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Abstract 
For our final project, we built a homebrew version of the arcade game Dance, Dance 

Revolution. We used the microcontroller on our provided MicroPs board to take in digital inputs 
from the DDR board we made, sent that data to our FPGA through SPI, and then used our FPGA 
do to the rest of the data processing and control a monitor display with VGA. Our user interface 
for the game includes a start screen, speed selection screen, and a live gameplay state that sends 
a sequence of triangles moving down the screen. The player’s score increases whenever they 
correctly step on the board based on the lines of triangles. Our new hardware includes a monitor 
which we control through VGA and Velostat, the material we used to create a pressure sensitive 
board. Overall this project worked well, however, the Velostat proved trickier than expected 
since it’s base resistance would vary, resulting in our board working on Demo Day and the night 
before checkoff, but only half working the day of checkoff. 
 
Introduction 

For our project, we decided to build a Dance, Dance Revolution (DDR) board and 
program a version of the game from scratch on the microcontroller and FPGA included on our 
microPs board. We chose this project because we found the material Velostat on Adafruit as we 
were searching for inspiration for our project and wanted to learn more about its capabilities and 
tendencies. We knew from our research that whenever pressure was applied, the Velostat 
increased in resistance. However, the resistance could change not just based on being stepped on 
perpendicularly to the sheet,  but also due to the material flexing, or getting stretched. We knew 
going in that the material would be tough to work with, and that we’d need to make each pad as 
identical as possible, but we thought we could make it work. We found a few references online 
that gave us ideas on how to set up our board, and started planning our project around that.  

 While we had never worked with Velostat before, it was conceptually very easy to 
implement, so we wanted to include another piece of hardware that we had never worked with 
before to satisfy the requirement for new hardware. We chose using VGA to connect our FPGA 
to a monitor so we could create a display for our game. After going over the basics in class, and 
running into some issues with getting the screen to turn on, due to a misunderstanding of 
porches, we managed to first display scrolling triangles going down the screen, and worked our 
way up to state-based screens with the score displayed, speed options, and a scrolling changing 
sequence of triangles.  

The block diagram (Appendix A1) shows a high level view of our final set up and what 
each component of our project does. This includes our Velostat pad inputs connected to 
comparator circuits that would output high whenever they were stepped on. This allowed us to 
use the microcontroller’s digital input pins, debounce the data, and then transmit that data 
through SPI to the FPGA, where it was processed and used to display the game on the monitor 
through VGA.  



 
At the end of this project, our VGA output looked beautiful. Unfortunately, the Velostat 

proved trickier than expected, so only 2 of our 4 pads worked during checkoff, due to us not 
having time to adjust the resistors in our comparator circuit in accordance to how the resistance 
of the board changed based on it flexing over time due to a board that was not completely flat. 
However, during demo day, we did get all 4 pads working for over an hour of gameplay.  As the 
demonstrations progressed, the resistance of our pads changed, as they became more compressed 
and took longer to return to their original state as more people tested our board and code.  

 
New Hardware 

We chose a monitor and Velostat as the new hardware we chose for this project.  Velostat 
is a conductive plastic that increases in resistance when pressure is applied to it. When 
sandwiched between copper tape we can create a variable resistor that can be inserted into any 
circuit.  Stepping on the sandwich raises the resistance of the Velostat, and thus the voltage drop 
across it increases when set up in a voltage divider. We had debated between using a comparator 
circuit to read the output digitally or ADC, but ultimately decided on the comparator circuit 
(Appendix A2.1) to get the mat up and running quickly without having to wade through more 
complicated code. In the end, this ended up being our downfall. One night, it was working 
smoothly: we could read the input from each pad consistently with almost no false positives or 
missing any steps. Yet the next day, we could only get two of the pads working, with many false 
positives and some of the steps never recording. The first problem we had was realizing how 
much our different pads would vary in resistance. Each pad had a difference resistance, since 



there weren’t sized exactly the same, and the copper tape we stuck to both sides had air bubbles 
and didn’t always line up with each other from one side to the other, decreasing the surface area 
we would be passing voltage through.  However, we could account for this by using different 
resistors in each of our comparator circuits that corresponded with the base resistance of each 
Velostat mat. When initially researching Velostat, we found someone who had created DDR 
boards with Velostat, so we assumed it would be more consistent than ours actually was[2]. The 
main problem we had with our Velostat is that the board we attached them to was not flat 
(Appendix A2.2). When the Velostat is not flat, its resistance is higher, which means it has a 
higher voltage drop across it. When stepping on the curved board, it flattened the Velostat. So, 
while the resistance of the Velostat decreased when it flattened, it also increased because we 
were increasing the pressure on it with our body weight. With these two opposite forces acting in 
tandem, the output was not consistent. We attached the pads to plywood to keep them on a solid 
surface, yet the wood was curved. We remedied this by securing sturdier pieces of wood around 
the edges, which did help a lot, but it still bowed in the middle. After shifting the board around 
and it warping a little overnight, we could not get the consistent play we had been getting earlier.  

The VGA display was more successful. Pins driven by FPGA logic controlled the LEDs 
on the monitor. We had digital control of RGB, giving us 8 colors. The screen gets drawn pixel 
by pixel, assigning each pixel with the current RGB value. We settled on a 60 Hz refresh rate for 
the screen, as the code was fairly simple and we wouldn’t see any flickering. The main struggle 
in getting the screen to display anything was that at certain times, RGB must be 0. This happens 
at the porches and during hsync and vsync, a frame of “pixels” outside the screen that allow for 
the transition from one line of pixels to another.  

 
Several sources online had said that most monitors would overwrite the signal during 

these times, driving everything needed low, however that was not the case for us. We tried with 



three different monitors (one of them being a different brand), but we could not get the screen to 
display anything. We did finally figure out that RGB must be low, we finally got our display 
working. 

 
Schematics 

Our schematic is comprised of 4 main parts: the DDR board electronics, the VGA cable 
and monitor, the FPGA, and the microcontroller as shown in Appendix A3. Our inputs from our 
DDR board go to to the microcontroller and get debounced, then sent through SPI to the FPGA 
where the signals get analyzed and control the  shapes and characters to be displayed on the 
monitor through VGA.  

Our DDR board used each Velostat pad as a variable resistor to set up a voltage divider 
that output a voltage that varied around 1.6 V, about half of our 3.3 V output on our microPs 
board, depending on how much pressure was applied. We used an operation amplifier from the 
MCP6004 chip to set up a comparator circuit with another voltage divider that we had set at 
exactly half of the 3.3 volt input using two 20 kOhm resistors. This comparator circuit output 
high when the voltage output from the pad’s voltage divider breached the threshold of the 
constant voltage divider, so we could get a 3.3 V output (digital high) when the mat was stepped 
on and 0 V (digital low) otherwise. Our second resistors in the voltage dividers that included 
each pad had a variety of resistances, due to how the construction of the Velostat pads was not 
identical each time and each voltage divider needed a resistor rated just higher than the base 
resistiance of the mat, but lower than the resistance of the mat when it is stepped on. The output 
of each operational amplifier directly connected to the digital inputs of the microcontroller. 

Our SPI between the microcontroller and the FPGA consisted of 4 wires: MOSI, SPCK, 
done, and load. We did not include chip select or MISO because we weren’t sending data to any 
other chips or sending data back to the microcontroller.  

To connect to VGA, we had 3 voltage dividers to bring down the voltage for the R, G, 
and B lines to values less than or equal to 0.7 V, but had hsync and vsync directly connected to 
the boards outputs of 3.3 V. We knew the inputs for R, G, and B had to be below 0.7 V so a 
voltage divider comprised of a 300 Ohm and a 65 Ohm resistor allowed us to bring 3.3 volts 
down to 0.58 V. While perhaps we could have gotten closer to 0.7, we still had clear color and 
crisp graphics.  The outputs from this were connected to a VGA breakout board, which allowed 
us to plug the cable in securely and without fear of wires becoming unattached. 
 
Microcontroller Design 

The microcontroller controls our state machine and sends the mat’s outputs to the FPGA, 
as shown in Appendix A4,  along with how they should be interpreted by the FPGA: start, speed 
selection, live gameplay. When reading inputs during the live play phase, it also handles 
debouncing. 



Upon start up, we send a string of zeroes through SPI to reset the game into state one. 
After that, we wait in state one until the player hits any of the pads. Once that input has been 
registered, we send through the SPI that we have moved to state two, speed selection. We wait in 
this stage until the player steps on the left or right arrow, which chooses slow or fast speed 
respectively, and then send this information through SPI along with moving it into state three. 
State three is the live play phase of the game. In this state, we continually read from our input 
pins until at least one of them is high (signaling a pad was stepped on). For our debouncer, we 
keep reading from the input pins for a brief period, which enables us to catch if a player hit two 
pads in quick succession since we do not expect humans to  be able to hit them simultaneously. 
Then we send the data through SPI, wait 1200 milliseconds, and then send data through the SPI 
as if all inputs are low. This way even extremely short steps can be seen by the player and be 
properly interpreted as an input to our accuracy module on the FPGA. 

The more complicated part of this code is formatting the data to send through the SPI. 
We have a function that returns 4’b0100  when the input to a specified pin is high, and 4’b0000 
if the input is low. So when a pad is stepped on, it returns 4. This enabled us to simple add the 
state on top of it (2’b01, 2’b10, or 2’b11) without having any of the data overflow or get 
overwritten. When we needed to differentiate the pad outputs from each other (during speed 
selection and live play), we multiply the returned value (4 or 0) by multiples of 2 (i.e. 4*2 for the 
down arrow, 4*4 for the up arrow, etc.) and summed these. So if a player were to hit the down 
(4*2) and left (4*8) arrows during the live play state (3), the data sent over SPI would be 
00101011.  

In our initial design, we had wanted to also create random play sequences and send those 
through SPI to store in RAM on the FPGA. However, due to time constraints and difficulty 
coding up the RAM on the FPGA, we decided to move the storing of play sequences to the 
FPGA only since we already had code to load in other bits through text files. 

 
FPGA design 

The FPGA as a whole is controlling the VGA display, allowing the user to see the effects 
of their inputs on the screen and interact with the game we created, as shown in Appendix A5. 
Our top level module, VGA, instantiated the modules “vga_pll”, “vgacontroller”, “videoGen”, 
“vgaState”, and “aes_spi”. The module vga_pll was a wizard generated module that used a Phase 
Locked Loop (PLL) to create a 25.175 MHz VGA pixel clock. The “vgacontroller” module was 
a small module based on provided code [1] that created counters for the vertical and horizontal 
positions and specified when outputs should be forced to low when we entered the porches 
outside the legal display area. Originally, we had problems with this code, since we left our 
outputs high during the porches, which resulted in a solely black screen. We could tell from our 
oscilloscope that the expected voltages and waveforms were being provided to the r,g,b, hsync, 
and vsync VGA inputs, but could see nothing on the screen. While we ended up fixing the 
problem, it drove home how important the porches were.  



The “videoGen” module was a large module that controlled everything on the screen. We 
instantiated our “accuracy” modules within this module, wrote a flip flop that allowed us to cycle 
through a list of dance moves for the user to complete and instantiated “seqgenrom”  modules to 
pull those lists of tasks from rom. For debugging purposes, we created 9 triangles, one for each 
bit of our SPI so we could see the data we received through SPI in real time, and one triangle to 
show us when “load”, a signal that told us when bits were being transmitted, was high or low. 
This was very useful so we didn’t need to use the logic analyzer on the oscilloscope to see if our 
SPI was working correctly. Our VGA state module takes the last two bits of SPI data, and uses 
that to change the state of our FPGA. We get the start input data in state one (Appendix A2.3), 
speed settings in state two (Appendix A2.4), and live data and in state three, along with 
calculating accuracy and score.  In state three, we generated moving triangles, using the 
“moveTriangle” and “moveBlocks” module. Only while in state three, triangles of the current 
line in the sequence would scroll down the screen through the accuracy box (Appendix A2.5). 
Upon reaching the bottom of the box, they would reset at the top of the screen, but which ones 
were on would change based on the next line in the sequence. The moving triangles and the ones 
that appeared when our input pads were pressed, used the “triangleGen” module, a module 
loosely based on “rectangleGen” from the provided code. The “moveBlocks” module controls 
the speed of the scrolling blocks. This speed is used in the “moveTriangle” module to update the 
location of the triangles created with “triangleGen”.  

One of the other key elements in the top “VGA” module was “aes_spi”. Our code to 
transmit our inputs from the microcontroller to the FPGA closely resembled that from the aes 
lab, so we copied and edited it a large chunk of it. Accuracy was calculated using our “accuracy” 
module, which takes in the stomp inputs and compares them to the line of the sequences within 
the target rectangle. If they match exactly, the player gets a point, and this is turned into decimal 
numbers showing the player their score. This module also instantiated several instances of 
“chargenrom” a module that stored and pulled characters, including the numbers, from the ROM 
to display words in our “start”, “speed”, and “score” screens. Because we could easily avoid not 
using all of our FPGA to provide instructions to the user, we didn’t work on optimizing this, 
believing spending our time on other aspects of our project was more effective. Both our 
sequence of the falling triangles and the characters are stored in ROM, either “seqgenrom” which 
reads the play sequence from a text file and outputs the current line of triangles , or 
“chargenrom” which reads several lines from the ROM  to display a specific character, indexing 
in based on the small alphabet we wrote.  

Finally, our code wrapped up with our “accuracy” module.  This module was very small 
and simple, but required a lot of thinking as we wanted to add one point to our score, but only if 
the correct pads were hit, and once hit, the player could score no more points until the next line 
of the sequence. When our game was restarted, points were reset to zero.  Then, when the pads 
were hit while the triangles were within our scoring zone rectangle, we had a 4-bit “flag” that 
recorded the current line of the sequence so the player could not attempt to score more points on 



the same triangles.  If the current stomp was the same as the sequence, we added one point. If 
any of the triangles were wrong, the player got no points. The score was automatically updated 
onto the monitor screen so the player could see if they got it right immediately. At the end of this 
all, the RBG outputs to the VGA were set to high if the current pixel of the display required that 
color (i.e. blue would be high if inside the blue, white, or teal triangles). 
 
Results 

On the final checkoff, our game was not working as consistently as we had hoped. The 
VGA graphics ran smoothly and looked clean, exactly how we wanted it to. The DDR board on 
the other hand, had some difficulties. The night before, it was working well and we were reading 
the inputs consistently. The next day, we were trying to swap out resistors so our comparator 
circuits worked with the Velostat, however since the stockroom would not let us in, we had 
limited access to resistors and limited time to test them. One of the pads worked great (consistent 
every time we stepped on it), another one decently (most of the time it registered the step), but 
the other two were all over the place, not displaying when stepped on sometimes and false 
positives other times.  On Demo Day, the board worked perfectly for over an hour, only 
becoming inconsistent when almost one hundred points had been recorded and the Velostat had 
been compressed so many times in a short period of time it was not responding as it should be.  

One of the more challenging parts of the project was interpreting SPI correctly. When we 
initially set up the SPI link, we could see that we were getting the data we expected, yet we were 
changing states unexpectedly. When we were accessing the data, we were doing so as the bits 
were shifted in one at a time, instead of only after all 8 had come through. Then we were 
accessing the data using the wrong clocks on our flip flops, which shifted our bits off by one (but 
our SPI debugged still displayed what we expected it to). Since our microcontroller was 
controlling the state through SPI, we had to make sure that we were reading the correct bits at the 
correct time. Once this was solved, it led us to another challenging problem: computing the 
score. We wanted the player to get a single point when they hit the pads to match what they saw 
on the screen within the accuracy rectangle. We needed to interpret the SPI data against the 
current sequence, and add only one point for each line of the sequence. We had initially set it up 
to only record the score when the input rose from zero to high (so any of the inputs were stepped 
on), however we soon realized that wouldn’t work if the player hit two pads at different times, or 
hit the pad a little early but then correct (as it would stay high). So we modified our code to have 
a flag that would be set when the score updated for that sequence. This way it could only add one 
to the score for each part of the sequence. So we would check to see if the next part of the 
sequence was within the hitting zone, then update the score if the player stepped on the correct 
pads. We had to instantiate the accuracy module twice, since it had to be linked to each of the 
two sequences displayed on the screen, and we took the points output from these and added them 
together to get the player’s total score. 



We had initially wanted a speaker to play music in time with the game, however we 
quickly realized we probably wouldn’t have time to set up a speaker after spending so long on 
trying to get the VGA display to turn on and abandoned the speaker part of the project. We had 
also planned on having the microcontroller store the play sequences, and randomize it for each 
play through, but since we had difficulties implementing RAM on the FPGA and realized that 
formatting and sending that data over SPI would probably use more of our time than we had, we 
moved to storing the sequence in the FPGA ROM with a text file. 
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Parts list 
 

Part Source Part Number Cost 

Velostat (9 sheets) tinkersphere.com TS1454 40.90 

Copper Tape (20 
sheets) 

Amazon.com B075TSX7F2 35.02 

VGA Cable & 
Breakout Board 

Borrowed   

Monitor Borrowed   

MCP6004 OpAmp HMC Stockroom   

3ft by 3ft plywood HMC Machine Shop   

Crafting supplies HMC Makerspace   

  Reimbursement -50.00 

  Total 25.92 

 
 
 
 
 

https://ventspace.wordpress.com/2018/04/09/danceforce-v3-diy-dance-pad-controller/


Appendices 
A1: Block Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 



A2: Pictures 
A2.1: 4 OpAmp comparator circuits 

 



A2.2: DDR Board 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A2.3: Start Screen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A2.4: Speed choice screen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A2.5: Display showing pressed button and 2 lines of sequence falling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A3:Schematic 

 
 



A4: C code for microcontroller 
// stomp.c 

// Stephanie Clifner and Elizabeth Hedenberg 

// sclifner@g.hmc.edu ehedenberg@g.hmc.edu 

// 12/11/2019 

// State machine, and sends inputs over SPI 

 

//////////////////////////////////////////////// 

// #includes 

//////////////////////////////////////////////// 

 

#include <stdio.h> 

#include "SAM4S4B.h" 

 

//////////////////////////////////////////////// 

// Constants 

//////////////////////////////////////////////// 

 

#define LOAD_PIN    29 

#define DONE_PIN    30 

 

 

# define STOMP_LEFT_PIN 16 

# define STOMP_UP_PIN 17 

# define STOMP_DOWN_PIN 18 

# define STOMP_RIGHT_PIN 19 

 

 

 

//////////////////////////////////////////////// 

// Function Prototypes 

//////////////////////////////////////////////// 

 

 

int getStomp(int); 

void getSpeed(void); 

void showStomp(void); 

 

//////////////////////////////////////////////// 

// Main 

//////////////////////////////////////////////// 

 

int main(void) { 

 

  samInit(); 

  pioInit(); 

  spiInit(MCK_FREQ/244000, 0, 1); 

  // "clock divide" = master clock frequency / desired baud rate 

  // the phase for the SPI clock is 1 and the polarity is 0 

 

  // Load and done pins 

  pioPinMode(LOAD_PIN, PIO_OUTPUT);  

  pioPinMode(DONE_PIN, PIO_INPUT);  

 

 

// Stomp pins 

pioPinMode(STOMP_LEFT_PIN, PIO_INPUT); 



pioPinMode(STOMP_UP_PIN, PIO_INPUT); 

pioPinMode(STOMP_DOWN_PIN, PIO_INPUT); 

pioPinMode(STOMP_RIGHT_PIN, PIO_INPUT); 

 

pioDigitalWrite(LOAD_PIN, 1); 

spiSendReceive((char)0); // Hardcoded, we're sending 00000000 so spi has known 

values at start (and functions as a reset) 

pioDigitalWrite(LOAD_PIN, 0); 

 

 

tcDelayInit(); 

getSpeed(); 

// delay a bit 

// did not use tc delay functions here because it was breaking the code 

for(int i = 0; i < 12800000; i++); 

 

while(1){ 

showStomp(); 

} 

 

} 

 

//////////////////////////////////////////////// 

// Functions 

//////////////////////////////////////////////// 

 

int getStomp(int pin) { // TODO: make stompUp 

if(pioDigitalRead(pin)) { 

if(pioDigitalRead(pin)) 

return 4; // so we can send {2'b10, state} over SPI (shift input over to 

leave 2 bits for the state) 

else 

return 0; 

} 

else 

return 0; 

} 

 

void getSpeed() { 

char speedSelected = 0; 

while(!speedSelected) { 

// left is slower speed (10), right is higher speed (11) 

speedSelected = (getStomp(STOMP_LEFT_PIN)*2) | (getStomp(STOMP_RIGHT_PIN)*2 + 

getStomp(STOMP_RIGHT_PIN)); // Add all inputs from stomps (i.e. if stop up, speedSelected = 1 

+0 +0 +0. If stomp down, then speedSelected = 0 + 2 + 0 + 0. ORing them together would 

probably be okay 

} 

 

// send speed over SPI, with 2'b10 state at the end 

char speed = (char)((speedSelected - 1) + 2); 

pioDigitalWrite(LOAD_PIN, 1); 

spiSendReceive(speed); // in state one, send speed - TODO: hardcoded to 00 

right now, change to input later. Hardcoded, we're sending 00001000 

pioDigitalWrite(LOAD_PIN, 0); 

} 

 

 



void showStomp() { 

int currentStomp = 0; 

int left = 0; 

int up = 0; 

int down = 0; 

int right = 0; 

while(!currentStomp) { 

// bit shifting so each pad corresponds to a unique bit 

left = getStomp(STOMP_LEFT_PIN)*8; 

up = getStomp(STOMP_UP_PIN) * 4; 

down = getStomp(STOMP_DOWN_PIN)*2; 

right = getStomp(STOMP_RIGHT_PIN); 

currentStomp = left | up | down | right; 

} 

// once one goes high, wait a little bit to see if any other goes high 

for(int i = 0; i < 32000; i++) { 

left = left | getStomp(STOMP_LEFT_PIN)*8; 

up = up | getStomp(STOMP_UP_PIN) * 4; 

down = down | getStomp(STOMP_DOWN_PIN)*2; 

right = right | getStomp(STOMP_RIGHT_PIN); 

currentStomp = left | up | down | right; 

} 

// send the data, with state 2'b11 at end 

char stomped = (char)(currentStomp + 3); 

pioDigitalWrite(LOAD_PIN, 1); 

spiSendReceive(stomped); 

pioDigitalWrite(LOAD_PIN, 0); 

 

// wait a little bit, then send low (artificial debouncing) 

tcDelayMillis(1200); 

pioDigitalWrite(LOAD_PIN, 1); 

spiSendReceive((char)3); 

pioDigitalWrite(LOAD_PIN, 0); 

 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A5: FPGA System verilog code 
 
// VGA.sv 

// Stephanie Clifner and Elizabeth Hedenberg 

// sclifner@g.hmc.edu ehedenberg@g.hmc.edu 

// 12/11/2019 

// FPGA hardware for DDR MicroPs final project, Fall 2019.  

module VGA(input logic clk, sck, sdi, done, load, output logic r,g,b,hsync,vsync); 

logic [9:0] x, y; 

logic sdo, writeSeq, leftStep, rightStep, upStep, downStep; 

logic [1:0] state; 

logic [7:0] spiData, speed; 

logic vga_clk, blank; 

logic reset; 

 

assign reset = spiData == 8'b0; 

 

vga_pll vgapll(.inclk0(clk), .c0(vga_clk)); 

vgacontroller vgac(vga_clk, hsync, vsync, blank, x, y); 

videoGen vg(clk, reset, x,y, hsync, vsync, blank, leftStep, rightStep, upStep, 

downStep, load, speed, spiData, state, r,g,b); 

 

vgaState vstate(clk, reset, spiData, load, state); 

 

aes_spi spi(sck, sdi, sdo, done, spiData); 

 

always_ff @(posedge clk) 

if(state == 2'b00) 

begin 

speed[3:2] = 2'b01; 

end 

else if(state == 2'b10) 

begin 

speed = spiData[7:0]; 

end 

else if (state == 2'b11) 

{leftStep, upStep, downStep, rightStep} = spiData[5:2];  

endmodule 

 

module videoGen (input logic clk, reset, input logic [9:0] x, y, input logic hsync, vsync, 

blank,  

leftStep, rightStep, upStep, downStep, load, 

input logic[7:0] speed, test, // test is the spiData 

input logic [1:0] state, 

output logic r,g,b); 

logic pixel, pixel1, pixel2, pixel3, pixel4, pixelHollow, slowclk, pixelStart, 

pixelSpeed; 

logic pixelLeftStep, pixelUpStep, pixelDownStep, pixelRightStep, pixelStep, spi; 

logic [3:0] nextStep1, pixelSeq1, nextStep2, pixelSeq2; 

logic [9:0] top1, top2; 

logic [5:0] points1, points2; 

 

//controls score 

accuracy stmpstmpbb1(clk, reset, load, top1, top1+50, 370, 450, {leftStep, upStep, 

downStep, rightStep}, pixelSeq1, nextStep1, points1); 

accuracy stmpstmpbb2(clk, reset, load, top2, top2+50, 370, 450, {leftStep, upStep, 

downStep, rightStep}, pixelSeq2, nextStep2, points2); 

 

// controls which step is currently displayed 

always_ff @(posedge slowclk) 

if(reset) 

begin 

nextStep1 = 0; 

nextStep2 = 1; 

end 



else if(top1 == 201) // when half way down the screen, update the other 

sequence so it is now the next step in the sequence when it's loooped around to the top of the 

screen 

nextStep2 = nextStep2 + 2; 

else if (top2 == 201) 

nextStep1 = nextStep1 + 2; 

 

//which arrows should be displayed for current step in sequence 

seqgenrom(nextStep1, pixelSeq1); 

seqgenrom(nextStep2, pixelSeq2); 

 

 

chargenrom Start(8'd73, x, y, 200, 200, pStart); 

chargenrom sTart(8'd74, x, y, 200, 215, psTart); 

chargenrom stArt(8'd65, x, y, 200, 230, pstArt); 

chargenrom staRt(8'd72, x, y, 200, 245, pstaRt); 

chargenrom starT(8'd74, x, y, 200, 260, pstarT); 

chargenrom Q(8'd86, x, y, 200, 275, pq0); 

// only on in state 1 

assign pixelStart = (pStart | psTart | pstArt |pstaRt | pstarT| pq0) & (state == 

2'b01); 

 

chargenrom sPeed(8'd71, x, y, 200, 215, pp0); 

chargenrom spEed(8'd68, x, y, 200, 230, pe0); 

chargenrom speEd(8'd68, x, y, 200, 245, pe1); 

chargenrom speeD(8'd67, x, y, 200, 260, pd0); 

//only on in state 2 

assign pixelSpeed = (pStart | pp0 | pe0 |pe1 | pd0) & (state == 2'b10); 

 

chargenrom Easy(8'd77, x, y, 300, 100, pEasy); 

chargenrom harD(8'd78, x, y, 300, 360, pharD); 

 

 

chargenrom S2(8'd73, x, y, 460, 200, ps2); 

chargenrom C0(8'd66, x, y, 460, 215, pc0); 

chargenrom O0(8'd70, x, y, 460, 230, po0); 

chargenrom R1(8'd72, x, y, 460, 245, pr1); 

chargenrom E2(8'd68, x, y, 460, 260, pe2); 

chargenrom twho(8'd76 + (points1 + points2)/10, x, y, 460, 290, digit1); 

chargenrom tree(8'd76 +(points1 + points2)%10, x, y, 460, 305, digit2); 

//only on in state 3 

assign pixelScore = (ps2 | pc0 | po0 |pr1 | pe2|digit1|digit2) & (state == 2'b11); 

 

// move the sequence down the screen 

moveblocks mb(vsync, speed[3:2], slowclk); 

 

//seq 1 

moveTriangle mt1(reset, slowclk, x, y, 150, 200, 2'b00, state, 1, pixel2, topp); // up 

moveTriangle mt2(reset, slowclk, x, y, 300, 350, 2'b01, state, 1, pixel3, top1); // 

down 

moveTriangle mt3(reset, slowclk, x, y, 50, 100, 2'b10, state, 1, pixel1, toppp); // 

left 

moveTriangle mt4(reset, slowclk, x, y, 450, 500, 2'b11, state, 1, pixel4, topppp); // 

right 

//seq 2 

moveTriangle mt5(reset, slowclk, x, y, 150, 200, 2'b00, state, 0, pixel6, ttopp); // up 

moveTriangle mt6(reset, slowclk, x, y, 300, 350, 2'b01, state, 0, pixel7, top2); // 

down 

moveTriangle mt7(reset, slowclk, x, y, 50, 100, 2'b10, state, 0, pixel5, tttoppp); // 

left 

moveTriangle mt8(reset, slowclk, x, y, 450, 500, 2'b11, state, 0, pixel8, ttttopppp); 

// right 

 

// triangles that are on when mat is stomped 

triangleGen tgLeft(x,y,50, 400, 450, 50, 100, 2'b10, pixelLeftStep); // input are x, y, 

height, top, bottom, left, right 



triangleGen tgUp(x,y,50, 400, 450, 150, 200, 2'b00, pixelUpStep); 

triangleGen tgDown(x,y,50, 400, 450, 300, 350, 2'b01, pixelDownStep); 

triangleGen tgRight(x,y,50, 400, 450, 450, 500, 2'b11, pixelRightStep); 

 

//two lines of where arrows need to be within when hit to get a point 

hollowBox hb(x, y, 370, 450, pixelHollow); 

 

assign pixelStep = (leftStep & pixelLeftStep) | (upStep & pixelUpStep) | (downStep & 

pixelDownStep) | (rightStep & pixelRightStep); 

 

 

// turn arrow on if it should be on for current step 

assign pixelLeftArr = (pixel1& pixelSeq1[3]) | (pixel5 & pixelSeq2[3]); 

assign pixelUpArr = (pixel2 & pixelSeq1[2]) | (pixel6 & pixelSeq2[2]); 

assign pixelDownArr = (pixel3 & pixelSeq1[1]) | (pixel7 & pixelSeq2[1]); 

assign pixelRightArr = (pixel4 & pixelSeq1[0]) | (pixel8 & pixelSeq2[0]); 

 

// which color each thing should be 

assign r = ((pharD & state ==2'b10) | pixelStart | pixelHollow | pixelStep | pixelUpArr 

| pixelScore | pixelLeftArr) & ~blank; 

assign g = ((pEasy & state ==2'b10) | pixelSpeed  | pixelHollow | pixelStep | 

pixelUpArr | pixelRightArr | pixelDownArr) & ~blank; 

assign b = (pixelHollow | pixelStep | pixelRightArr | pixelLeftArr|pixelScore) & 

~blank; 

endmodule 

 

module vgacontroller(input logic vga_clk, output logic hsync, vsync, blank, output logic [9:0] 

x,y); 

always_ff @(posedge vga_clk) 

begin 

x++; 

if(x==800) 

begin 

x=0; 

y++; 

end 

if(y==525) 

y = 0; 

hsync = ~(x>=640+16 & x<640+16+96); 

vsync = ~(y>=480 +11 & y<480+11+2); 

blank = x>=640|y>=480; 

end 

 

endmodule 

 

module triangleGen(input logic [9:0] x, y, input logic [5:0] height, 

input logic [9:0] top, bottom, left, right, input logic [1:0] direction, output logic 

pixel); 

 

logic [9:0] row; 

 

always_comb 

case (direction) 

2'b00: // up 

begin 

if(y >= top & y <= bottom) 

row = y - top + 1'b1; 

else 

row = 0; 

 

pixel = (row != 0) & (x >= left + (bottom - top - row) & x <= right - 

(bottom - top - row)); 

end 

2'b01: // down 

begin 

if(y >= top & y <= bottom) 



row = y - top + 1'b1; 

else 

row = 0; 

 

pixel = (row != 0) & (x >= left + (row-1) & x <= right - (row-1)); 

end 

2'b10: // left 

begin 

if(x >= left & x <= right) 

row = x - left + 1'b1; 

else 

row = 0; 

pixel = (row != 0) & (y >= top + (right - left - row) & y <= bottom - 

(right - left - row)); 

end 

2'b11: // right 

begin 

if(x >= left  & x <= right) 

row = x - left + 1'b1; 

else 

row = 0; 

pixel = (row != 0) & (y >= top + (row-1) & y <= bottom - (row-1)); 

end 

default: 

begin 

row=0; 

pixel=0; 

end 

endcase 

endmodule 

 

module moveblocks(input logic vsync, input logic [1:0] speed, output logic slowclk); 

 logic [12:0] counter; 

  

 always_ff @(posedge vsync) 

 begin  

counter=counter+1;  

 end 

 assign slowclk=counter[speed]; 

 endmodule 

  

module moveTriangle(input logic reset, input logic slowclk, input logic [9:0] x, y, input 

logic [9:0] leftedge, rightedge, input logic [1:0] direction, state,  input logic odd,  

output logic pixel, output logic [9:0] 

top); 

logic [9:0] bottom; 

 

always_ff @(posedge slowclk) 

if (reset) 

 

if (odd) // start triangles staggered 

begin 

top=0; 

bottom=50; 

end 

else 

begin 

top=200; 

bottom=250; 

end 

else if (bottom==450) // if reaches the bottom of the screen, put back to the 

top 

begin 

top=0; 

bottom=50; 

end 



else if (state == 2'b11) // only move the triangles if in state 3 

begin 

top = top + 1; 

bottom = bottom + 1; 

end 

// create the triangle at the current location 

triangleGen tg(x,y, 50, top, bottom, leftedge, rightedge, direction,  pixel); 

endmodule 

 

module hollowBox(input logic [9:0] x,y, top, bottom, output logic pixel); 

// two horizontal lines across the screen 

assign pixel = (y == top | y == bottom) | (y == top + 1 | y == bottom + 1); 

endmodule 

 

module aes_spi(input  logic sck,  

               input  logic sdi, 

               output logic sdo, 

               input  logic done, 

               output logic [7:0] spiData); 

 

    logic         wasdone; 

  

    // assert load 

    // apply 8 sclks to shift in speed, starting with speed[0] 

    // then deassert load, wait until done 

    always_ff @(posedge sck) 

begin 

        if (!wasdone)  {spiData} = {spiData[6:0], sdi}; 

        else           {spiData} = {spiData, sdi};  

end 

  

    always_ff @(negedge sck) begin 

        wasdone = done; 

 

    end  

endmodule 

 

module vgaState(input logic clk, reset, input logic [7:0] spiData, input logic load, output 

logic [1:0] state); 

logic [1:0] nextState; 

 

always_ff @(posedge clk, posedge reset) 

if(reset) 

state <= 2'b01; 

else 

state <= nextState; 

// when s1, gets reset 

// when s2, getting speed data 

// when s3, getting live data 

always_comb 

case(state) 

2'b01:  

begin 

if(spiData[1:0] == 2'b10) 

nextState = 2'b10; 

else 

nextState = 2'b01; 

end 

2'b10: 

begin 

if(spiData[1:0] == 2'b11 & ~load) 

nextState = 2'b11; 

else 

nextState = 2'b10; 

end 

2'b11: 



begin 

if(spiData[1:0] == 2'b01 & ~load) 

nextState = 2'b01; 

else 

nextState = 2'b11; 

end 

default 

begin 

nextState = 2'b01; 

end 

endcase  

endmodule 

 

module chargenrom(input logic [7:0] ch, input logic [9:0] x, y, top, left, 

output logic pixel); 

logic [11:0] charrom[351:0]; // character generator ROM // TODO: make smaller. 176? 

logic [15:0] line; // a line read from the ROM 

// Initialize ROM with characters from text file 

initial 

$readmemb("charromdouble.txt", charrom); 

// Index into ROM to find line of character 

assign line = (y >= top  & y < top + 16) ? charrom[(y - top) + {ch-65, 4'b0000}] : 

16'b0; 

// is entry 0 

// Reverse order of bits 

assign pixel = (x >= left & x < left + 16) & line[3'd15-(x - left - 4)]; 

endmodule 

 

module seqgenrom(input logic [3:0] current, output logic [3:0] pixel); 

logic [3:0] charrom[399:0]; // character generator ROM // TODO: make smaller. 176? 

// Initialize ROM with characters from text file 

initial 

$readmemb("seq.txt", charrom); 

 

assign pixel = charrom[current]; 

endmodule 

 

module accuracy(input logic clk, reset, load,//assuming only one stomp 

input logic [9:0] movetriangletop, movetrianglebottom, linetop, 

linebottom,  

input logic [3:0] currentStomp, currentSeq, currentRow, 

output logic [5:0] points); 

logic yeahstomp; 

logic [2:0] accuracy; 

logic [3:0] tallied; 

 

assign yeahstomp = currentStomp[0]|currentStomp[1]|currentStomp[2]|currentStomp[3]; // 

high if any pad has been stomped 

 

always_ff@(posedge clk) 

if (reset) 

points = 0; 

else if ((tallied != currentRow) & (movetrianglebottom<linebottom) 

&(movetriangletop>linetop) & !load & yeahstomp) // if stomping at correct time 

begin 

tallied <= currentRow; 

// add 1 if stomped on the correct pads, otherwise add 0 

accuracy =currentStomp == currentSeq;  

points =points+accuracy; 

end  

endmodule 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 


