LED Rubik’s Cube

Final Project Report
December 11, 2019
E155

Josephine King and Aaron Trujillo

Abstract:

The Rubik’s Cube is a fun and educational toy that can teach people of all ages valuable skills
of spatial visualization, concentration, and problem solving. This project prototypes a digital
Rubik’s Cube, which could be enhanced to add entertaining and educational features that
traditional cubes do not have. The digital cube is composed of six LED matrices, and receives
input from a user control panel of seven buttons and a knob. The user presses a button to
choose a face to rotate, and then rotates in the desired direction by twisting the knob. The user
input is read by a microcontroller, which processes the rotation to obtain the new color
orientation. Then, the orientation is sent over SPI to an FPGA, which drives all six LED matrices
through one output pin.

1 Introduction

The Rubik’s Cube was invented in 1974 and today remains one of the world’s most popular
toys. Its value reaches beyond entertainment and into education; the Rubik’s Cube helps users
across all age groups with “VSI (Visual-Spatial Intelligence), [strategy development],
memorization and logistics, concentration, and persistence in problem solving” [1]. However,
as entertainment becomes increasingly digitized, how can the Rubik’s Cube, with all of its
educational value, continue to stay relevant?

For our final project, we made a digital Rubik’s Cube out of LED arrays. While our cube’s
functionality is very similar to the traditional Rubik’s Cube, further implementations could add
fun features, such as Internet of Things, competitions, timers, hints, and other teaching
features. We think that these features could improve the appeal of the Rubik’s Cube for a new
generation of users who are accustomed to digital forms of entertainment.

face selection
buttons

reset

OO O < button
Q. O
0 © =&

Figure 1: Diagram of LED Rubik’s cube and user control panel.

Unlike the original Rubik’s Cube, the LED Rubik’s Cube does not use mechanical rotations.
Instead, the user manipulates the LED cube with an array of seven buttons and a knob. The
user begins by pressing the reset button, which scrambles the cube if it is solved, and solves it
if it is scrambled. Then, the user selects a face using one of six colored buttons, where each
color corresponds to the center square of a face. Lastly, they rotate the selected face either
clockwise or counterclockwise by twisting the knob.

The cube is comprised of six 8-by-8 LED matrices and a user control panel, which has seven
buttons and a rotary encoder for the knob (Figure 1). The user input is read by an ATSAM4S4B
microcontroller. Based on this input, the microcontroller performs the rotation and determines
the new color configuration of the cube. This color configuration is sent over SPI to a Cyclone

IV FPGA, which drives all six LED matrices with one pin. A block diagram of the system is
shown in Figure 2.

5V 33V High-Level 33V 3.3V
System Block
Diagram

— [8bys |« Button 1 (red face)
RGB LED D <
matrix 1 OUT1

Button 2 (orange face

D
Bbys |2
RGB LED

matrix 2

Button 3 (yellow face)

DQUTZ X
SPI

|| Dys CE
Bby8 |e
RGE LED SOk ‘Button 5 (blue face)

D
matrix 3 ouTs
D Altera Cyclone |_ " ATSAM4S4B | Button 6 (white face)| User Control

| 8bys T IV FPGA Microcontroller Panel

RGB LED D Button 7 (reset)
matrix 4 ouT4 <

Button 4 (green face)

— DIN5
8by8

RGBLED |D
matrix 5

Rotary encoder
ouTs 7

2

— I:}ING
8by8 [€
RGB LED DOUT6

matrix 6 = GND GND GND

Figure 2: High-level block diagram of system.

2 New Hardware:

For this project, we used two pieces of hardware which we had not used before in E155: a
rotary encoder and an 8-by-8 RGB LED matrix.

2.1 Rotary Encoder

We used the Keyes KY-040 rotary encoder. This piece of hardware is a rotary input device that
can determine both degree and direction of rotation. The device has two powered switches
that come into contact with a gear-shaped, rotating, grounded plate. The direction of rotation
is determined by examining the phase changes of these two switches to see which one goes
high or low first. Illustrations of the switch design and phase changes are shown in Figures 3
and 4.

CW Rotation |::>
_ CCW Rotation

| |
AtoC [. | Open
Switch ! : ! Clozad
| | |
I |
|

I
] |

BtoC rll "‘—ll ‘ rl]—|: Open

Switch I Closed

Figure 3: Illustration showing the internal and Figure 4: The direction of rotation can
external design of the rotary encoder, with output be determined from the phase shift
pins A and B, and rotating node C. [2] between pins A and B. [2]

The rotary encoder that we chose (KY-040) is well-documented, with many tutorials on the
internet for use with microcontrollers [2][3]. However, we found that the implementations
demonstrated in these tutorials had to be modified for our purposes. The rotary encoder uses
haptic feedback (clicks) so that the user can rotate the knob with more ease and precision.
Specifically, the KY-040 rotary encoder clicks into place when both output pins are low. This
means that each click causes the output pins to change value twice. However, most of the
tutorial implementations that we found only look at one change in value of the output pins.
Thus, we had to adjust these implementations so that our rotary encoder’s haptic feedback
would actually be helpful for the user. This implementation is explained in more detail in
Section 4.1.

2.2 LED Matrix:

To make the cube, we used six 8-by-8 RGB WS2812B LED arrays from Kuman. These LED
matrices came with power, ground, DIN, and DOUT pins on them, and with soldered male and
female headers that could be used to connect multiple matrices in series (Figure 5). Adjacent
LEDs are connected together with shift registers according to the zig-zag green path shown in
Figure 5. Because values are shifted in and out of the LEDs, each LED is individually
addressable, and all 64 LEDs in a matrix can be controlled with the DIN pin.

Each LED is controlled by 24 bits of color data, with 8 bits each for green, red, and blue light.
The bits are encoded in the pattern shown in Figure 6. A 0 is encoded by a short high pulse and
a long low pulse, while a 1 is encoded by a long high pulse and a short low pulse. All of these
pulses are less than a microsecond, and their specific values are shown in the WS2812B
datasheet [4]. The LEDs are reset to be written to a new configuration with a low pulse of at

least 50 ps. In our SystemVerilog (Appendix A), the module make_data_stream translates 24
bits of color data into the correct datastream to interface with the LEDs.

TOL
0 code [« b B
TOH
l EI!I-
¥:H:H 1 code |« Ber TILD
: R R T1H
u_uu_u_unu_n
0:0:0:0:0:0:0:8 Treset
00000000 RET code |«

SRR IS

Figure 5: Kuman’s 8-by-8 WS2812B LED matrix. Figure 6: The encodings for 0, 1, and reset
The LEDs are connected with shift registers for WS2812B LEDs. [4]
according to the zig-zag green path. [5]

3 Schematics

Figure 7 shows the schematic of our entire system, which is built on the E155 protoboard with
a uMudd board. The three major subsystems—LED Rubik’s Cube, user control panel, and
SPI—are outlined by dotted boxes. The microcontroller IO pins need 3.3V, while the LED
matrices need 5V, so the LED cube and user control panel are powered with different sources.
The 1 mF bypass capacitor between 5V and ground ensures that the current through the LEDs
does not increase too quickly and damage them when the power is turned on. All of the SPI
wiring is internal to the uMudd board.

4 Microcontroller Design

Our microcontroller has three main functions: read user inputs, execute cube rotation logic,
and send cube orientation to the FPGA using SPI.

4.1 Reading User Input

The user input is represented in our C code by an array of two bytes. The first byte indicates
the user’s button press, which can be a value between 0 and 7. Values of 0-5 indicate that the
user has pressed one of the face-selection buttons. A value of 6 indicates that the user has
pressed the reset button, and a value of 7 indicates that the user has not pressed a button
since resetting the cube. The second byte indicates the user’s direction of rotation, and can be

a value of 0, 1, or 3. A value of O indicates a clockwise rotation and 1 indicates a
counterclockwise rotation. A value of 3 indicates that the user has not yet rotated the knob
since the last rotation.

" 5V
LED Rubik’s Cube
sl R NTEE L
- 5V [TwatAnz : P50 (datastream)
T o - [oo, Altera
DIN I HoouT gup| : . P71 (load) : Cyclane
oot : | :r : P114 (sck :
: __r | MATRIX 1 : TmE {SC.] : IV FPGA
E EUL][] MATRIX 4 j‘-‘_’ . = : P113 {Sdl} :
: ooutl Jom : :
-r MATRIX 3 DCiLIT j- :
EVL MATRIX 6 BN j\i SPI PA13 (MOSI)
. : PA14 (SPCK)
oI DouT . .
iy warrixs |1 : PA29 (LOAD_PIN)
33V CLK : PA18 (pInCW)
DT - PA17 (pinCCW)
KY-040 sw — :
+ - VCC33
GND T . GND
RED
o PA19 (RED_FACE) ATSAM4S4B
ORANGE % Microcontroller
. PA20 (ORANGE_FACE)
YELLOW % 10k
—_— -
PA21 (YELLOW_FACE)
% 10k
GREEN
PA22 (GREEN_FACE)
BLUE f 10k
PA23 (BLUE_FACE)
WHITE % 10k
. PA24 (WHITE_FACE)
f 10k
RESET
f PA25 (RESET_BUTTON)
10k

User Control Panel

oo

Figure 7: Schematic of entire system on breadboard.

The function read_user_input() reads the seven button presses from the user using the
pioDigitalRead() function inthe PIO peripheral. The user must select a face before the rotary
encoder’s input is read and used to perform rotations. In order to scramble the cube to a
different random orientation each time, a counter is incremented while the reset button is
pressed. The number of the counter is then used as a random seed for the random number
generation in the scramble_cube() function.

After the user presses a button, the microcontroller waits for either another button press or a
rotation of the rotary encoder. Another button press simply overwrites the previous button
press. A rotation of the rotary encoder is read in two phases, as one “click” of a rotation
actually corresponds to two changes in value of the rotary encoder output pins. If the last two
changes in value of the rotary encoder pins correspond to a clockwise rotation, then the
rotation value is set to 0. Similarly, if the last two changes correspond to a counterclockwise
rotation, then the rotation value is set to 1. If the last two changes correspond to a clockwise
and a counterclockwise rotation, then the user has changed rotation directions, and the most
recent value is used to determine the rotation direction. After reading the rotary encoder and
rotating the cube’s orientation, the variables that store the most recent values read by the
rotary encoder are reset to 3 to indicate that the knob has not yet been rotated.

4.2 Rotations

In order to perform rotations, it is necessary to encode the cube’s orientation, which is the
color and location of each square. There are six faces with nine squares each, so to represent
the cube we use an array of 54 bytes. The values in the array represent the square colors, with
0 for red, 1 for orange, and so on. The indices in the array represent the locations of the square
on the cube. Each square belongs to a face, where each face is labelled according to its central
square color, with 0 for white, 1 for blue, and so on. The center square color remains constant
throughout the game. The square’s location is also defined by its position on the face. The
square location numbers and their orientations on the cube are shown in Figure 8. The
location of the square is translated to an index in the array by the equation:

index = 9 x (face value) + square value

Thus, the first 9 bytes of the array represent squares 0-8 on the white face, the next 9 bytes
represent squares 0-8 on the blue face, and so on.

The rotate_cube() function takes in the two-byte user input array and the current 54-byte
color orientation of the cube. To determine the new color orientation, we use a series of 12 if
statements for the 12 possible moves that the user can perform. Inside these if statements,
the cube is rotated through a series of translations from the old orientation to the new
orientation. When the scramble_cube() function is called, the cube begins in a solved
orientation and is scrambled through a series of random rotations. This method ensures that
the resulting scrambled cube is solvable.

—
D1{g:q—square
color ==}
31415 face
6|78 l
[———— |
0| 19 2 112lofl1]2]]0o]1]2
| |
314|513 13|4]5[[3[4]5
6718 8|\l6]7 Hel7]s
| —Tr |
ofl1]2
3|45
6718

Figure 8: Representation of Rubik’s cube used for rotations.

4.3 SPI

To send the color orientation from the microcontroller to the FPGA, we use SPI, where the
microcontroller is the master and the FPGA is the slave. We encountered signal integrity issues
with SPI when we sent the entire 54-byte array. Thus, instead of sending the 54-byte
orientation, we condensed the orientation to 21 bytes by representing each color as 3 bits
instead of an entire byte. The function shift_orientation() performs this compression. Then,
the send_orientation() function uses the spiSendReceive() function in the SPI peripheral to
send the 21-byte array to the FPGA one byte at a time.

5 FPGA Design

Our top-level SystemVerilog module has three inputs: load, sdi, sck, and clk. The former three
are inputs for SPI communication, while the latter is the 40 MHz clock from the oscillator on
the uMudd board. The only output of the top-level module is datastream, which is the input
signal to the DIN pin of the Rubik’s Cube. Our top-level module contains two high-level
modules: rubiks_spi and rubiks_core. The module rubiks_spi reads in the SDI/MOSI value
sent by the microcontroller and shifts it one bit at a time into a 162-bit bus, orientation. The
cube’s entire orientation can be represented with 162 bits, as there are 6 faces, 9 squares per
face, and 3 bits per color, which results in 162 total bits.

Our other high level module, rubiks_core, takes in orientation as an input. This module
breaks up orientation into six separate faces of 27 bits each, and sends one face at a time to
the cube. Rubiks_core contains two submodules, make_squares and make_data_stream. The

module make_squares takes in a 27-bit face orientation and has row and column state
machines which are incremented to follow the zig-zag order of the LEDs shown in Figure 5.
Then, according to the row and column of the state machines, the color of the next LED to write
is determined with combinational logic and the helper modules convert_orientation and
colormux. Together, these two modules translate a face of 3-bit color encodings into 24-bit
color encodings, and allow a 24-bit color encoding to be accessed according to its 0-8 location
value described in Section 4.2. This 24-bit color is output from make_squares and input to
make_data_stream, which translates these 24 bits into a single-bit datastream with the
encoding shown in Figure 6. Figure 9 shows a block diagram of the rubiks_core module.

3
) face_count

RUBIKS_CORE
clk _I count -
%7 nextstate logic
done
3 face_count switch_face
+ |
clk
1 r en clk
2| 2 1
reset switch_face \/
make_squares\/
: i . face_reset
ou:lenlaflon[26.0] e nextstate state control logic = reset
orientation[53:27] —< resetsb switchcolor
r
ientation[80:54
orientation[]7— reset | color

orientation[107:81] -4~ 27
~ orientation

orientation[134:108] -

orientation[161:135] —£

0 (default) —4| _— 9 data °
z clk
clk make_data_stream \/
%7 data done
9 reset datastream |—— datastream
1 r_en

T 1 count

reset | resetsb
switch_face

Figure 9: Block diagram of rubiks_core module.

6 Results

We successfully implemented a fully-functional LED Rubik’s Cube that is controlled by a user
control panel with seven buttons and a rotary encoder. Our microcontroller correctly rotates
the cube orientation according to the user input and sends this orientation to the FPGA over
SPI. The FPGA then drives all six LED matrices with one output pin.

There were three main challenges that we faced as we implemented this design. As mentioned
in Section 4.3, we experienced problems with signal integrity when we sent 54 bytes over SPI.
To fix this, we wrote a method in our microcontroller code that condensed the 54-byte

orientation down to 21 bytes, as we were using only 3 bits in each byte. Another challenge was

driving all six LED arrays using the data sent over SPI. For a while, we were able to light up the
arrays using a value hard-coded into our SystemVerilog. But, once we started using SPI, the
entire orientation was off by a single cycle. We used ModelSim to try to debug this issue, and
ultimately found that we needed to be updating the current face that was being illuminated a
clock cycle earlier than we were. The final big challenge that we faced was aligning the haptic
feedback of the rotary encoder with discrete cube rotations, as explained in Sections 2.1 and
4.1.

We met all of the deliverables outlined in our proposal, with a few minor exceptions. We were
initially concerned about power consumption, and decided to replace the white face with a
purple face for this reason. However, at our desired brightness, the cube only used about 0.5 A
of current, so we switched back to the traditional Rubik’s Cube colors. Another difference is
that we used just one wire to drive all six faces, rather than one wire per face. We chose this
implementation because although it is slightly slower to write all six faces with one wire, it also
uses less hardware and fewer wires. We decided that a single input wire to the cube was
ultimately more elegant and user-friendly, and the latency to write to the cube was negligible
either way. These two changes from our proposal were minor and ultimately improved our
cube beyond what we had initially outlined.

Figure 10: Our finished LED Rubik’s Cube and user control panel.

We are happy with our final prototype, which is shown in Figure 10. Many people who used the
cube were confused at first by the user interface, but understood it after a brief explanation.
Even people who have experience solving Rubik’s Cubes struggled to solve the LED cube, as
they could not make use of muscle memory and were required to think about the cube in a new

way. One user said that these features helped him understand his moves, rather than just rely
on muscle memory. This user was able to solve the cube in about 30 minutes on the first try,
and 10 minutes on the second try. Another advantage of our cube over a traditional cube is the
self-scrambling feature.

In the future, we would like to add a solve feature which shows each step to solve the cube.
We would also like to add flashing faces to show the user which face is currently selected.

7 References

[1] Kiss, Sandor. “Educational Challenges of Rubik's Cube.” 2014. X Presented at Workshop on
Particle Correlations and Femtoscopy (WPCF 2014), Gyongyos, Hungary.
https://arxiv.org/abs/1505.00750.

[2] Henry’s Bench. “KEYES KY-040 ARDUINO ROTARY ENCODER USER MANUAL.” 2015.
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-ar
duino-rotary-encoder-user-manual/.

[3] How To Mechatronics. “How Rotary Encoder Works and How To Use It with Arduino.”
Youtube, 2016. https://www.youtube.com/watch?v=v4BbSzJ-hz4.

[4] Worldsemi. “WS2812B Intelligent Control LED Light Source.”
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf.

[5] Kuman. “Kuman for Arduino 8x8 RGB LED Flexible WS2812B 5050 Matrix Dream Color
Individually Addressable LED Programmable Pixel Display Screen led Panel WS01.” Amazon.
https://www.amazon.com/Kuman-Flexible-Individually-Addressable-Programmable/dp/B01M
CUODS8N.

8 Parts List

Table 1 shows the parts that we bought to create the project. In addition to these parts, we
used standard pushbuttons, resistors, and capacitors found in the digital lab. To create the
boxes for the user control panel and Rubik’s Cube, we laser cut %” acrylic and assembled
them with epoxy and tape.

Table 1: Parts list

Part Quantity Source Vendor Part # Total Price
8 by 8 LED 6 Kuman WS2812B 8*8 LED $101.94
Matrix Matrix panel
Rotary Encoder 1 Keyes KY-040 $8.99
127 x12” x ¥8” 2 Falken Design WT2447 $20.98
White Acrylic

https://arxiv.org/abs/1505.00750
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/
https://www.youtube.com/watch?v=v4BbSzJ-hz4
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://www.amazon.com/Kuman-Flexible-Individually-Addressable-Programmable/dp/B01MCUOD8N
https://www.amazon.com/Kuman-Flexible-Individually-Addressable-Programmable/dp/B01MCUOD8N

9 Appendices
Appendix A: SystemVerilog

/*

Aaron Trujillo & Pinky King
11 .

Fall 2019

*/

// top level module, contains spi and core modules
module send_bytes(input logic clk,

input logic sck,

input logic sdi,

input logic load,

output logic datastream);

logic [161:0] orientation;

logic reset;

rubiks_spi spi(sck, clk, sdi, load, reset, orientation);
rubiks_core core(clk, reset, orientation, datastream);

endmodule

// SPI module used to retrieve the current cube orientation from the MC and return
// a DONE signal to the MC once the display has been illuminated
module rubiks_spi(input logic sck,

input logic clk,

input logic sdi,

input logic load,

output logic reset,

output logic [161:0] orientation);

logic [7:0] counter;
logic [161:0] value;
// assert load
// apply 162 sclks to shift orientation starting with orientation[0]
always_ff @(posedge sck)
if (!load) begin
counter <= 0;
end
else if (load & counter != 8'd162) begin
{value} = {value[160:0], sdi};
counter = counter+1;

end

// assert a reset signal once the orientation is loaded in
level_to_pulse rst(clk, (counter == 8'd162), reset);
assign orientation = value[161:0];

mailto:atrujillo@g.hmc.edu

endmodule

// programs a rubiks face with colors given by orientation

module rubiks_core(input 1logic clk, reset,

input 1logic [162:0] orientation,

output logic datastream);

typedef enum logic [2:0] {switching, sending, new_face, load, over} statetype;

statetype state, nextstate;

logic resetsb, done, face_reset;

logic [26:0] current_face_orientation, blank_face;

logic [23:0] data;
logic [8:0] count;

logic [2:0] face_count;

// register for finite state machine and counter

always_ff @(posedge clk)

if (reset) begin

state <= switching;

count <= 0;

face_count <= 0;

end

else if (nextstate == new_face) begin

face_count <= face_count + 1;

state <= nextstate;

count <= 0;

end

else if (state == switching) count <= count+1;

else state <= nextstate;

// next state logic for finite state machine

// sending: waits for make_data_stream to send 24 bits

// switching: updates data to be a new 24 color bits

// over and finish: show that this face is done writing so

always_comb
case (state)

switching: nextstate = sending;

sending: if

(count == 9'd65)

else if (done)

else
new_face: if
else
over:
default:

endcase

(face_count == 3'b110)

nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate

that we can write the next one

new_face;
switching;
sending;
over;
switching;
over;
over;

// chooses which face to be making a datastream for
always_comb
case (face_count)

3'b000: current_face_orientation = orientation[26:01;
3'b001: current_face_orientation = orientation[53:271];
3'b010: current_face_orientation = orientation[80:54];
3'b011: current_face_orientation = orientation[107:81];
3'b100: current_face_orientation = orientation[134:1087;
3'b101: current_face_orientation = orientation[161:135];
default: current_face_orientation = 27'b0;
endcase

// control logic
assign resetsb = (nextstate == new_face) | (state == switching);
assign face_reset = (state == new_face) | reset;

// get the 24-bit color data from make squares
makesquares ms(clk, face_reset, resetsb, current_face_orientation, data);

// make the datastream based on the 24 bits of color data
make_data_stream mds(clk, resetsb, reset, data, datastream, done);

endmodule

// outputs colors in correct order to display squares for rubiks cube
module makesquares(input logic clk, reset, switchcolor,

input 1logic [26:0] orientation,

output logic [23:0] color);

logic [3:0] column, nextcolumn;
logic [3:0] row, nextrow;
logic switchcolumn, oddcol;

// control logic for choosing correct color
logic colorl, color2, color3, color4, color5, color6, color7, color8, color9, blank;
logic [9:0] controlcolors;

// register for updating the row and column of the current LED
always_ff @(posedge clk)
if (reset) begin
row <= 4'd9;
column <= 4'do;
end
else if (switchcolumn & switchcolor) column <= nextcolumn;
else if (switchcolor) row <= nextrow;

// two finite state machines, one switches cols, one switches rows
// goes through in a snakelike order, order in which LEDs are written
always_comb

case (column)

4'do: nextcolumn = 4'd1;

4'd1: nextcolumn = 4'd2;
4'd2: nextcolumn = 4'd3;
4'd3: nextcolumn = 4'd4;
4'd4: nextcolumn = 4'd5;
4'd5: nextcolumn = 4'd6;
4'd6: nextcolumn = 4'd7;
4'd7: nextcolumn = 4'd8;
4'd8: nextcolumn = 4'd8;
default: nextcolumn = 4'd8;
endcase

always_comb
case (row)
4'd9: nextrow = 4'd0; // buffer state to handle reset case

4'do: if (column == 4'd7) nextrow = 4'd8;
else if (oddcol) nextrow = 4'd0;
else nextrow = 4'd1;
4'd1: if (oddcol) nextrow = 4'do;
else nextrow = 4'd2;
4'd2: if (oddcol) nextrow = 4'dl;
else nextrow = 4'd3;
4'd3: if (oddcol) nextrow = 4'd2;
else nextrow = 4'd4;
4'd4: if (oddcol) nextrow = 4'd3;
else nextrow = 4'd5;
4'd5: if (oddcol) nextrow = 4'd4;
else nextrow = 4'd6;
4'd6: if (oddcol) nextrow = 4'd5;
else nextrow = 4'd7;
4'd7: if (oddcol) nextrow = 4'd6;
else nextrow = 4'd7;
4'd8: nextrow = 4'd8;
default: nextrow = 4'd8;
endcase

// control logic
assign switchcolumn = (oddcol & (row == 4'd0)) | ((~oddcol) & (row == 4'd7));
assign oddcol = (column == 4'd1)|(column == 4'd3)|(column == 4'd5)|(column == 4'd7);

// color bit logic to determine which LEDs correspond to each square

assign blank = (row == 4'd2)|(row == 4'd5)|(column== 4'd5)| (column== 4'd2);
assign colorl = ((row == 4'd0)|(row == 4'd1))&((column== 4'd0) | (column== 4'd1));
assign color2 = ((row == 4'd3)|(row == 4'd4))&((column== 4'd0) | (column== 4'd1));
assign color3 = ((row == 4'd6)|(row == 4'd7))&((column== 4'd0) | (column== 4'd1));
assign color4 = ((row == 4'd6)|(row == 4'd7))&((column== 4'd3)|(column== 4'd4));
assign color5 = ((row == 4'd3)|(row == 4'd4))&((column== 4'd3)|(column== 4'd4));
assign color6 = ((row == 4'd0)|(row == 4'd1))&((column== 4'd3)|(column== 4'd4));
assign color7 = ((row == 4'd0)|(row == 4'd1))&((column== 4'd6) | (column== 4'd7));
assign color8 = ((row == 4'd3)|(row == 4'd4))&((column== 4'd6) | (column== 4'd7));

assign color9 = ((row == 4'd6)|(row == 4'd7))&((column== 4'd6) | (column== 4'd7));

// choose the color data based on the color mux

assign controlcolors = {blank, color9, color8, color7, color6, color5, color4, color3, color2,
colorl};

colormux cm(controlcolors, orientation, color);

endmodule

// takes in 3 bits of current orientation and converts them to the
// corresponding HEX values that we need to illuminate the matrix
module convert_orientation(input logic [2:0] bit_value,

output logic [23:0] hex_value);

always_comb

casex (bit_value)
3'b000: hex_value = 24'h00bo0o; // red
3'b001: hex_value = 24'h00f060; // orange
3'b010: hex_value = 24'h0obobo; // yellow
3'b011: hex_value = 24'h0000b0; // green
3'b100: hex_value = 24'hb00000; // blue
3'b101: hex_value = 24'h909090; // white
default: hex_value = 24'h000000; // blank

endcase

endmodule

// takes in the current orientation as well as a one-hot encoding that
// allows us to illuminate the matrix properly
module colormux(input logic [9:0] colorcontrol,

input logic [26:0] orientation,

output logic [23:0] color);

logic [23:0] sqricolor, sqr2color, sqgr3color, sqr4color, sqr5color, sqr6color, sqr7color,
sqr8color, sqr9color;

// convert each necessary piece of the orientation into the proper
// HEX value for the square that the color corresponds to
convert_orientation colorl(orientation[8:6], sqricolor);
convert_orientation color2(orientation[5:3], sqr2color);
convert_orientation color3(orientation[2:0], sqr3color);
convert_orientation color4(orientation[11:9], sqr4color);
convert_orientation color5(orientation[14:12], sqr5color);
convert_orientation color6(orientation[17:15], sqr6color);
convert_orientation color7(orientation[26:24], sqr7color);
convert_orientation color8(orientation[23:21], sqr8color);
convert_orientation color9(orientation[20:18], sqr9color);

// use 1-Hot encoding to determine which square is currently being lit
always_comb

case (colorcontrol)
10'b0000000001: color = sqricolor;
10'b0000000OT10: color = sqr2color;
10'b00000RO100: color = sqr3color;
10'b0000001000: color = sqr4color;
10'b0000010000: color = sqr5color;
10'b0000100000: color = sqrécolor;
10'b0001000000: color = sqr7color;
10'b0010000000: color = sqr8color;
10'b0100000000: color = sqr9color;
default: color = 24'h000000;

endcase

endmodule

L1117 077
// Takes in 24-bit color data, outputs one bit that follows
// the pattern detailed here:
// https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
// for 1s and @s. Assumes a 40 MHz clock.
[11117171777177717777777777777777717777777777777777717717777777
module make_data_stream(input logic clk, reset, globalreset,
input logic [23:0] data,
output logic datastream, done);

// counter logic

logic [10:0] counterval;
logic [4:0] bitcounter;
logic [10:0] count;

// control logic

logic currentbit, nextbit;

logic [2:0] s;

logic reset_counter, incbitcounter;

// state type
typedef enum logic [2:0] {TOH, T1H, ToL, T1L, R} statetype;
statetype state, nextstate;

// register for main counter
always_ff @(posedge clk)
if (reset | reset_counter | globalreset) count <= 0;
else if (~done) count <= count+1;

// register for bitcounter

always_ff @(posedge clk)
if (reset | globalreset) bitcounter <= 0;
else if (reset_counter & incbitcounter & ~done) bitcounter <= bitcounter+1;

// register for FSM

always_ff @(posedge clk)
if (reset) begin
if (currentbit) state <= T1H;
else state <= TOH;
end
else state <= nextstate;

// nextstate logic
// TOH: high pulse for writing a 0
// T1H: high pulse for writing a 1
// TOL: low pulse for writing a 0
// T1L: low pulse for writing a 1
// R: reset to indicate shift
always_comb

case (state)

TOH: if (~reset_counter) nextstate = TOH;
else nextstate = TOL;
TIH: if (~reset_counter) nextstate = T1H;
else nextstate = TIL;
ToL: if (~reset_counter) nextstate = TOL;
else if (nextbit) nextstate = T1H;
else if (bitcounter == 5'd23) nextstate = R;
else nextstate = TOH;
TiL: if (~reset_counter) nextstate = TIL;
else if (nextbit) nextstate = T1H;
else if (bitcounter == 5'd23) nextstate = R;
else nextstate = TOH;
R: if (~reset_counter) nextstate = R;
else if (bitcounter == 5'd24) nextstate = R;
else if (nextbit) nextstate = T1H;
else nextstate = TOH;
default: nextstate = R;
endcase

// control signal logic
assign currentbit = datalbitcounter]; // current bit that is being written
assign nextbit = datalbitcounter+1]; // get the next bit to write

assign done = (bitcounter == 5'd24 & reset_counter); // when all 24 bits have been written, single
pulse
assign reset_counter = (count == counterval); // switch to next state, and reset counter

assign incbitcounter = (state == TOL)|(state==T1L); // when the bit counter should be updated, which
is low pulse

assign datastream = ((state == T1H)|(state == TOH))&(~reset); // data stream is high when we are in
high pulse states

assign s = {(state==R), (state==TOL)|(state==T1L), (state==T1H)|(state==T1L)}; // input to mux to
choose constants

countervalmux cntrvalmux(s, counterval); // mux chooses constants, depending on how long the pulse
should be

endmodule

// mux for choosing counter value, depending on state
module countervalmux(input logic [2:0] s,
output logic [10:0] out);

always_comb
case (s)
3'b000: out = 11'd16; // ToH
3'b001: out = 11'd32; // T1H
3'b010: out = 11'd34; // ToL
3'b011: out = 11'd18; // TIL
3'b100: out = 11'd1; // R
default: out = 11'd1; // R
endcase

endmodule

// this module is used for when a button is held for longer than
// one clock cycle
module level_to_pulse(input logic clk,

input logic load,

output logic reset);

typedef enum logic [1:0] {s0, s1, s2, s3} statetype;
statetype state, nextstate;

// state register
always_ff@(posedge clk)
state <= nextstate;

// nextstate logic
always_comb

case(state)
s0: if (load) nextstate = si;
else nextstate = s0;
s1: if (load) nextstate = s2;
else nextstate = s0;
s2: if (load) nextstate = s2;
else nextstate = s0;
default: nextstate = s0;
endcase
// output logic
assign reset = (state == s1);

Endmodule

Appendix B: Microcontroller Code

/*
Aaron Trujillo & Pinky King
11 .
E155 Final Project: LED Rubik's Cube
Fall 2019
*/

#include "SAM4S4B.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

// Rot Encoder Pins

#define pinCCW PIO_PA17 // Connected to DT on KYQ40
#define pinCW PIO_PA18 // Connected to CLK on KYQ40
// SPI Pins

#define LOAD_PIN PIO_PA29

// Button Pins

#define RED_FACE PIO_PA19

#define ORANGE_FACE PIO_PA20

#define YELLOW_FACE PIO_PA21

#define GREEN_FACE PIO_PA22

#define BLUE_FACE PIO_PA23

#define WHITE_FACE PIO_PA24

#define RESET_BUTTON PIO_PA25

#define SCRAMBLE_NUM 15

char starting_orientation[54] = {0x5, 0x5, 0x5, 0x5,
0x4, 0x4, 0x4, 0x4,
0x3, 0x3, 0x3, 0x3,
0x2, 0x2, 0x2, 0x2,
0x1, 0x1, Ox1, ox1,
0x0, 0x0, 0x0, 0x0,
char shifted[211];

1111711171117171717171711777
// function prototypes
111111171117111717171717777

// set up PIO pins for buttons and rot encoder
void user_interface_setup(void);

// reads in button presses from user

0x5,
0x4,
0x3,
0x2,
ox1,
0x0,

0x5,
0x4,
0x3,
0x2,
ox1,
0x0,

// if reset button is pressed, returns random seed depending

// on length of button press

0x5,
ox4,
0x3,
0x2,
ox1,
0x0,

0x5,
0x4,
0x3,
0x2,
ox1,
0x0,

0x5,
0x4,
0x3,
0x2,
ox1,
0x0};

int read_input(charx);

// spi communication for microcontroller
// takes in an array of bytes that are then sent over
// using spiSendRecieve and then waits for a DONE signal

void send_orientation(charx);

// these functions are used to change the orientation of the cube
void scramble_cube(char*, int);
void rotate_cube(char*, charx);

// these functions are used to determine the new orientation
// of the cube based off the rotation of the rotary encoder
void counter_clockwise_turn(char#*, char);

void clockwise_turn(char#*, char);

// these functions are used to perform the shifting necessary to

// be able to send our orientation over spi

void shift_helper(char*, int, int, int, int, int, int, int, int, int, int, int);
void final_shift_helper(charx*);

void shift_orientation(char*);

[11171111711111171111111717
// main
[1117717177711771771777777
int main(void) {

// initialize peripherals

samInit();

pioInit();

tcDelayInit();

// set up SPI and load pin
spilnit(MCK_FREQ/244000, 0, 1); // 244000
pioPinMode (LOAD_PIN, PIO_OUTPUT);

// starting orientation is solved cube
char orientation[54];
for (int i = 0; i < 54; i++) {

orientation[i] = starting_orientation[il;
}
shift_orientation(orientation);
send_orientation(shifted);

// set up variables for reading user input

int pinCWLast; // used to track the most recent rot. encoder position
int rot; // used to read a current rot position

int rand_seed;

char scramble = 1;

char user_input[2];

char rotations[2];

rotations[@] = 0x3; // initialize rotary encoder

rotations[1] = 0x3;

user_input[@] = 0x7; // a button press of 7 indicates that the user has not yet pressed a
button

int reset = 0;

// set up user interface

user_interface_setup();

// perform initial read from rot encoder

pinCWLast = pioDigitalRead(pinCW);

while (1) {

// read user input and get random seed
rand_seed = read_input(user_input);

if (user_input[@] == 0x7) { // user has never picked a face
reset = 0; // keeps track of whether cube has been reset
continue; // wait for them to choose a face

} else if (user_input[0@] == 0x6) { // user has reset cube
if (reset == 0) {

// if cube is solved, scramble

// otherwise, reset to solved cube

scramble = 1;

for (int i = 0; 1 < 54; i++) {

if (orientation[i] != starting_orientation[i]) {

scramble = 0;
break;

}
if (scramble) { // cube is solved, so scramble
scramble_cube(orientation, rand_seed);
user_input[0] = 0x7;
}
else { // cube is scrambled, so solve
for (int i = 0; i < 54; i++) orientation[i] =
starting_orientation[i];
}
shift_orientation(orientation);
send_orientation(shifted);
// indicate that cube was just reset so that it isn’t
immediately reset again
reset = 1;
}
// change out of reset command
user_input[@] = 0x7;

} else { // user has chosen a face
reset = 0;
// read the rotary encoder
rot = pioDigitalRead(pinCW);

if (rot != pinCWLast) { // rotation has occurred

if (pioDigitalRead(pinCCW) != rot) {
// a "3" indicates that the last rotation has not been read
// check that two rotations (indicated by click) have occured
if (rotations[@] !'= 0x3) rotations[1] = 0x0;
else rotations[0] = 0x0;

} else {
// check that two rotations (indicated by click) have occured
if (rotations[@] != 0x3) rotations[1] = 0x1;
else rotations[0] = 0x1;

}

// user is rotating clockwise

if ((rotations[@] == 0x0) & (rotations[1] == 0x0)) {
user_input[1] = 0x0;
rotate_cube(orientation, user_input); // ROTATE
shift_orientation(orientation);
send_orientation(shifted);
rotations[1] = 0x3; // reset rotary encoder reading
rotations[@] = 0x3;
pinCWLast = pioDigitalRead(pinCW);

}

// user is rotating counterclockwise

else if ((rotations[@] == 0x1) & (rotations[1] == 0x1)) {
user_input[1] = 0x1;
rotate_cube(orientation, user_input); // ROTATE
shift_orientation(orientation);
send_orientation(shifted);
rotations[1] = 0x3; // reset rotary encoder reading
rotations[@0] = 0x3;
pinCWLast = pioDigitalRead(pinCW);

}

// user has switched from clockwise to counterclockwise

else if ((rotations[@] == 0x0) & (rotations[1] == 0x1)) {
user_input[1] = 0x1;
rotate_cube(orientation, user_input); // ROTATE
shift_orientation(orientation);
send_orientation(shifted);
rotations[1] = 0x3; // partially rotary encoder reading
rotations[0] = 0x1;
pinCWLast = pioDigitalRead(pinCW);

}

// user has switched from counterclockwise to clockwise

else if ((rotations[@] == 0x1) & (rotations[1] == 0x0)) {
user_input[1] = 0x0;
rotate_cube(orientation, user_input); // ROTATE
shift_orientation(orientation);
send_orientation(shifted);
rotations[1] = 0x3; // partially rotary encoder reading
rotations[0] = 0x0;
pinCWLast = pioDigitalRead(pinCW);

}
pinCWLast = rot;

}
[117777111711117711111117117
// helper functions
[11117711171111111111117117

void user_interface_setup() {
// Setup Buttons
pioPinMode (RED_FACE, PIO_INPUT);
pioPinMode (ORANGE_FACE, PIO_INPUT);
pioPinMode(YELLOW_FACE, PIO_INPUT);
pioPinMode (GREEN_FACE, PIO_INPUT);
pioPinMode(BLUE_FACE, PIO_INPUT);
pioPinMode (WHITE_FACE, PIO_INPUT);
pioPinMode (RESET_BUTTON, PIO_INPUT);

// Rotary Encoder Setup
pioPinMode(pinCW, PIO_INPUT);
pioPinMode(pinCCW, PIO_INPUT);

// scrambles the cube
void scramble_cube(char* orientation, int rand_seed) {
char user_input[2];
char range = rand_seed % 10; // determines how many moves will be performed
// first, set to starting orientation so that the resulting orientation is
// actually solvable
for (int i = 0; 1 < 54; i++) {
orientation[i] = starting_orientation[i];
}
// creates a number of random moves, then performs those rotations
for (int i = @; i < SCRAMBLE_NUM + range; i++) {
// gets random moves with rand_seed

user_input[@] = rand()%6;
user_input[0] = (user_input[@]+rand_seed)%6;
user_input[1] = rand()%2;

user_input[1] = (user_input[1]+rand_seed)%2;
rotate_cube(orientation, user_input);
rand_seed = rand_seed*13;

// sends a new orientation over SPI

void send_orientation(char* current_orientation){
int i;
// assert load pin to begin SPI

pioDigitalWrite(LOAD_PIN, 1);

for (i = 0; i < 21; i++){
spiSendReceive(current_orientation[i]);

}

// deassert

pioDigitalWrite(LOAD_PIN, 0);

// give FPGA enough time to program cube

tcDelayMillis(13);

// get response from FPGA

spiSendReceive(0);

// reads the user input buttons and modifies the global array of user input
int read_input(char* user_input) {

char red, orange, yellow, green, blue, white, reset;
int rand_seed = 0;

// read buttons

red = pioDigitalRead(RED_FACE);

orange = pioDigitalRead(ORANGE_FACE);
yellow = pioDigitalRead(YELLOW_FACE);
green = pioDigitalRead(GREEN_FACE);
blue = pioDigitalRead(BLUE_FACE);
white = pioDigitalRead(WHITE_FACE);
reset = pioDigitalRead(RESET_BUTTON);
if (red) user_input[0] = 0x0;
else if (orange) wuser_input[@0] = 0x1;
else if (yellow) wuser_input[@0] = 0x2;
else if (green) user_input[@0] = 0x3;
else if (blue) user_input[0] = 0x4;
else if (white) user_input[@] = 0x5;
else if (reset) user_input[@] = 0x6;

// creates random seed depending on how long

// the reset button was pressed for

while (pioDigitalRead(RESET_BUTTON)) {
rand_seed++;

}

return rand_seed;

// rotates the cube based on the face and direction selected by user
// user_input[@] is face selection: red-orange-yellow-green-blue-white
// user_input[1] is direction: clockwise-counterclockwise
void rotate_cube(char* current_orientation, char* user_input) {
if (user_input[1] == 0) { // clockwise
clockwise_turn(current_orientation, user_input[0]);
}

else { // counter clockwise

counter_clockwise_turn(current_orientation, user_input[0]);

// takes in 54 char color orientation, and a face to rotate
// modifies the orientation to the clockwise rotated orientation
void clockwise_turn(char* current_orientation, char color){
char temp[54];
for (int i = 0; 1 < 54; i++) {
temp[i] = current_orientation[i];

// white face starts at 0

// blue face starts at 9

// green face starts at 18

// yellow face starts at 27

// orange face starts at 36

// red face starts at 45

if (color == 0x0) { // red face rotates
// fix red face
temp[45] = current_orientation[45+6];
temp[46] = current_orientation[45+3];
temp[47] = current_orientation[45];
temp[48] = current_orientation[45+7];
temp[50] = current_orientation[45+1];
temp[51] = current_orientation[45+8];
temp[52] = current_orientation[45+5];
temp[53] = current_orientation[45+2];
// fix white face
temp[0+6] = current_orientation[18+87;
temp[0+7] = current_orientation[18+57];
temp[0+8] = current_orientation[18+2];
// fix blue face
temp[9] = current_orientation[0+67;

temp[9+3] = current_orientation[0+7];
temp[9+6] = current_orientation[0+8];
// fix yellow face

temp[27] = current_orientation[9+6];
temp[27+1] = current_orientation[9+37];
temp[27+2] = current_orientation[9];
// fix green face

temp[18+2] = current_orientation[27];
temp[18+5] = current_orientation[27+1];
temp[18+8] = current_orientation[27+27;

}
else if (color == 0x1) { // orange
// fix orange face
temp[36] = current_orientation[36+6];

temp[37] = current_orientation[36+3];

temp[38] = current_orientation[361];

temp[39] = current_orientation[36+7];

3

else if

}

else if

temp[41] = current_orientation[36+1];

temp[42] = current_orientation[36+8];

temp[43] = current_orientation[36+5];
temp[44] = current_orientation[36+2];
// fix white face

temp[@] = current_orientation[9+2];
temp[1] = current_orientation[9+5];
temp[2] = current_orientation[9+87;

// fix blue face

temp[9+2] = current_orientation[27+87;
temp[9+5] = current_orientation[27+77];
temp[9+8] = current_orientation[27+67;

// fix yellow face

temp[27+6] = current_orientation[18];
temp[27+7] = current_orientation[18+3];
temp[27+8] = current_orientation[18+6];
// fix green face

temp[18+0] = current_orientation[2];
temp[18+3] = current_orientation[1];
temp[18+6] = current_orientation[0];

(color == 0x2) { // yellow

// fix yellow face

temp[27] = current_orientation[27+6];
temp[28] = current_orientation[27+3];
temp[29] = current_orientation[27];
temp[30] = current_orientation[27+7];
temp[32] = current_orientation[27+1];
temp[33] = current_orientation[27+8];
temp[34] = current_orientation[27+5];
temp[35] = current_orientation[27+2];
// fix red face

temp[45+6] = current_orientation[18+6];
temp[45+7] = current_orientation[18+7];
temp[45+8] = current_orientation[18+87;
// fix blue face

temp[9+6] = current_orientation[45+67;
temp[9+7] = current_orientation[45+77;
temp[9+8] = current_orientation[45+8];
// fix orange face

temp[36+6] = current_orientation[9+6];
temp[36+7] = current_orientation[9+7];
temp[36+8] = current_orientation[9+87;
// fix green face

temp[18+6] = current_orientation[36+61];
temp[18+7] = current_orientation[36+7];
temp[18+8] = current_orientation[36+8];

(color == 0x3) { // green
// fix green face

temp[18] = current_orientation[18+6];
temp[19] = current_orientation[18+3];
temp[20] = current_orientation[181];
temp[21] = current_orientation[18+7];
temp[23] = current_orientation[18+1];
temp[24] = current_orientation[18+8];
temp[25] = current_orientation[18+5];
temp[26] = current_orientation[18+2];
// fix yellow face

temp[27+0] = current_orientation[45+0];
temp[27+3] = current_orientation[45+37];
temp[27+6] = current_orientation[45+6];
// fix red face

temp[45+0] = current_orientation[0];

temp[45+3] = current_orientation[3];

temp[45+6] = current_orientation[6];

// fix white face

temp[@] = current_orientation[36+8];
temp[3] = current_orientation[36+5];
temp[6] = current_orientation[36+2];

// fix orange face

temp[36+2] = current_orientation[27+67];
temp[36+5] = current_orientation[27+3];

temp[36+8] = current_orientation[27+0];
}
else if (color == 0x4) { // blue
// fix blue face
temp[9] = current_orientation[9+6];
temp[10] = current_orientation[9+3];
temp[11] = current_orientation[9];
temp[12] = current_orientation[9+7];
temp[14] = current_orientation[9+1];
temp[15] = current_orientation[9+8];
temp[16] = current_orientation[9+5];
temp[17] = current_orientation[9+2];
// fix yellow face
temp[27+2] = current_orientation[36+61];
temp[27+5] = current_orientation[36+3];
temp[27+8] = current_orientation[36+0];
// fix red face
temp[45+2] = current_orientation[27+2];
temp[45+5] = current_orientation[27+5];
temp[45+8] = current_orientation[27+87;
// fix white face
temp[2] = current_orientation[45+2];
temp[5] = current_orientation[45+5];
temp[8] = current_orientation[45+8];
// fix orange face
temp[36+0] = current_orientation[8];
temp[36+3] = current_orientation[5];

temp[36+6] = current_orientation[2];

}

else if (color == 0x5) { // white
// fix white face
temp[@] = current_orientation[6];
temp[1] = current_orientation[3];
temp[2] = current_orientation[0];
temp[3] = current_orientation[7];
temp[5] = current_orientation[1];
temp[6] = current_orientation[8];
temp[7] = current_orientation[5];
temp[8] = current_orientation[2];
// fix red face
temp[45+0] = current_orientation[9+0];

temp[45+1] = current_orientation[9+1];
temp[45+2] = current_orientation[9+2];
// fix blue face

temp[9+0] = current_orientation[36+07;

temp[9+1] = current_orientation[36+11];
temp[9+2] = current_orientation[36+27;
// fix orange face

temp[36+0] = current_orientation[18+0];

temp[36+1] = current_orientation[18+1];
temp[36+2] = current_orientation[18+2];
// fix green face
temp[18+0] = current_orientation[45+07;
temp[18+1] = current_orientation[45+1];
temp[18+2] = current_orientation[45+2];
}
for (int i = 0; i < 54; i++) {
current_orientation[i] = temp[il;

// takes in 54 char color orientation, and a face to rotate
// modifies the orientation to the counterclockwise rotated orientation
void counter_clockwise_turn(char#* current_orientation, char color){
char temp[54];
for (int i = 0; 1 < 54; i++) {
temp[i] = current_orientation[i];
}
if (color == 0x0) { // red
// fix red face
temp[45] = current_orientation[45+2];
temp[46] = current_orientation[45+5];
temp[47] = current_orientation[45+8];
temp[48] = current_orientation[45+1];
temp[50] = current_orientation[45+7];
temp[51] = current_orientation[45+0];

else if

}

else if

temp[52] = ¢
temp[53] = ¢
// fix white
temp[0+6] =

temp[0+7] =
temp[0+8] =

// fix blue

temp[9] = cu
temp[9+3] =

temp[9+6] =

// fix yello
temp[27] = ¢
temp[27+1] =
temp[27+2] =
// fix green
temp[18+2] =
temp[18+5] =
temp[18+8] =

(color == 0x
// fix orang

temp[36] = ¢
temp[37] = ¢
temp[38] = ¢
temp[39] = ¢
temp[41] = ¢
temp[42] = ¢
temp[43] = ¢
temp[44] = ¢
// fix white
temp[0@] = cu
temp[1] = cu
temp[2] = cu
// fix blue

temp[9+2] =

temp[9+5] =

temp[9+8] =

// fix yello
temp[27+6] =
temp[27+7] =
temp[27+8] =
// fix green
temp[18+0] =
temp[18+3] =
temp[18+6] =
(color == 0Ox
// fix yello
temp[27] = ¢

temp[28] = ¢

urrent_orientation[45+37;
urrent_orientation[45+67;
face
current_orientation[9+01];
current_orientation[9+3];
current_orientation[9+6];
face
rrent_orientation[27+2];
current_orientation[27+11];
current_orientation[27+0];
w face
urrent_orientation[18+2];
current_orientation[18+5];
current_orientation[18+8];
face
current_orientation[87];
current_orientation[7];
current_orientation[6];

1) { // orange

e face

urrent_orientation[36+2];

urrent_orientation[36+5];
urrent_orientation[36+8];
urrent_orientation[36+11];
urrent_orientation[36+71];
urrent_orientation[36+01];
urrent_orientation[36+3];
urrent_orientation[36+6];
face
rrent_orientation[18+67;
rrent_orientation[18+3];
rrent_orientation[18+0];
face
current_orientation[0];
current_orientation[11];
current_orientation[2];

w face
current_orientation[9+8];
current_orientation[9+5];
current_orientation[9+21];
face
current_orientation[27+67;
current_orientation[27+7];
current_orientation[27+8];

2) { // yellow

w face
urrent_orientation[27+27;
urrent_orientation[27+57;

else if

temp[29] =
temp[30] =
temp[32] =
temp[33] =
temp[34] =
temp[35] =
// fix red
temp[45+6]
temp[45+7]
temp[45+8]
// fix blu
temp[9+6]

temp[9+7]

temp[9+8]

// fix ora
temp[36+6]
temp[36+7]
temp[36+8]
// fix gre
temp[18+6]
temp[18+7]
temp[18+8]

(color ==
// fix gre
temp[18] =
temp[19] =
temp[20] =
temp[21] =
temp[23] =
temp[24] =
temp[25] =
temp[26] =
// fix yel
temp[27+0]
temp[27+3]
temp[27+6]
// fix red
temp[45+0]
temp[45+3]
temp[45+6]
// fix whi
temp[0] =
temp[3] =
temp[6] =
// fix ora
temp[36+2]
temp[36+5]
temp[36+8]

current_orientation[27+8];
current_orientation[27+1];
current_orientation[27+7];
current_orientation[27+0];
current_orientation[27+3];
current_orientation[27+6];
face

= current_orientation[9+67;
= current_orientation[9+7];
= current_orientation[9+8];
e face

= current_orientation[36+67;

= current_orientation[36+71];
= current_orientation[36+87;
nge face

= current_orientation[18+67];

= current_orientation[18+77];
= current_orientation[18+87;
en face

= current_orientation[45+67];
= current_orientation[45+7];
= current_orientation[45+87;

0x3) { // green
en face
current_orientation[18+2];
current_orientation[18+5];
current_orientation[18+8];
current_orientation[18+1];
current_orientation[18+7];
current_orientation[18+0];
current_orientation[18+3];
current_orientation[18+6];
low face

= current_orientation[36+87;
= current_orientation[36+5];
= current_orientation[36+2];
face

= current_orientation[27+07;
= current_orientation[27+37];
= current_orientation[27+67;
te face
current_orientation[45+07;
current_orientation[45+3];
current_orientation[45+67];
nge face

= current_orientation[6];

= current_orientation[3];
= current_orientation[0];

else if

3

else if

(color ==

0

x4) { // blue

// fix blue face
temp[9] = current_orientation[9+2];

temp[10] =
temp[11] =
temp[12] =
temp[14] =
temp[15] =
temp[16] =
temp[17] =

current_orientation[9+5];
current_orientation[9+8];
current_orientation[9+1];
current_orientation[9+7];
current_orientation[9+0];
current_orientation[9+37];
current_orientation[9+67;

// fix yellow face

temp[27+2]
temp[27+5]
temp[27+8]
// fix red
temp[45+2]
temp[45+5]
temp[45+8]

= current_orientation[45+27;
= current_orientation[45+5];
= current_orientation[45+87;
face

= current_orientation[2];

= current_orientation[5];

= current_orientation[87;

// fix white face
temp[2] = current_orientation[36+6];

temp[5] =
temp[8] =

C
C

urrent_orientation[36+3];
urrent_orientation[36+01];

// fix orange face

temp[36+0]
temp[36+3]
temp[36+6]

= current_orientation[27+87;
= current_orientation[27+5];

= current_orientation[27+27;

(color == 0x5) { // white
// fix white face

temp[0] =
temp[1] =
temp[2] =
temp[3] =
temp[5] =
temp[6] =
temp[7] =
temp[8] =
// fix red
temp[45+0]
temp[45+1]
temp[45+2]
// fix blu
temp[9+0]
temp[9+1]
temp[9+2]

C
C
C
C
C
C
C
C

e

urrent_orientation[2];
urrent_orientation[5];
urrent_orientation[8];
urrent_orientation[11];
urrent_orientation[71];
urrent_orientation[0];
urrent_orientation[3];
urrent_orientation[6];

face

= current_orientation[18+07;

= current_orientation[18+17];

= current_orientation[18+27;
face

current_orientation[45+0];
current_orientation[45+1];
current_orientation[45+2];

// fix orange face

temp[36+0]
temp[36+1]
temp[36+2]

= current_orientation[9+07;

= current_orientation[9+11];
= current_orientation[9+2];

// fix green face

temp[18+0] = current_orientation[36+0];

temp[18+1] = current_orientation[36+1];
temp[18+2] = current_orientation[36+21];

}
for (int 1 = 0; i < 54; i++) {
current_orientation[i] = temp[il;

// takes in a 54-byte array and condenses it down to 21 bytes

void shift_orientation(char* current_orientation){
shift_helper(current_orientation, 15, 16, 17, 47,46,45,44,43,42,41,40);
shift_helper(current_orientation, 12, 13, 14 ,39,38,37,36,35,34,33,32);
shift_helper(current_orientation, 9, 10, 11, 31,30,29,28,27,26,25,24);
shift_helper(current_orientation, 6, 7, 8, 23,22,21,20,19,18,17,16);
shift_helper(current_orientation, 3, 4, 5, 15,14,13,12,11,10,9,8);
shift_helper(current_orientation, 0, 1, 2, 7,6,5,4,3,2,1,0);
final_shift_helper(current_orientation);

// takes in 8 bytes and condenses them into 3 bytes by removing the 5 most significant bits and
// shifting and or'ing the remaining bits together.
void shift_helper(char* current_orientation, int shift_byte@, int shift_bytel, int shift_byte2, int
ori_byte@, int ori_bytel, int ori_byte2, int ori_byte3, int ori_byte4, int ori_byte5, int ori_byte6,
int ori_byte7) {

char byteo;

char bytel;

char byte2;

byte2 = (current_orientation[ori_byte2] << 6) | (current_orientation[ori_bytel] << 3) |
current_orientation[ori_byte0];

bytel = (current_orientation[ori_byte5] << 7) | (current_orientation[ori_byte4] << 4) |
(current_orientation[ori_byte3] << 1) | (current_orientation[ori_byte2] >> 2);

byte@ = (current_orientation[ori_byte7] << 5) | (current_orientation[ori_byte6] << 2) |
(current_orientation[ori_byte5] >> 1);

shifted[shift_byte@] = byte0;
shifted[shift_bytel] = bytel;
shifted[shift_byte2] = byte2;

// Since 54 is not divisible by 8, we needed a special helper function for the final elements of the
array
void final_shift_helper(char* current_orientation) {

shifted[18] = (current_orientation[48] << 5) | (current_orientation[49] << 2) |
(current_orientation[50] >> 1);

shifted[19] = (current_orientation[50] << 7) | (current_orientation[51] << 4) |
(current_orientation[52] << 1) | (current_orientation[53] >> 2);

shifted[20] = (current_orientation[53] << 6) | (0 << 3) | 0;

