead to zero. Updates the position with the 

* velocity of the free direction. 

* 

* If there are multiple free directions, we chose the dominant direction 

* with the greater acceleration. 

*/ 

void​ ​update_bead_position​(​int16_t​ ​x_accel​, ​int16_t​ ​y_accel​) { 
   ​int​ old_x = (​int​) ​bead​.​pos​[​0​]; 
   ​int​ old_y = (​int​) ​bead​.​pos​[​1​]; 
 

   // zero_out velocity direction that can't move 

   ​if​ (​is_wall​(old_x + (​bead​.​vel​[​0​] > ​0​ ? ​1​ : -​1​), old_y)) { 
       ​bead​.​pos​[​0​] = ​floor​(​bead​.​pos​[​0​]); 
       ​bead​.​vel​[​0​] = ​0​; 
   } 

   ​if​ (​is_wall​(old_x, old_y + (​bead​.​vel​[​1​] > ​0​ ? ​1​ : -​1​))) { 
       ​bead​.​pos​[​0​] = ​floor​(​bead​.​pos​[​0​]); 
       ​bead​.​vel​[​1​] = ​0​; 
   } 

 

   // choose direction for bead to move 

   ​int​ direction = ​bead​.​vel​[​0​] == ​0​;​ // 0 if vel[0] is non-zero, 1 if vel[0] is 0 
   // if both directions are free, choose direction with more acceleration 

   ​if​ (​bead​.​vel​[​0​] != ​0​ && ​bead​.​vel​[​1​] != ​0​) { 
       ​if​ (​bead​.​mode​) {​ // HARD mode 
           direction = ​abs​(​bead​.​vel​[​0​]) < ​abs​(​bead​.​vel​[​1​]);​ // 0 if x is larger, 1 if y is 
larger 

       } 

       ​else​ {​ // EASY mode 
           direction = ​abs​(​bead​.​accel_base​[​0​]-x_accel) < ​abs​(​bead​.​accel_base​[​1​]-y_accel); 
       } 

  

       ​bead​.​vel​[!direction] = ​0​; 
   } 

   ​if​ (​bead​.​vel​[​0​] == ​0​ && ​bead​.​vel​[​1​] == ​0​) { 
       ​return​; 
   } 

 

   ​float​ t = ​1.0​/SAMPLE_FREQ; 
   ​float​ old_pos = ​bead​.​pos​[direction]; 
   ​float​ new_pos = ​bead​.​pos​[direction] + (​bead​.​vel​[direction] * t) / CELL_DISTANCE; 
  

   // loop to make bead stop before wall 

   // assumes that we start at a non_wall position 

   ​for​ ( 
           ​int​ i = old_pos; 
           (​bead​.​vel​[direction] > ​0​ && i < new_pos) || (​bead​.​vel​[direction] < ​0​ && i >= (​int​) 
new_pos); 

           i += (​bead​.​vel​[direction] > ​0​ ? ​1​ : -​1​) 
       ) { 

       // if we reach a wall, then stop at previous position 

       ​if​ ( 
           (direction == ​0​ && ​is_wall​(i, (​int​) ​bead​.​pos​[​1​])) || 
           (direction == ​1​ && ​is_wall​((​int​) ​bead​.​pos​[​0​], i)) 
       ) { 

           ​bead​.​pos​[direction] = (​float​) i + (old_pos < new_pos ? -​1.0​ : ​1.0​); 

 



 
 
           bead​.​vel​[direction] = ​0​; 
           ​return​; 
       } 

   } 

 

   // if no wall is crossed, simply update position to new_pos 

   ​bead​.​pos​[direction] = new_pos; 
} 

 

#endif​ // BEAD_H  

 



 
 

Appendix B: FPGA SystemVerilog 

fpga.sv 
module​ ​testbench​(); 
   logic​ clk, reset; 
   ​/** LED Matrix I/O **/ 
   logic​ latch, blank, R0, G0, B0, R1, G1, B1, A0, A1, A2, A3, matrix_shift_clk; 
 

   ​fpga​ ​dut​(clk, reset, latch, blank, 
           R0, G0, B0, R1, G1, B1, A0, A1, A2, A3, 

           matrix_shift_clk); 

 

   ​// initialize test 
   ​initial 
       ​begin 
       reset <= ​1​; # ​22​; reset <= ​0​; 
       ​end 
   ​// generate clock to sequence tests 
   ​always 
       ​begin 
           clk <= ​1​; # ​5​; clk <= ​0​; # ​5​; 
       ​end 
  

endmodule 

 

///////////////////////////////////////////// 

// fpga 

//   top level module for the fpga size of the maze game 

// 

///////////////////////////////////////////// 

 

module​ ​fpga​(​input​  ​logic​ clk, reset, 
           ​/** SPI I/O **/ 
           ​input​  ​logic​ ce, 
           ​input​  ​logic​ sck, 
           ​input​  ​logic​ sdi, 
           ​output​ ​logic​ sdo, 
           ​/** LED Matrix I/O **/ 
           ​output​ ​logic​ latch, blank, 
           ​output​ ​logic​ R0, G0, B0, R1, G1, B1, ​// RGB Values 
           ​output​ ​logic​ A0, A1, A2, A3,         ​// Row Address 
           ​output​ ​logic​ matrix_shift_clk);            ​// Shift Register Clock 
 

   ​// Busses for expanding display module output 
   logic​ [​2​:​0​]        RGB0, RGB1; ​// Two pixel values 
   logic​ [​3​:​0​]        A; ​// The Address 
 

   ​// Busses for outputting memory to display module 
   logic​ [​31​:​0​] row0, row1; 
   logic​ [​15​:​0​] bead; 
 

   ​// Busses for updating memory 
   logic​ [​31​:​0​] data, wd; 
   logic​ [​5​:​0​]  addr, wa; 
   logic​        we; 
   logic​ [​3​:​0​]  count_down; 
 

   ​// SPI I/O 
   ​spi​ ​io​(ce, sck, sdi, sdo, addr, data); 
 

   ​// Update RAM with maze and update bead location 
   ​update_mem_control​ ​mem_control​(clk, reset, ce, addr, data, wa, wd, we); 
 

 



 
 
   ​// Memory Module 
   ​mem​ ​m​(clk, reset, 
         we, wa, wd, 

         A + ​1​, 
         row0, row1, bead, 

         count_down); 

 

   ​// Matrix Flashing Module 
   ​matrix​ ​display​(clk, reset, 
                  row0, row1, 

                  count_down, 

                  bead, 

                  latch, blank, RGB0, RGB1, A, matrix_shift_clk); 

 

   ​// Output decomposition for wiring clarity 
   ​assign​ {R0, G0, B0} = RGB0; 
   ​assign​ {R1, G1, B1} = RGB1; 
   ​assign​ {A3, A2, A1, A0} = A; 
 

endmodule 

 

///////////////////////////////////////////// 

// matrix 

//   module for flashing the led matrix. 

//  

//   Flash row A and A + 16 at the same time. First shift in data then 

//   blank, latch, change address to desired address, unblank 

// 

//   Takes in the slow clock. Takes 128 cycles to shift data into 2 

//   rows of the matrix and then display the rows. As there are 32 rows 

//   to flash, this gives us a 1/16 duty cycle for the display. 

// 

//   Thus, the display is refreshed every 16 * 128 = 2048 slow clock 

//   cycles, which is a frequency about 76Hz. 

// 

///////////////////////////////////////////// 

 

module​ ​matrix​(​input​  ​logic​  clk, reset, 
             ​input​  ​logic​  [​31​:​0​] row0, row1, 
             ​input​  ​logic​  [​3​:​0​]  count_down, 
             ​input​  ​logic​  [​9​:​0​]  bead, 
             ​output​ ​logic​ latch,  blank, 
             ​output​ ​logic​  [​2​:​0​]  RGB0, RGB1, 
             ​output​ ​logic​  [​3​:​0​]  A, 
             ​output​ ​logic​  shift_clock); 
   ​typedef enum​ ​logic​[​1​:​0​] {SHIFT, UPDATE, DRIVE} ​statetype​; 
   ​statetype​ state, nextstate; 
 

   logic​ [​6​:​0​] col, nextcol; 
   logic​ slow_clock; 
   logic​ [​3​:​0​] nextA; 
 

   ​slow_clock​ ​sc​(clk, reset, slow_clock); 
 

   ​// always_ff @(negedge clk, posedge reset) begin 
   ​always_ff​ @(​negedge​ slow_clock, ​posedge​ reset) ​begin 
       ​if​ (reset) ​begin 
           state = SHIFT; 

           col = ​0​; 
           A = ​15​; 
       ​end​ ​else​ ​begin 
           state <= nextstate; 

           col <= nextcol; 

           ​if​ (col == ​36​) A <= nextA; 
           ​else​ A <= A; 

 



 
 
       ​end 
   ​end 
 

   ​// Next State logic 
   ​always_comb 
       ​case​ (state) 
           SHIFT: ​if​ (col == ​31​) nextstate = UPDATE; 
                  ​else​ nextstate = SHIFT; 
           UPDATE: ​if​ (col == ​40​) nextstate = DRIVE; 
                  ​else​ nextstate = UPDATE; 
           DRIVE: ​if​ (&col) nextstate = SHIFT; 
                  ​else​ nextstate = DRIVE; 
           ​default​: nextstate = SHIFT; 
       ​endcase 
 

   ​// always increment col / counter 
   ​always_comb 
       ​if​ (reset) nextcol = ​1​; 
       ​else​ nextcol = col + ​1​; 
 

   ​assign​ nextA = A + ​1​; 
 

   ​assign​ RGB0 = {state == SHIFT && bead[​9​:​5​] == nextA && bead[​4​:​0​] == col && count_down < ​3​, 
                  state == SHIFT && bead[​9​:​5​] == nextA && bead[​4​:​0​] == col && count_down >= 
3​, 
                  state == SHIFT && row0[​31​ - col]}; 
   ​assign​ RGB1 = {state == SHIFT && bead[​9​:​5​] == nextA + ​16​ && bead[​4​:​0​] == col && count_down 
< ​3​, 
                  state == SHIFT && bead[​9​:​5​] == nextA + ​16​ && bead[​4​:​0​] == col && count_down 
>= ​3​,, 
                  state == SHIFT && row1[​31​ - col]}; 
 

   ​assign​ blank = (state == UPDATE); 
   ​assign​ latch = (state == UPDATE && col > ​32​ && col < ​36​); 
   ​// assign shift_clock = (state == SHIFT && clk); 
   ​assign​ shift_clock = (state == SHIFT && slow_clock); 
 

endmodule 

 

///////////////////////////////////////////// 

// slow_clock 

//   Slows down the clock for the LED matrix display 

//   logic. FPGA original frequency is 40MHz. This slows 

//   it down by a factor of 128 to 156.25kHz. 

// 

///////////////////////////////////////////// 

module​ ​slow_clock​(​input​  ​logic​ clk, reset, 
                 ​output​ ​logic​ slow_clock); 
   logic​ [​32​-​1​:​0​] q, nextq; 
   ​always_ff​ @(​posedge​ clk) 
       ​if​ (reset) q <= ​0​; 
       ​else​ q <= nextq; 
   ​assign​ nextq = q + ​1​; 
   ​assign​ slow_clock = (q[​7​] == ​1​); 
endmodule 

 

 

///////////////////////////////////////////// 

// mem 

//   Memory module that stores the latest wall pixel 

//   positions of the maze and the bead position 

//   in the maze. 

//  

//   32 words for the maze state    (0x00 - 0x0F) 

//   1 word for the bead state      (0x20) 

 



 
 
//   unused                         (0x21 - 0xFF) 

// 

///////////////////////////////////////////// 

module​ ​mem​( 
          ​input​  ​logic​        clk, reset, 
          ​input​  ​logic​        we, ​// write enable 
          ​input​  ​logic​ [​5​:​0​]  wa, ​// write address 
          ​input​  ​logic​ [​31​:​0​] wd, ​// write data 
          ​input​  ​logic​ [​5​:​0​]  ad, 
          ​output​ ​logic​ [​31​:​0​] row0, 
          ​output​ ​logic​ [​31​:​0​] row1, 
          ​output​ ​logic​ [​9​:​0​]  bead, 
          ​output​ ​logic​ [​3​:​0​]  count_down); 
 

   logic​ [​31​:​0​] MAZE[​33​:​0​]; ​// last address is the bead (only uses the 10 LSBs, 5 for row and 
5 for col) 

 

   ​initial 
     ​$readmemb​(​"startup_screen.dat"​, MAZE); 
 

   ​// { unused bits, ROW, COLUMN } NOTE: both start from 0! 
   ​// assign bead = {6'b000000, 5'b10001, 5'b00001}; // initialize bead at starting position 
 

   ​assign​ row0 = MAZE[ad[​3​:​0​]]; ​// maze address space limited to 0x00-0x1F 
   ​assign​ row1 = MAZE[ad[​3​:​0​] + ​16​]; 
   ​assign​ bead = MAZE[​32​][​9​:​0​]; 
   ​assign​ count_down = MAZE[​33​][​3​:​0​]; 
 

   ​always_ff​ @(​posedge​ clk) 
       ​if​ (we) MAZE[wa] <= wd; 
endmodule 

 

 

 

///////////////////////////////////////////// 

// spi 

//   SPI interface.  Copied from lab 7. 

//   Only 40 bits are received at a time: 

//      2 unused bits + 6 address bits + 32 bits for data 

// 

///////////////////////////////////////////// 

module​ ​spi​(​input​  ​logic​ ce, 
          ​input​  ​logic​ sck, 
          ​input​  ​logic​ sdi, 
          ​output​ ​logic​ sdo, 
          ​output​ ​logic​ [​5​:​0​] addr, 
          ​output​ ​logic​ [​31​:​0​] data); 
  

   ​// 38 bits in shift register: 6 for address, 32 for data 
   ​always_ff​ @(​posedge​ sck) 
       ​if​ (ce)        {addr, data} = {addr[​4​:​0​], data, sdi}; 
  

   ​// fpga slave only reads/ram is written to (sdo not connected to anything on board) 
   ​assign​ sdo = ​1'b0​; 
endmodule 

 

///////////////////////////////////////////// 

// update_mem_control 

//   Module for determining how memory is updated from spi 

//   data. Pretty simple logic here for now. In previous versions 

//   this was much more complicated. 

// 

///////////////////////////////////////////// 

module​ ​update_mem_control​(​input​  ​logic​          clk, 
                          ​input​  ​logic​          reset, 

 



 
 
                          ​input​  ​logic​          ce, 
                          ​input​  ​logic​ [​5​:​0​]    addr, 
                          ​input​  ​logic​ [​31​:​0​]   data, 
                          ​output​ ​logic​ [​5​:​0​]    wa, 
                          ​output​ ​logic​ [​31​:​0​]   wd, 
                          ​output​ ​logic​          we); 
 

   logic​ wasce; ​// used to find when ce first goes low 
  

   ​always_ff​ @(​posedge​ clk, ​posedge​ reset) ​begin 
       ​if​ (reset) ​begin 
           wasce <= ​1'b0​; 
       ​end​ ​else​ ​begin 
           wasce <= ce; 

       ​end 
   ​end 
  

   ​assign​ we = (wasce & ~ce); ​// write when ce goes low 
   ​assign​ wa = addr; 
   ​assign​ wd = data; 
endmodule 
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