

Gravity Game

MicroPs Final Project Report
December 13, 2019

E155

Francisco Muñoz and Nico Naar

Abstract

Mobile games like Gravity Guy and Ninjump have fallen by the wayside, and this project
prototypes a potential replacement consisting of two capacitive touch sensors, two circuits
to interpret the touch signals, a microcontroller, an FPGA, and an 8x16 LED matrix display.
The user taps the touch sensors to bounce a player LED back and forth across the display to
dodge falling obstacles. The microcontroller detects if the sensors are touched, generates
game data using a random selection from a set of obstacle groups, and speeds up the game
as the player progresses. The level data is sent over SPI to the FPGA, which uses
time-multiplexing to drive the 128 pixels on the display.

Introduction

This Gravity Game project aims to emulate popular mobile games like Gravity Guy and

Ninjump by recreating their gameplay and offering a new way to experience the game. The

game is played on an 8x16 LED dot matrix [1], with the player LED dodging falling

obstacles using two capacitive touch sensors to control its position. The microcontroller, an

Atmel ATSAM4S4B [2], reads the capacitive sensor data, generates the game data, and

sends this information to the FPGA, a Cyclone IV EP4CE6E22C8N [3]. The FPGA drives the

LED display using this information and sends back the player location to the

microcontroller to determine if the player has collided with an obstacle. Figure 1, the

system block diagram, depicts all the modules and their connections.

Figure 1. System Block Diagram showing SAM and FPGA modules and hardware.

F

2

New Hardware

This section documents the implementation of the capacitive touch sensors. The team used

milled copper clad pads as the sensors and used a 555 timer for the sensing circuit, which

outputs a square wave with a frequency that changes when the sensor is touched. The

circuit is shown in Figure 2. The circuit design is from the LM555 datasheet [4]. The system

implementation of the sensors is shown in Figure 3.

Figure 2. LM555 configuration for capacitive touch sensing.

Key features of the design shown above are C2, the capacitive touch sensor, and the

potentiometers R1 and R2. R1 controls the duty cycle of the square wave, and R2 controls

the time constant, and consequently the frequency. The team experimentally tuned the

circuits to have approximately a 50% duty cycle and 500 kHz frequency when unpressed.

Future teams should also note that moving the capacitive sensor farther from the circuit

will result in more copper wire, which will change the frequency of the unpressed wave -

any measuring systems should be tuned to accommodate this behavior.

3

Schematics

This section shows and discusses the circuitry used in the project.

Figure 3. Capacitive touch sensing circuits and connectivity to the ATSAM.

Figure 3 shows the diagram for the capacitive touch sensors. The team built two sensors

following the design discussed in the New Hardware section.

4

Figure 4. LED display driving circuits and connectivity to the FPGA.

Figure 4 shows the LED display driving circuits, which was set up to drive the 16-pin

package according to the LED matrix datasheet [1], with the internal matrix circuitry

shown in Figure 5. A key feature of this circuit is the use of PNP transistors [5] which gives

a constant current to any illuminated LEDs, creating a consistent brightness across the

screen. The resistor values connected to the base and collector were selected to drive the

5

transistor in saturation. Also note that the column-driving pins are shorted to each

other—a design choice elaborated on below in the FPGA Design section.

Figure 5. LED matrix internal schematic.

Figure 6 shows the circuitry between the ATSAM and FPGA, which consists of seven wires.

Three of these wires are used to send the level data from the ATSAM to the FPGA over

SPI—note that chip select is unused given that the FPGA is the only slave. Two wires

carrying the cap_1 and cap_2 signals are used to transfer the signal from the touch sensors,

with a pressed sensor giving a signal of 1 and an untouched sensor giving a signal of 0. Two

wires carrying the signals player_right and player_left are used to are used to transmit the

player location from the FPGA to the ATSAM to determine if a collision occurred.

6

Figure 6. Connections between the ATSAM and FPGA.

Microcontroller Design

The ATSAM is tasked with measuring the capacitive touch inputs and handling the game

interactions—level generation and collision detection, as well as sending the game data

over SPI. The software routines implemented are:

Capacitive Touch Interpretation. The Timer Counter peripheral calculates the frequencies of

the touch sensor circuits. This routine uses the square wave outputs from each touch

sensor circuit to increment counters within the TC peripheral, then calculate their

frequencies using a direct frequency counting method [6]. Comparing this value to an

experimentally determined threshold, the routine determines if a sensor has been pressed,

and sets outputs appropriately.

7

Level Shifting and Pseudo-Random Selection. The game data is stored as character arrays,

which are sent over SPI on every time the level needs to be shifted down a row. Every 16

times the display is shifted down (after a full screen has passed), the routine takes a seed

from the TC value to randomly select the next obstacle from a premade set, ensuring that

each game instance is different and possible to win.

Difficulty Increasing and Level Incrementation. The game increases the difficulty over time

by speeding up the refresh rate of the screen as the player progresses, giving the player a

shorter window to react. After successfully passing a predetermined number of obstacles,

the game increases the “Level” of the game, with a premade “Level Up” frame shown before

the corresponding speed increase. If the player successfully beats Levels 0 - 3, they are

shown a victory screen!

Game Data Transmission over SPI. Using the SPI framework from E155 Lab 7, this routine

sends a full frame of level data, 128 bits, for the FPGA to display. Combined with the

level-shifting routine, the obstacles move smoothly down the display one row at a time at

the speed specified by the player’s progress in the game.

Collision Detection and Game Over Screen. On every screen refresh, this routine determines

if the player has collided with an obstacle by performing boolean algebra on the bottom

row of the game data and the player’s location. If the player and an obstacle are at the same

location, then the routine sends a static image to the FPGA to be displayed until the player

resets the game to try again.

FPGA Design

The FPGA intakes the game data over SPI and drives the LED display accordingly. It also

determines the player location and sends this information to the ATSAM for collision

detection.

8

http://pages.hmc.edu/harris/class/e155/lab7.pdf

Player Row Control. To incorporate the capacitive touch signals from the ATSAM, the FPGA

has a series of flip-flops to intake the touch signal and change the player location

appropriately. This allows for the player LED to stay on the same side if there is no touch

signal, and to ignore overlapping presses (pressing the left while the right is already

pressed).

Player Location Tracking. The ATSAM utilizes the player location to determine collisions. To

communicate the location of the player, the FPGA communicates with the ATSAM

whenever the player jumps from one side of the screen to the other. This is done in the

form of the signals player_right and player_left, shown in Figure 6, which give a signal of 1 if

the player is on the right or left side, respectively, and 0 if the player is on the other side.

Time-Multiplexed LED Driver. As seen in the LED matrix schematic shown in Figure 5, each

row is driven by a single anode and each column is driven by a cathode. Thus to be able to

independently control each LED, time-multiplexing is required. The FPGA therefore

time-multiplexes using an FSM with has eight main states that it cycles through to drive

each column, and sets the appropriate row values. The state transition diagram is shown

below in Figure 7, and its outputs are shown in Table 1.

Figure 7. Column-multiplexing FSM state transition diagram.

Note that this FSM has a straightforward transition diagram, as the complexity in the

design comes from the integration with SPI and the process of assigning values to the rows,

shown below in Table 1.

9

 Outputs

State cols[7:0] rows[15:0]

s0 [1111_1111] [0000_0000_0000_0000]

s1 [0000_0001] [~bits[63], ~bits[55], ~bits[47], ~bits[39], ~bits[31], ~bits[23], ~bits[15],

~bits[7], ~bits[127], ~bits[119],

~bits[111],~bits[103],~bits[95],~bits[87],~bits[79],~bits[71]]

s2 [0000_0010] [~bits[62],~bits[54],~bits[46],~bits[38],~bits[30],~bits[22],~bits[14],

~bits[6], ~bits[126],

~bits[118],~bits[110],~bits[102],~bits[94],~bits[86],~bits[78],~bits[70]]

s3 [0000_0100] [~bits[61],~bits[53],~bits[45],~bits[37],~bits[29],~bits[21],~bits[13],

~bits[5], ~bits[125],

~bits[117],~bits[109],~bits[101],~bits[93],~bits[85],~bits[77],~bits[69]]

s4 [0000_1000] [~bits[60],~bits[52],~bits[44],~bits[36],~bits[28],~bits[20],~bits[12],

~bits[4],~bits[124],

~bits[116],~bits[108],~bits[100],~bits[92],~bits[84],~bits[76],~bits[68]]

s5 [0001_0000] [~bits[59],~bits[51],~bits[43],~bits[35],~bits[27],~bits[19],~bits[11],

~bits[3],~bits[123],

~bits[115],~bits[107],~bits[99],~bits[91],~bits[83],~bits[75],~bits[67]]

s6 [0010_0000] [~bits[58],~bits[50],~bits[42],~bits[34],~bits[26],~bits[18],~bits[10],

~bits[2], ~bits[122],

~bits[114],~bits[106],~bits[98],~bits[90],~bits[82],~bits[74],~bits[66]]

s7 [0100_0000] [~bits[57],~bits[49],~bits[41],~bits[33],~bits[25],~bits[17],~bits[9],

~bits[1],~bits[121],

~bits[113],~bits[105],~bits[97],~bits[89],~bits[81],~bits[73],~bits[65]]

s8 [1000_0000] [~bits[56],~bits[48],~bits[40],~bits[32],~bits[24],~bits[16],~bits[8],

~bits[0],~bits[120],

~bits[112],~bits[104],~bits[96],~bits[88],~bits[80],~bits[72],~bits[64]]

Table 1. Column-multiplexing FSM output table.

While the above outputs are admittedly an eyesore, the rows follow a straightforward

pattern of ~bits[n+8], where “n” is an integer from 0-7, as the indexes wrap around after

each 8 bits, representing a full row. The values in rows[7:0] and rows [15:8] are also

10

swapped from the expected indexing—this was implemented to address an issue where

obstacles would update halfway down the screen, rather than at the top of the display.

Results

Overall, the project was successful because the team met all of our prescribed tasks and

design goals. The team also implemented a better user interface for the system, creating a

handheld system for the LED display and the capacitive sensors, shown in Appendix C. The

riskiest part entering the project the capacitive touch sensors, as the team would be

creating our own sensor which could be as involved as the team let it. However, our initial

idea of an analog sensor changed from Prof. Harris’ suggestion of a 555 timer circuit, which

let us implement a familiar peripheral in the Timer Counter. This was the only deviation

from our initial proposal, which proposed using an ADC and analog circuitry to measure

capacitance. This sensor scheme made the capacitive sensors reliable and configurable, as

the sensor signal was consistent in its behavior, and potentiometers allowed the team to

tune the output frequency and duty cycle of the 555 timer.

The most challenging part of the design was the level generation system, as our

implementation of SPI necessitated that the system use pointers to change the level data

arrays, rather than simply changing which arrays were being sent, which would have been

more straightforward. The team also encountered issues with the indexing, as at first the

obstacles refreshed halfway down the screen rather than at the top of the display. The

resulting fix can be seen in the bit swizzling in Table 1.

In the future, the team would likely change our implementation of SPI to avoid

synchronicity issues. Rather than sending levels to the FPGA throughout the gameplay, the

ATSAM could generate the entire game at once, send the level data over to the FPGA

through a series of SPI transactions, and then cycle through the level data on the FPGA.

11

Additionally, there were several features that users at demo day recommended that would

improve the overall design. They are presented in the following list:

● System Improvements:

○ Reset button on handheld system. The final product of our system was a

handheld system, as shown in Appendix C. The team used the ATSAM reset

button on the board to start a new game, which was effective but required

prior knowledge. Having a clearly labeled reset button on the handheld

system would improve the user experience.

● Functional Improvements:

○ Score Counter. Though the current game allowed for players to measure their

progress by beating levels, player quickly became competitive and wanted to

compare their exact progress to prior runs and other players. Adding an

obstacle counter as a “score” and a display to show the current and max

scores could thus add to the competition and enjoyment of the game.

○ Scrolling Player. One of the most common comments was that the player

jumping (or rather, teleporting) faster than the level changes was awkwardly

timed and difficult to get used to, causing some players to become frustrated

(and at times, mildly addicted to the game). Having the player slide across

the screen one LED at a time would add an additional factor of timing into the

gameplay, and potentially make the gameplay more aligned with players’

past experience.

12

References

[1] Luckylight 8×8 Hyper Red Dot Matrix LED Displays,
http://pages.hmc.edu/harris/class/e85/ledmatrix.pdf
[2] Atmel ATSAM4S Family Datasheet,
http://pages.hmc.edu/harris/class/e155/ATSAM4S_Family_Datasheet.pdf

- SPI Peripheral, pp. 686-718
- Timer Counter Peripheral, pp. 851-904

[3] Altera Cyclone IV Device Handbook,
http://pages.hmc.edu/harris/class/e155/cyclone4-handbook.pdf
[4] Texas Instruments LM555 Timer, http://www.ti.com/lit/ds/symlink/lm555.pdf
[5] Small Signal PNP Transistor, http://pages.hmc.edu/harris/class/e155/2N3906.pdf
[6] Frequency Counter Methods,
https://www.best-microcontroller-projects.com/article-frequency-counter.html

Parts List

Part Source Vendor Part # Price

Microcontroller E155 ATSAM4S4B —

FPGA E155 Cyclone IV
EP4CE6E22C8N

—

8x8 LED Matrix E85 KWM-20882CVB —

PNP Transistor E85 2N3906 —

Copper clad Clinic Maker Space — —

Wood stock Machine Shop (scrap
wood)

— —

555 Timer Stockroom LM555 —

10kΩ Potentiometer Stockroom — —

39.4 in. Jumper Wires EDGELEC (Amazon) B07GD17ZF3 $21.88

Table 2. Parts used in the Gravity Game project.

13

http://pages.hmc.edu/harris/class/e85/ledmatrix.pdf
http://pages.hmc.edu/harris/class/e155/ATSAM4S_Family_Datasheet.pdf
http://pages.hmc.edu/harris/class/e155/cyclone4-handbook.pdf
http://www.ti.com/lit/ds/symlink/lm555.pdf
http://pages.hmc.edu/harris/class/e155/2N3906.pdf
https://www.best-microcontroller-projects.com/article-frequency-counter.html

Appendices

Appendix A: C Code (for ATSAM)

// final_project_fm_nn.c

// Francisco Munoz, Nico Naar

// fmunoz@hmc.edu, nnaar@hmc.edu 13 December 2019

/*

Gravity game implemented on 8x16 LED matrix,

using two cap touch sensors to play game

*/

//

// #includes

//

#include <stdio.h>

#include "SAM4S4B_pmc.h"
#include "SAM4S4B.h"
#include <stdlib.h> //for random function
#include <time.h>

//

// Constants

//

//SPI

#define LOAD_PIN 29
#define DONE_PIN 30

// Touch Sensor 1 = TC0, CH1 (second sensor)

#define clock_id_1 5 // 5 = XC0 = TCLK0 = PA4
#define freq_threshold_1 500000 // touch sensitivity - > higher = more sensitive
#define TCLK0 PIO_PA4 // use TCLK0 for TC0CH1 direct clock -> output of
 // cap touch

#define goodpin_1 PIO_PA8 // reads high/low when touched/ not touched
#define badpin_1 PIO_PA9 // reads low/high when touched/ not touched
#define delay_dur 1000 // delay in us

// Touch Sensor 2 = TC0, CH2 (first sensor)

#define clock_id_2 6 // 6 = XC1 = TCLK1 = PA28
#define freq_threshold_2 500000 // touch sensitivity - > higher = more sensitive

14

#define TCLK1 PIO_PA28 // use TCLK1 for TC0CH2 direct clock -> output
 // of cap touch

#define goodpin_2 PIO_PA17 // reads high/low when touched/ not touched
#define badpin_2 PIO_PA18 // reads low/high when touched/ not touched

// Collision

#define coll_pin_right PIO_PA16 //PA16 on umudd board
#define coll_pin_left PIO_PA15 //PA_15 on umudd board

//Interrupt

#define inter_loc_right PIO_PA10 //pin 20

//

// Frame Definitions

//

char frame_display[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

};

char intro_number_3[16] = {

0x00, 0x00, 0x00, 0x00,
0x00, 0x3C, 0x04, 0x04,
0x3C, 0x04, 0x04, 0x3C,
0x00, 0x00, 0x00, 0x00

};

char intro_number_2[16] = {

0x00, 0x00, 0x00, 0x00,
0x3C, 0x20, 0x20, 0x3C,
0x04, 0x04, 0x3C, 0x00,
0x00, 0x00, 0x00, 0x00

};

char intro_number_1[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x3C, 0x08, 0x08,
0x08, 0x08, 0x28, 0x18,
0x00, 0x00, 0x00, 0x00

};

char intro_number_0[16] ={

15

0x00, 0x00, 0x00, 0x00,
0x00, 0x3C, 0x24, 0x24,
0x24, 0x24, 0x24, 0x3C,
0x00, 0x00, 0x00, 0x00

};

char obs[16] = {
0x80, 0xC0, 0xE0, 0xF0,
0x00, 0x00, 0x00, 0x00,
0x01, 0x03, 0x07, 0x0F,
0x1F, 0x00, 0x00, 0x00,

};

// Obstacles

char body_level[192] = {

// Triangles 1

0x00, 0x80, 0xC0, 0xE0,
0xF0, 0x00, 0x00, 0x00,
0x00, 0x01, 0x03, 0x07,
0x0F, 0x1F, 0x00, 0x00,

// Triangles 2

0x00, 0x00, 0x00, 0x80,
0xC0, 0xE0, 0xF0, 0x00,
0x00, 0x00, 0x00, 0x01,
0x03, 0x07, 0x0F, 0x1F,

// Triangles 3

0x00, 0x00, 0x80, 0xC0,
0xE0, 0xF0, 0x00, 0x00,

0x00, 0x01, 0x03, 0x07,
0x0F, 0x1F, 0x00, 0x00,

// Flat 1

0x00, 0x00, 0xF0, 0xF0,
0xFC, 0xFC, 0x00, 0x00,
0x00, 0x0F, 0x0F, 0x3F,
0x3F, 0x00, 0x00, 0x00,

// Flat 2

0x00, 0xF0, 0xF0, 0xFC,
0xFC, 0x00, 0x00, 0x00,
0x00, 0x0F, 0x0F, 0x3F,
0x3F, 0x00, 0x00, 0x00,

// Flat 3

16

0x00, 0x00, 0x00, 0xF0,
0xF0, 0xFC, 0xFC, 0x00,

0x00, 0x00, 0x0F, 0x0F,
0x3F, 0x3F, 0x00, 0x00,

// Cross 1

0x00, 0x00, 0x90, 0xF8,
0x90, 0x00, 0x00, 0x00,
0x00, 0x00, 0x09, 0x1F,
0x09, 0x00, 0x00, 0x00,

// Cross 2

0x00, 0x00, 0x00, 0x90, 0xF8,
0x90, 0x00, 0x00, 0x00,
0x00, 0x00, 0x09, 0x1F,
0x09, 0x00, 0x00,

// Cross 3

0x00, 0x00, 0x90, 0xF8,
0x90, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x09, 0x1F,
0x09, 0x00, 0x00,

// Longer Triangles 1

0x00, 0x00, 0x80, 0xE0,
0xF8, 0x00, 0x00, 0x00,
0x01, 0x07, 0x1F, 0x00,
0x00, 0x00, 0x00, 0x00,

// Longer Triangles 2

0x00, 0x00, 0x00, 0x80,
0xE0, 0xF8, 0x00, 0x00,
0x00, 0x00, 0x01, 0x07,
0x1F, 0x00, 0x00, 0x00,

// Longer Triangles 3

0x00, 0x00, 0x00, 0x80,
0xE0, 0xF8, 0x00, 0x00,
0x00, 0x00, 0x01, 0x07,
0x1F, 0x00, 0x00, 0x00,

};

// Game Over Screen

char game_over[16] = {

17

0x00, 0x00, 0x3C, 0x24,
0x2C, 0x20, 0x3C, 0x00,
0x00, 0x3C, 0x24, 0x2C,
0x20, 0x3C, 0x00, 0x00

};

// Level 0 Screen

char level_0[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x6E, 0x4A, 0x4A,
0x4A, 0x4E, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

};

// Level 1 Screen

char level_1[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x6E, 0x44, 0x44,
0x4C, 0x44, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

};

// Level 2 Screen

char level_2[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x6E, 0x48, 0x4E,
0x42, 0x4E, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

};

// Level 3 Screen

char level_3[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x6E, 0x42, 0x4E,
0x42, 0x4E, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

};

// GG Intro Screen

char gg_intro[16] = {
0x00, 0x00, 0x3C, 0x24,
0x2C, 0x20, 0x3C, 0x00,
0x00, 0x3C, 0x24, 0x2C,

18

0x20, 0x3C, 0x00, 0x00
};

// 'by' Intro Screen

char by_credits[16] = {
0x00, 0x00, 0x3C, 0x24,
0x3C, 0x20, 0x20, 0x00,
0x00, 0x3C, 0x04, 0x04,
0x3C, 0x24, 0x00, 0x00

};

// '&' Intro Screen

char and_credits[16] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x10, 0x38, 0x20,
0x30, 0x20, 0x38, 0x10,
0x00, 0x00, 0x00, 0x00

};

// 'fm' Intro Screen

char fm_credits[16] = {
0x00, 0x00, 0x20, 0x20,
0x3C, 0x20, 0x3C, 0x00,
0x00, 0x24, 0x24, 0x24,
0x3C, 0x24, 0x00, 0x00

};

// 'nn' Intro Screen

char nn_credits[16] = {
0x00, 0x00, 0x24, 0x2C,
0x3C, 0x34, 0x24, 0x00,
0x00, 0x24, 0x2C, 0x3C,

0x34, 0x24, 0x00, 0x00
};

// 'WP' Victory Screen!

char well_played[16] = {
0x00, 0x00, 0x40, 0x40,
0x7E, 0x42, 0x7E, 0x00,
0x00, 0x66, 0x5A, 0x42,
0x42, 0x42, 0x00, 0x00

};

//

// Function Prototypes

19

//

void send_level(char*, char*, char*);

void refresh_level(int, char*, char*);

void send_level_test(char*, char*);

void move_level(char*);

//

// Main

//

int main(void) {

 char returned_SPI[16];
int refresh = 0;
int total_count = 0;
int num_shifts = 0;
int level_numb = 0;
int speed = 24; // starting refresh rate

int ran_num;

 samInit();

 pioInit();

 spiInit(MCK_FREQ/244000, 0, 1);
 // "clock divide" = master clock frequency / desired baud rate
 // the phase for the SPI clock is 1 and the polarity is 0

// TC Setup

tcInit();

tcDelayInit(); // set up TC0 as delay unit
tcChannelInit(TC_CH1_ID,clock_id_1,0);
tcChannelInit(TC_CH2_ID,clock_id_2,0);

// I/O Setup

// Touch Sensor 1

pioPinMode(TCLK0,PIO_PERIPH_B); // set XC0 pin for TC
pioPinMode(goodpin_1,PIO_OUTPUT); // set output 1 high
pioPinMode(badpin_1,PIO_OUTPUT); // set output 1 low

// Touch Sensor 2

pioPinMode(TCLK1,PIO_PERIPH_B); // set XC1 pin for TC
pioPinMode(goodpin_2,PIO_OUTPUT); // set output 2 high
pioPinMode(badpin_2,PIO_OUTPUT); // set output 2 low

20

// SPI Load and done pins

 pioPinMode(LOAD_PIN, PIO_OUTPUT);

 pioPinMode(DONE_PIN, PIO_INPUT);

//

// Main Loop

//

while(1){

// Display Powering

if(refresh == speed)

{

// every time we want to refresh the screen, send the level to

the FPGA

// over SPI and add the next frame

// Start with title frame, follow with credit frames

if(level_numb == 0){
send_level (frame_display, gg_intro, returned_SPI);

refresh_level(num_shifts, frame_display, gg_intro);

}

else if(level_numb == 1){
send_level (frame_display, by_credits, returned_SPI);

refresh_level(num_shifts, frame_display, by_credits);

}

else if(level_numb == 2){
send_level (frame_display, fm_credits, returned_SPI);

refresh_level(num_shifts, frame_display, fm_credits);

}

else if(level_numb == 3){
send_level (frame_display, and_credits, returned_SPI);

refresh_level(num_shifts, frame_display, and_credits);

}

else if(level_numb == 4){
send_level (frame_display, nn_credits, returned_SPI);

refresh_level(num_shifts, frame_display, nn_credits);

}

// After credits, display Level 0 frame

else if(level_numb == 5){
send_level (frame_display, level_0, returned_SPI);

refresh_level(num_shifts, frame_display, level_0);

}

// After 10 levels, display Level 1 frame

else if(level_numb == 15){
send_level (frame_display, level_1, returned_SPI);

refresh_level(num_shifts, frame_display, level_1);

}

21

// After 20 levels, display Level 2 frame

else if(level_numb == 25){
send_level (frame_display, level_2, returned_SPI);

refresh_level(num_shifts, frame_display, level_2);

}

// After 30 levels, display Level 3 frame

else if(level_numb == 35){
send_level (frame_display, level_3, returned_SPI);

refresh_level(num_shifts, frame_display, level_3);

}

// After 38 levels, display victory frame!

else if(level_numb == 43){
send_level (well_played, well_played, returned_SPI);

while(1);
}

// Otherwise use randomly selected frame

else {

send_level(frame_display, obs, returned_SPI);

refresh_level(num_shifts, frame_display, obs);

total_count++;

}

refresh = 0; // Reset display refresh count
num_shifts++; // Increment overall screen counter

// Difficulty Incrementation

if(total_count == 8) speed = 49; //
Level 0

else if (total_count == 145) speed = 32; // Level 1
else if (total_count == 290) speed = 24; // Level 2
else if (total_count == 430) speed = 19; // Level 3

// Obstacle selection and Level Incrementation

// if display has fully moved over previous frame, enter if

statement:

if(num_shifts == 16)
{

num_shifts = 0;
level_numb++;

int x_obs;

// If the player hasn't advanced a level, randomly select

the next obstacle

if(level_numb > 4) {
srand(TC0->TC_CH[1].TC_CV);

22

ran_num = rand()%12; //random number between 0 to
(moded number-1)

for(x_obs = 0; x_obs <16; x_obs++){
obs[x_obs] = body_level[x_obs +

ran_num*16];
} }

}

}

// Collision Detection

int collision_right = pioDigitalRead(coll_pin_right) &

frame_display[0] & 1<<0x00; // Check player on right side
int collision_left = pioDigitalRead(coll_pin_left) &

frame_display[7] & 1<<0x00; // Check player on left side

if(collision_left|collision_right){

// Game over if player has collided on either side

while(1){
send_level(game_over, game_over, returned_SPI); //

reset to exit game over

}

}

refresh++; // Add to refresh counter

//

// Touch Sensor 1

//

tcResetChannel(TC_CH1_ID);

// reset to begin

tcDelayMicroseconds(delay_dur); // delay for 1000 us = 1 ms

float counter_value_1 = TC0->TC_CH[1].TC_CV; // read counter value

after 1 ms

float time_dur_inv_1 = 1000000 / delay_dur; // scale by 10e6 to put in
1 / seconds

float freq_1 = counter_value_1 * time_dur_inv_1; // signal frequency =
counter value * (1/time_dur)

// If pressed, set output high

if (freq_1 < freq_threshold_1) {

pioDigitalWrite(goodpin_1, 1);
pioDigitalWrite(badpin_1, 0);

}

// If not, set output low

else {

23

pioDigitalWrite(badpin_1, 1);
pioDigitalWrite(goodpin_1, 0);

}

//

// Touch Sensor 2

//

tcResetChannel(TC_CH2_ID);

// reset to begin

tcDelayMicroseconds(delay_dur); // delay for 1000 us = 1 ms

float counter_value_2 = TC0->TC_CH[2].TC_CV; // read counter value
after 1 ms

float time_dur_inv_2 = 1000000 / delay_dur; // scale by 10e6 to put in
1 / seconds

float freq_2 = counter_value_2 * time_dur_inv_2; // signal frequency =
counter value * (1/time_dur)

// If pressed, set output high

if (freq_2 < freq_threshold_2) {

pioDigitalWrite(goodpin_2, 1);
pioDigitalWrite(badpin_2, 0);

}

// If not, set output low

else {

pioDigitalWrite(badpin_2, 1);
pioDigitalWrite(goodpin_2, 0);

}

}

}

//

// Functions

//

void send_level(char *first_level, char *second_level, char *cyphertext) {

 int i;

 pioDigitalWrite(LOAD_PIN, 1);

 for(i = 0; i < 16; i++) {
 spiSendReceive(second_level[i]);

 }

 for(i = 0; i < 16; i++) {
 spiSendReceive(first_level[i]);

24

 }

 pioDigitalWrite(LOAD_PIN, 0);

 while (!pioDigitalRead(DONE_PIN));

 for(i = 0; i < 16; i++) {
 cyphertext[i] = spiSendReceive(0);
 }

}

void refresh_level(int index, char *level, char *new_level) {

// write function to move level down one by 1

move_level(level);

move_level(new_level);

level[15] = new_level[15];
}

void move_level(char *level) {

// write function to move level down one by 1

int m;

char hold;

hold = level[0];
for(m = 0; m<15; m++){

level[m] = level[m+1];
}

level[15] = hold;
}

25

Appendix B: SystemVerilog Code for the Cyclone IV FPGA

// FPGA_final_project

// Francisco Munoz fmunoz@g.hmc.edu

// Nico Naar nnaar@g.hmc.edu

// 13 December 2019

module FPGA_final_project(
 input logic clk,
 input logic cap1,
 input logic cap2,

 input logic sck,
 input logic sdi,
 output logic sdo,
 input logic load,
 output logic done,

 output logic [15:0]rows,
 output logic [7:0]cols,
 output logic player_right,
 output logic player_left);

 logic [127:0] level_1_1, level_1_2, return_txt;
 logic rst;

 //create slow clk
 logic [24:0]counter;
 logic slw_clk;
 logic [7:0]cols_inv;

 assign rst = 0;

 //counter
 always_ff @(posedge clk)

counter <= counter + 25'b1;

always_ff @(posedge clk)
done <=~load & (counter[15:10]==0);

 assign slw_clk = counter[15];//[24];
 //matrix_multiplex mm(slw_clk, rows, cols, test_port);
 spi spi1(sck, sdi, sdo, done, level_1_1, level_1_2, return_txt);

 game g0(slw_clk, rst, level_1_2, return_txt, cap1, cap2, rows, cols_inv,

player_right);

 assign player_left = ~player_right;

26

 assign cols = ~cols_inv; //invert for transistors
endmodule

module game(
input logic clk,
input logic rst,
input logic [127:0]level_1_2,
input logic [127:0]return_txt,
input logic cap1,
input logic cap2,
output logic [15:0]rows,
output logic [7:0]cols,
output logic player_right);

logic [15:0] rows_player;
logic [15:0] rows_level;
logic [7:0] cols_player;
logic [7:0] cols_level;
logic test_port;
logic next_player_right;

// shifting variables to hold player info

logic [15:0] rows_player_old;
logic [7:0] cols_player_old;

// flop to shift over player info

always_ff @(posedge clk)
begin

if(cap1|cap2)
begin

rows_player_old <= rows_player;

cols_player_old <= cols_player;

end

else

begin

rows_player_old <= rows_player_old;

cols_player_old <= cols_player_old;

end

player_right <= next_player_right;

end

// Player Row Control

always_comb

begin

if(~cap1&~cap2)
begin

27

cols_player <= cols_player_old;

rows_player <= rows_player_old;

next_player_right <= player_right;

end

else if (cap2&~cap1)
begin

cols_player <= 8'b1000_0000; //on == high
rows_player <= 16'b1111_1111_0111_1111; // on low
next_player_right<= 1;

end

else if (~cap2&cap1)
begin

cols_player <= 8'b0000_0001; //1 = on
rows_player <= 16'b1111_1111_0111_1111; // 0 = on
next_player_right<= 0;

end

else

begin

cols_player <= cols_player_old;

rows_player <= rows_player_old;

next_player_right <= player_right;

end

end

matrix_multiplex mm(clk, level_1_2, rows_level, cols_level, test_port);

//flop to place the player dot

always_ff @(posedge clk)
if (cols_level == cols_player)

begin

rows <= rows_level&rows_player; //& because rows should
be low if either is low (to turn LED on

cols <= cols_level;

end

else

begin

rows <= rows_level;

cols <= cols_level;

end

endmodule

module matrix_multiplex(input logic clk,
input logic [127:0] bits,
//input logic reset,

output logic [15:0] rows,

28

output logic [7:0] cols,
output logic test_port);

logic l2p_load;
assign test_port = clk;

FSM_multiplex fsm01(clk,l2p_load, bits, rows, cols);

endmodule

module FSM_multiplex(input logic clk,
//input logic reset,

input logic l2p_load,
input logic [127:0] bits,
output logic [15:0] rows,
output logic [7:0] cols);

typedef enum logic [5:0] {s0,s1,s2,s3,s4,s5,s6,s7,s8} statetype;

statetype state, ns;

// state register

always_ff@(posedge clk)
state <= ns;

always_comb

case(state)
s0:

begin

cols = 8'b0000_0001;
rows = 16'b1111_1111_1111_0000;
ns = s1;

end

s1:

begin

cols = 8'b0000_0001;
rows = { ~bits[63], ~bits[55], ~bits[47],

~bits[39], ~bits[31], ~bits[23], ~bits[15], ~bits[7], ~bits[127], ~bits[119],
~bits[111],~bits[103],~bits[95],~bits[87],~bits[79],~bits[71]};

ns = s2;

end

s2:

begin

cols = 8'b0000_0010;
rows =

29

{~bits[62],~bits[54],~bits[46],~bits[38],~bits[30],~bits[22],~bits[14], ~bits[6],
~bits[126],
~bits[118],~bits[110],~bits[102],~bits[94],~bits[86],~bits[78],~bits[70]};

ns = s3;

end

s3:

begin

cols = 8'b0000_0100;
rows =

{~bits[61],~bits[53],~bits[45],~bits[37],~bits[29],~bits[21],~bits[13], ~bits[5],
~bits[125],
~bits[117],~bits[109],~bits[101],~bits[93],~bits[85],~bits[77],~bits[69]};

ns = s4;

end

s4:

begin

cols = 8'b0000_1000;
rows =

{~bits[60],~bits[52],~bits[44],~bits[36],~bits[28],~bits[20],~bits[12],
~bits[4],~bits[124],
~bits[116],~bits[108],~bits[100],~bits[92],~bits[84],~bits[76],~bits[68]};

ns = s5;

end

s5:

begin

cols = 8'b0001_0000;
rows =

{~bits[59],~bits[51],~bits[43],~bits[35],~bits[27],~bits[19],~bits[11],
~bits[3],~bits[123],
~bits[115],~bits[107],~bits[99],~bits[91],~bits[83],~bits[75],~bits[67]};

ns = s6;

end

s6:

begin

cols = 8'b00100000;
rows =

{~bits[58],~bits[50],~bits[42],~bits[34],~bits[26],~bits[18],~bits[10], ~bits[2],
~bits[122],
~bits[114],~bits[106],~bits[98],~bits[90],~bits[82],~bits[74],~bits[66]};

ns = s7;

end

s7:

begin

cols = 8'b01000000;
rows =

{~bits[57],~bits[49],~bits[41],~bits[33],~bits[25],~bits[17],~bits[9],
~bits[1],~bits[121],

30

~bits[113],~bits[105],~bits[97],~bits[89],~bits[81],~bits[73],~bits[65]};
ns = s8;

end

s8:

begin

cols = 8'b10000000;
rows =

{~bits[56],~bits[48],~bits[40],~bits[32],~bits[24],~bits[16],~bits[8],
~bits[0],~bits[120],
~bits[112],~bits[104],~bits[96],~bits[88],~bits[80],~bits[72],~bits[64]};

ns = s1;

end

default:
begin

cols = 8'b11111111;
rows = 8'b00000000;
ns = s0;

end

endcase

endmodule

///

// spi

// SPI interface. Shifts in level_1_1 and level_1_2

// Can later configure to send out return_txt if needed

///

module spi(input logic sck,
 input logic sdi,
 output logic sdo,
 input logic done,
 output logic [127:0] level_1_1, level_1_2,
 input logic [127:0] return_txt);

 logic sdodelayed, wasdone;
 logic [127:0] return_txtcaptured;

 // assert load
 // apply 256 sclks to shift in level_1_1 and level_1_2, starting with
level_1_2[0]

 // then deassert load, wait until done
 // then apply 128 sclks to shift out return_txt, starting with return_txt[0]
 always_ff @(posedge sck)
 if (!wasdone) {return_txtcaptured, level_1_2, level_1_1} = {return_txt,
level_1_2[126:0], level_1_1, sdi};

31

 else {return_txtcaptured, level_1_2, level_1_1} =
{return_txtcaptured[126:0], level_1_2, level_1_1, sdi};

 // sdo should change on the negative edge of sck
 always_ff @(negedge sck) begin
 wasdone = done;

 sdodelayed = return_txtcaptured[126];
 end

 // when done is first asserted, shift out msb before clock edge
 assign sdo = (done & !wasdone) ? return_txt[127] : sdodelayed;
endmodule

32

Appendix C: Pictures of final system

Complete System

* Note that the camera shutter speed is fast enough that the image is not clear, but to

human eyes this clearly reads “G G”

33

Breadboard 1/2

34

Breadboard 2/2

35

Appendix D: Capacitive Sensor Circuit Outputs

a. Unpressed 555 timer output, f = 454kHz,

stable when unpressed for several seconds.

Note that the frequency can vary between

400 to 600 kHz depending on the

capacitance of each individual touch pad.

b. Pressed 555 timer output, f = 84.6kHz

(and continued decreasing while held)

36

