LCD Spectrum Visualizer

Final Project Report

Team Members: Matthew Crane, Alex Chang
Submission Date: December 13, 2019

ABSTRACT

The team attempted to construct an LCD spectrum visualizer, which would show the magnitude
of the 32-point FFT of live audio data from a microphone. While the team was able to complete
most aspects of the project and confirm they were working as intended (display output, SPI
between ATSAM and display, SPI between ATSAM and FPGA, and the Address Generation
Unit on the FPGA), due to the failure of the core butterfly unit module for the FFT module, the
FFT did not output the expected values. This, in turn, prevented the display from showing the
correct spectrum for the microphone input.



TABLE OF CONTENTS

R 1 oo [3Tox o] o TR PP P TP TPTPT PRSPPI 1
2. INEW HAITWATE ...ttt bbbt b bbbt 2
3. FPGA DESIGN ...ttt bbb bbb et 3
3.1.  SPI Module [MOdUIE RAM _SPI] ...ooiieiecie ittt 3
3.2.  FFT Module [Module FIETOP]....ccviiiiiee ettt 5
3.2.1.  Two-Port RAM Units [module RAM2].......coiiiiiieie e 5
3.2.2.  Twiddle ROM [modules twWROM_Re, tWROM_IM].......cccooiiniiiiiieienc e 5
3.2.3.  Butterfly Unit [Module BFUJ.......ccooiiiiiiiiiiieeee e 6
3.2.4. Address Generation Unit [module AGU] .......ccoooiiiiiiiiieececeee e 7

O \V Tl o Toto g1 0] | [=T I 1= o o SO STRSTROS 8
D RBSUIES .t bbbttt 9
B, RETEIBNCES ...ttt bbbttt bbb reas 10
Y N o] 1= o | USSP TSRO PP PRSP 11
7.1, SystemVerilog Code (FIETOP.SV) ..ceeiiiieiiieieriesiiseee e s 11
7.2.  Main ATSAM Behavioral Loop (MAIN.C) ...ccveiieiieeieiie it 16

7.3.  Translated ST7735 Library (ST7735.N) ..ccviiiiiiiiciiccee e 18



1. Introduction

This goal of this project is to create a live audio spectrum visualizer, where the spectrum is the
magnitude of the Fast Fourier Transform (FFT) of live audio from a microphone. The
specifications of the proposed project are as follows:
e The ATSAMA4S4B chip shall sample live audio voltage data off of the microphone at a
rate of 2000 Hz, allowing the observation of frequencies of up to 1000 Hz;
e The Altera Cyclone EP4CE6 FPGA shall perform a hardware-accelerated 32-point FFT,;
e The LCD screen shall be separated into 16 bars, each corresponding to the magnitudes of
the 16 bins from the 32-point FFT, spanning 62.5 Hz each;
e The ATSAM chip shall be able to send, over SPI, the audio data to the FPGA and display
data to the LCD display chip;

e The FPGA shall be able to send, over SPI, the FFT of the audio data to the ATSAM chip.

FPGA

Pre-FFT Data Post-FFT Data

¥
Raw Digital
MAX4466 Analog Data SPI
Data

Post-FFT Data

The signal flow is visualized in Figure 1.

Visualization Visualized

Protocols Data LCD Display

ATSAM

Figure 1: Block Diagram of Spectrum Visualizer
1



Although we did not fully complete the objectives, this report will describe in detail the design of
each of the above parts and how to fit them together. Following that will be a discussion of the

results we were able to achieve and what we would do next if there were more time.

2. New Hardware

This project introduces two new pieces of hardware to the system, the MAX4466 Electret

Microphone Breakout and the ST7735R LCD Display Breakout.

Table 1. Parts List for the LCD Spectrum Analyzer
Company Part Name Cost
Adafruit MAX4466 - Electret Microphone Amplifier Breakout | $6.95
Adafruit ST7735R - 1.44" Color TFT LCD Display Breakout $14.95

See Figure 2 below for the circuit schematic.

5V 3Vv3 GND
[} [)
uMudd
Vin
GND

MAX4466 P22 (ADC)

PA12 (MISO)

PA13 (MOSI)

PA16 (Chip Selecq]

PA10 (Software
Reset)

PAS (Data/CommEQB)

ST7735R

Figure 2: Breadboard Schematic

The MAX4466 is a simple electret microphone connected to a breakout board that applies a gain

to it (adjustable via a screw on the back). For this project, the gain was set as high as possible
2



(125x). We selected Vcc to be 3.3V (offsetting the output voltage by Vcc/2) and connected the

output pin to PA22/ADC9 of the ATSAM chip.

The ST7735R is a display chip connected to a 128x128 TFT LCD screen, capable of being
written to over SPI. For SPI, the display chip must take an 8-bit command input, and then as
many subsequent 8-bit data parameters as necessary for that specific command. The screen is
powered with 3.3V, with the standard SPI pins (SI, SCK) being connected to the corresponding
pins on the ATSAM (PA13/MOSI, PA14/SCK, respectively). We did not connect SO to the

ATSAM since we did not need to read data from the display chip.
Pin TCS is the display chip select, which is enabled when pulled low. Pin RST performs a
software reset on the screen when pulled low. Pin D/C indicates to the chip whether or not the

incoming serial information is data (high) or a command (low). The other pins are unconnected.

3. FPGA Design

The FPGA was to receive audio voltage data, normalized to 1 and expressed in 16-bit Q5.10
format (MSB is the sign bit, and following bits range from 24 to 21%). Then, it will perform a
radix-2 FFT on the data, and then send it back to the ATSAM for processing and display. This
output will be 32 bits, with bits 31:16 as real and 15:0 as imaginary, both in Q5.10 format. There
are two main modules: SPI and FFT. Figure 3 shows the block diagram of the implementation.

3.1. SPI Module [module RAM_SPI]

First of all, the FFT requires that the data be loaded into the RAM (we chose to have data
initially loaded into both RAMS) in a bit-reversed order — for example, data meant to be stored in

address 1 (00001) is instead stored in address 16 (10000). This step essentially allows the final



processed FFT data to be read normally. Thus, there is a control signal to force address bit-

reversal when data is being loaded into the FPGA, but not when data is being sent out from it.

rd_select

fft_done

AGU

RAM_SPI

adrSPI
wdSP|

32
-

Figure 3: Full Diagram of FFT Implementation with SPI
There also need to be control signals to prevent the FFT module from running during SPI, as
well as to override any assertions of addresses or write data from the FFT module (using muxes).
We thus have the LOAD and FFT_DONE signals. On LOAD, the modules reset and the SPI
module starts shifting data into the RAM. Once done, it deasserts LOAD, and waits for the
FFT_DONE signal from the FFT module. When FFT_DONE is asserted, the SPI module begins
to shift data out (once again overriding any signals to the RAM from the FFT module).
The shift register used is 48-bits long, for the 32-bit output and 16-bit input. The SPI module
automatically generates an address to the RAM, such that, every 16 bits (during read-in) or 32

bits (during read-out), the address increments, writing to or reading from the next word in RAM.

4



We also have a signal CE, which must be pulled high for the FPGA to register input data.

3.2. FFT Module [module fftTop]

See Appendix A for the SystemVerilog code loaded onto the FPGA.

We decided to implement the FFT described by George Slade [1], leaving out the pipelining
present in the paper for simplicity (and general lack of need of such efficiency). The FFT is made

up of two two-port RAM units, a twiddle ROM, the Butterfly Unit (BFU), and the Address

Generation Unit (AGU).

X(0)

X(1)

X(2)

X(3)

X(4)

X(6)

X(7)

Figure 4: An 8-point Radix-2 FFT as described by George Slade. Each point is a BFU. [1]
3.2.1. Two-Port RAM Units [module RAM2]

The two-port RAM units allow for simultaneous read/writes into two different addresses. They
already exist on this FPGA as-is, so no further synthesis was required in terms of logic elements.
Each address of the RAM stores a 32-bit word, for 16 bits of real data (MSB) and 16 bits of
imaginary data (LSB).

3.2.2. Twiddle ROM [modules twWROM_Re, twROM_Im]

The twiddle factors (also known as "roots-of-unity") for a FFT are defined by Slade [1] as:



=e N (D
where N is the number of points in the FFT. The FFT requires twiddle factors for n € [0, N/2),
since, on the final BFU level (described in Section 3.2.4), one twiddle factor is used per pair of
data. As seen on Figure 4, twiddle factors labeled up to w3) were used on the final level, a total
of 4 twiddle factors used for an 8-point FFT. We implemented the twiddle factors using a ROM,
where we hard-coded the twiddle factors in Q5.10 format (for consistency with the input data).
This is the fastest way for the FFT to retrieve twiddle factors, since it involves no calculation,
unlike the CORDIC method. For a 32-point FFT, we simply took the Q15 values from Table 2 of
Slade’s paper [1]. For other values of N, a twiddle factor generator (and translator to Q5.10
format) would be necessary.

3.2.3. Butterfly Unit [module BFU]

The butterfly unit takes in two complex numbers and performs a calculation as shown below:

2x16

16 Re
16 Im

» B’

Note: Because of the multiplication, the bus size
tw would normally double, however we drop the most
significant bit due to redundant sign bit, and take
the next 16 afterward for both the real and
imaginary

Figure 5: Butterfly Unit Diagram

Mathematically described, this operation would be:



{A’=A+B*(tw) 2)
B' = A — B * (tw)

where A and B are the current pair of complex data fed into the BFU, and tw is the
corresponding twiddle factor for this pair, obtained from the twiddle ROMs. Thus, this complex

arithmetic expands to the following (where the subscripts » means real and i means imaginary):

A;«ZAr'i'Tr
A;=A;+T; T, =B, *(tw), — B; * (tw);
Bl =A,—T,’ T,=B,x(tw); +B;* (tw),
Bi=4A;—T;

(3)

Note that additional processing is required for T,. and T;. Multiplication between two 16-bit
numbers results in a 32-bit number — thus, T, and T; each need to be truncated to 16 bits. Binary
arithmetic between two Q15 numbers causes an extra sign bit to appear in the MSB of the final
32-bit number — thus, the slice should be from [30:15] for Q15 multiplication. However, since
we are using Q5.10, the slice should instead be [25:10] — moved down 5 bits due to the 5 integer
bits present in the Q5.10 format.

3.2.4. Address Generation Unit [module AGU]

The AGU serves as a control module for the entire FFT process, generating the addresses for the
RAMs and the twiddle ROM, as well as asserting enable and selection signals.

First, the AGU utilizes two counters: one to keep track of the current FFT level (represented as

[ = [0,log, N)) and one to keep track of the current pair number (represented as p = [0, N/2)).
The FFT level is, essentially, the number of times pairs of data must be processed until the
output is the proper FFT output. Figure 4, for an 8-point FFT, shows 3 levels of calculations.
The pair number simply keeps track of how many BFU calculations have occurred in the current

level. For example, pair number 15 would be the final BFU calculation for a 32-bit FFT level.

7



These two values — [ and p — are necessary to obtain the correct RAM addresses for each BFU
calculation, since the data that needs to be used varies by level and pair. The equations for the
address of A and B for the BFU are as follows:

p
adrA = p + 2! l?J
adrB = A + 2!

(4)

The floor function can functionally be ignored; binary division will automatically truncate the

output as necessary.

The twiddle address has a similar equation, as follows:
| P
twAdr = ZL : lFJ (5)

where L is the maximum level possible for the N-point FFT (L = 4 for our 32-point FFT).

The AGU also asserts the rd_select signal, which selects which RAM is being read for the
current level. The reason two RAMs are required is that the FPGA only supports two-port RAM
—s0, one RAM will hold A and B (to be read into the BFU), and the other will have A" and B’
written to it. The rd_select signal simply alternates between levels, starting on the RAM1.
Finally, the AGU also asserts the write-enables for each RAM. While the FFT is not done
processing, this is essentially Ird_select — whichever RAM is not being read. When the FFT is

done processing, both write-enables are disabled to prevent data corruption.
4. Microcontroller Design

See Appendices B and C for the C code loaded onto the ATSAM.

We utilized the given libraries for the ATSAM in Lab 7 — for this project, the relevant libraries

(aside from initialization functions) would be the SPI (data transfer), ADC (microphone read),



and TC (delay) libraries. We set the ADC to 10-bit resolution to ensure enough room for bit
growth from the FFT. We also needed to translate the Arduino ST7735R library into C, as shown
in Appendix C.
The ATSAM routine is very simple. The screen initializes with a black background. Then, it
enters a loop of:

e ‘Erasing’ (i.e: painting black) the previously displayed spectrum from the display;

e Reading microphone if the last read was at least 1/2000 of a second ago (where the new

point of the microphone data pushes out the oldest point, i.e: FIFO);
e Requesting an FFT of the current microphone data;
e Converting the FFT data into bar heights to send to the display chip.

e “‘Writing’ (i.e: painting white) the spectrum to display.
5. Results

Ultimately, the project was not successful. In terms of successes, the LCD screen was separated
into 16 bars corresponding to the output of the FPGA (confirmed visually), and the ATSAM chip
was able to correctly communicate over SPI with the display chip (confirmed visually) and
FPGA (confirmed for MOSI by checking the ATSAM memory, the SPI on the logic analyzer,
and the subsequent real portion of RAM (which was extracted out to 16 LEDs), and vice versa
for the MISO). The microphone appeared to be sampling properly, being able to show tones of
up to 800 Hz from the microphone, though we did not experiment further due to more pressing
issues. We are suspicious that the microphone is not sampling at a consistent rate due to the
various delays caused by multiple SPI transactions between the ATSAM and FPGA/ST7735
chip, and that a 2000 Hz sampling rate only permits 500 microseconds between samples. That

9



being said, the microphone does work, as does the display and SPI. This inability to delay the

loop also prevents us from controlling the refresh rate on the display, causing it to flicker.

The most significant issue was the FFT module on the FPGA. While we were able to confirm
that the AGU was generating the correct addresses for every pair and level in the simulation, we
were not able to get the correct outputs as dictated in Table 5 of Slade’s paper [1]. We narrowed
down the issue to the BFU and twiddle factor ROMs, since they were the only modules that
could have caused a calculation issue aside from the AGU and SPI modules, which we
confirmed to be working. We heavily suspect that our use of the Q5.10 format (which we
selected since Slade mentioned “5 extra bits” [1]) made BFU calculation incorrect, due to
potential complications of having both integer and fractional bits.

In short, if the BFU worked as intended, it is very likely the project would have succeeded.

For the future, it would be best to use Q15 format over Q5.10, since there is no need to worry
about bit growth for numbers less than or equal to 1 in decimal, and we already went through the
trouble of normalizing the input data to 1. Furthermore, we would not have to convert the
twiddle factors from Slade’s paper, which reduces complications. For the minor issue of
microphone sampling, we suggest using the ATSAM’s PDC register to sample the mic in
parallel with the rest of the code, allowing for the control of the screen’s refresh rate. We would

also suggest using an FSM for the FPGA implementation of the SPI module, for simplicity.

6. References

[1] Slade, George William. “The Fast Fourier Transform in Hardware: A Tutorial Based on an
FPGA Implementation.” ResearchGate, Mar. 2013,

web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf.

10



/. Appendix

7.1. SystemVerilog Code (fftTop.sv)

/* Define:

* - N = 32: The number of points in the FFT.

* -— R = 16: The bit resolution of each point in the FFT.
*/

// ATSAM asserts load when it is sending data.

// ATSAM asserts ce when it is listening (regardless of sending or receiving data).

// SDI, SDO are expected to be MSB.

// SPI mode is expected to be 0:

// - CPOL = 0: Idles at 0, cycles with pulse 1; leading edge is rising

// - CPHA = 0: Data is sampled (SDI) at the leading edge, and shifted (SDO) on the falling edge.

module fftTop (input logic clk, load,
input logic ce, sck, sdi,
output logic fft_done, sdo);
// First, set up the RAM.
// Each RAM takes in a (clk, we, adr_A, adr B, wd_A, wd_B), and outputs (rd A, rd B).

// - The SPI module must be able to write to (adr_ A, wd_A), and tap into (rd_A).
// It must also know which RAM to read from (i.e: it must tap into rd_select).
// - The AGU directly controls (we, adr A, adr _B), as well as (rd_select).

// - The BFU and combine modules directly control (wd_A, wd_B).

// This means a few things.
// (1) The SPI module does not have to worry about (we) or (rd_select), which are controlled by

// the AGU. Assume that the AGU always tells the SPI module where to read and write, correctly.
// (2) There are some write conflicts here that need to be settled by muxes, based on whether

// or not the SPI module is supposed to be loading in data (based on load).

// These conflicts, specifically, are on:

// - adr_A: AGU, SPI

// - wd_ BFU/combine, SPI

logic wel, we2, rd_select;

logic [4:0] adr_A, adr_B; logic [4:0] adrAGU_A, adrAGU_B, adrSPI;

logic [31:0] wd A, wd_B; logic [31:0] wdBFU_A, wdBFU_ B, wdSPI;

logic [31:0] rd A, rd B; logic [31:0] rdl_A, rdl B, rd2_A, rd2_B;

logic [3:0] adr_tw; // size is N/2
logic [15:0] tw_Re, tw_Im;

// Set up the RAMs.
RAM2 raml (clk,wel,adr_A,adr_B,wd_A,wd B , rdl A,rdl B);
RAM2 ram2 (clk,we2,adr_A,adr_B,wd_A,wd B , rd2_A,rd2 B);

// Figure out which RAM you're reading from.
mux2 #(32) selA (rdl_A,rd2 A, rd_select , rd A); // read from RAMI if !rd select
mux2 #(32) selB (rdl_B,rd2_B,rd select , rd B); // read from RAMI if !rd select

// Instantiate modules that write to adr A (not SPI).

AGU agu (clk, load,
adrAGU_A, adrAGU_B, adr_tw, // note the adrAGU here
rd_select,wel,we2,
fft_done) ;

// Instantiate modules that write to wd_A.
BFU bfu (tw_Re,tw_Im,rd A[31:16],rd B[31:16],rd A[15:0],rd B[15:0]
wdBFU_A, wdBFU_B) ; // note the wdBFU here

// Instantiate SPI, which writes both to adr A and wd_A.
RAM_ SPT spi (ce,clk,sck,sdi,rd_A,load, fft_done,
sdo, adrSPI,wdSPI) ; // note the adr/wdSPI here

// Select the correct address between the AGU and SPI, depending on (load).

mux2 #(5) selAdrA (adrAGU_A,adrSPI, (load|fft_done) , adr_ A); // use AGU if !load
mux2 #(5) selAdrB (adrAGU_B, adrSPI, (load|fft_done) , adr_B);

// Select the correct write data between the BFU and SPI, depending on (load).
mux2 #(32) selWdA (wdBFU_A, wdSPI, (load|fft_done) , wd_A); // use BFU if !load
mux2 #(32) selWdB (wdBFU_B, wdSPI, (load|fft_done) , wd_B);

// Miscellaneous independent modules:

twROM_Re w_Re(adr_tw , tw_Re);
twROM_Im w_Im(adr_tw , tw_Im);
endmodule
module RAM SPI (input logic ce, clk, sck,
input logic sdi,
input logic [31:0] xd,
input logic load,
input logic fft _done,
output logic sdo,

output logic [4:0] adrSPI,
output logic [31:0] wdSPI);

11



logic en_reverse;
logic [4:0] adr;

// only reverse bits if you're loading in data
assign en_reverse = load & !fft_done;

// if input, bit-reverse
// if output, don't bit-reverse
bitReverse br (en_reverse, adr, adrSPI);

// Logic signals for relevant edges to watch
logic wasdone, wasload;

logic done_posedge, load_posedge;

assign done_posedge = fft done & !wasdone;
assign load_posedge = load & !wasload;

// Logic signals for watching value changes
logic [4:0] adr_prev;

logic adr_changed;

assign adr_changed = (adr_prev != adr);

// Logic signals for counters
logic [3:0] currBit_in ;
logic [4:0] currBit_out;

// Misc. logic signals
logic [31:0] captured_rd = 0;
logic sdodelayed;

// Last 16 bits of wdSPI are 0's (imaginary)
assign wdSPI[15:0] = 16'b0;

// We need to load in the first point of the output RAM before first clock cycle
logic quick read;
assign quick read = fft done & adr_changed;

// (1) Capture on leading rising edge
always_ff @ (posedge sck, posedge quick read) begin
if (quick_read) begin
captured rd <= rd;
end
else if (ce) begin
if (!wasdone) begin // Shift in 16 bits/point: Oth point, MSB to LSB, then 1lst point, MSB to LSB... up to 3lst

{captured_rd, wdSPI[31:16]} <= {captured_rd, wdSPI[30:16], sdi};
end
else begin // Shift out 32 bits/point: Oth point, MSB to LSB, then lst point, MSB to LSB... up to 31lst
if (adr_changed) captured rd <= rd; // update all 32 bits with new value
else {captured rd, wdSPI[31:16]} <= {captured rd[30:0], wdSPI[31:16], sdi};
end
end

// just here to prevent latch
else begin
captured rd <= rd;
end
end

// (2a) shift on trailing falling edge
always_ff @(negedge sck) begin

sdodelayed <= captured_rd[30];

adr_prev <= adr; // adr updates are here instead of on (3) because adr only matters on SCK
end

// (2b) Deal with async counters for bit tracking on input and output
always_ff @(negedge sck, posedge load posedge, posedge done_ posedge) begin
if (load_posedge | done_posedge) begin
currBit_in <= 0;
currBit_out <= 0;
adr <= 0;
end
else begin
// Freeze the last address so we don't overflow

if (adr == 5'd31) adr <= 5'd31;
// Otherwise, it's okay to increment the address
else if (load & (currBit_in == 4'dl5)) adr <= adr + 5'bl;

else if (fft_done & (currBit_ out 5'd31)) adr <= adr + 5'bl;
currBit_in <= currBit_in + 4'bl;
currBit_out <= currBit_out + 5'bl;

end

end

// (3) Ensure that the statuses of done and load are being updated at all times, even when SCK isn't running
always_ff @(posedge clk) begin

wasdone <= fft done;

wasload <= load;
end

// shift out 31st bit (MSB) if we're just starting to shift data out, OR if we changed addresses
assign sdo = (done_posedge | adr_changed) ? captured_rd[31]:sdodelayed;
endmodule

12




// AGU doesn't strictly do anything with load, it just listens to it to see if it
// needs to reset.
module AGU (input logic clk, load,
output logic [4:0] adr_ A, adr_B,
output logic [3:0] adr_tw,
output logic rd_select, wel, we2,
output logic fft_done) ;
logic [3:0] curr_pair;
logic [3:0] curr_level;
logic levelUp;
logic [3:0] alternate; // essentially a 1-bit logic element that flips every time level changes
logic [4:0] curr_powerOf2;
logic [4:0] curr_powerOf2_ inv;

assign curr_powerOf2 = (5'd2) **curr_level;

assign curr_powerOf2 inv = (5'd2)** (4-curr_level);

assign alternate = curr_level % 4'd2; // curr_level % 2 is 4 bits, so we store it in alternate
counter_pair pairCount (clk,load,levelUp, curr_pair);

counter level levelCount (clk, load, levelUp, £ft_done,curr level);

// In theory, (pair)/(2”level) should truncate. e.g: If pair = 7 and 2”level is 8, then
// it should be 0.

assign adr_A = curr_pair + (curr powerOf2)* (curr_ pair/curr powerOf2);

assign adr B = adr_ A + curr_powerOf2;

assign adr_tw = curr_powerOf2_ inv* (curr_pair/curr_powerOf2_inv);

// Note: rd_select, on fft completion, will be stuck on the RAM that is last written to due to
// how the module counter level freezes on (final level + 1).

assign rd_select = alternate[0]; // we only care about the LSB

// if done is asserted, then stop writing

// if load is asserted, then force wel to be 1 (allow SPI to write to it)

// start by reading from RAM1 and writing to RAM2

assign wel = load| (!fft _done & rd select); // rd_select starts at 0 since level starts at 0
assign we2 = !fft done & !rd_select;
endmodule
/* <BFU>
* Description:
* The 4-input complex butterly unit used for the radix FFT algorithm.
* Inputs:
* - Ar (size R): The first real input to the BFU, NOT to be multiplied by the twiddle factor.
* - B r (size R): The second real input to the BFU, to be multiplied by the real twiddle factor tw_r.
* - A i (size R): The first imaginary input to the BFU, not to be multiplied by the twiddle factor.
* - B_i (size R): The second imaginary input to the BFU, to be multiplied by the imaginary twiddle factor tw_i.
* - tw_r (size R): The appropriately-selected twiddle factor to multiply B_r with.
* - tw i (size R): The appropriately-selected twiddle factor to multiply B_i with.
* Outputs:
* - A out (size R): The corresponding output to A, whose value is A rout concatinated with A iout.
* - B_out (size R): The corresponding output to B, whose value is B_rout concatinated with B_iout.
* (Note: "Corresponding" means that if A came from the 3rd position in RAM1, then
* A_out must go into the 3rd position in RAM2.)
*/

module BFU (input logic [15:0] tw_r, tw_ i,

input logic [15:0] A r, B r,
input logic [15:0] A i, B i,
output logic [31:0] Aout, Bout);

// Signed logic for signed multiplication

logic signed [15:0] tw_rS, tw_is;

logic signed [15:0] B_rS, B_iS;

logic signed [31:0] temp_r, temp i;

logic [15:0] A _rout, B_rout, A _iout, B_iout;
assign tw_rS = tw_r;

assign tw_is = tw_i;

assign B_rS = B_r;

assign B_iS = B_i;

// Compute the BFU output
assign temp_r = (B_rS*tw_rS) - (B_iS*tw_iS);
assign temp_i = (B_rS*tw_iS) + (B_iS*tw_rS);

// We're using 05.10, and multiplication for Q05.10 requires

// that (from our findings) the bits from 25:10 are taken, rather
// than 30:15 (a shift down by 5, which is the number of integer
// bits we have).

assign A_rout =
assign B_rout =
assign A _iout =
assign B_iout =

_r + temp_r[25:10];
_r - temp_r[25:10];
1 + temp_1i[25:10];
i - temp_i[25:10];

o

// Combine real and imaginary

assign Aout = {A_rout,A iout};

assign Bout = {B_rout,B_iout};
endmodule

Kk K Kk K K KK K K KKk K KKk kK K Kk ok K K Kk ok K K Kk kK K

* Clocks Section

13




ok ok Kk ok Kk Kk Kk kK k Kk Kk kK kK k Kk Kk k Kk Kk KKk Kk Kk KKk KKk KKK

*/
/* <counter_pair>
* Description:
* Simple counter that keeps track of how many pairs have gone through the BFU
* during one level. When the counter overflows, it will notify the AGU to increment
* the level.
* Counter must necessarily overflow on N/2.
*
*/
module counter pair (input logic clk, reset,

output logic levelUp,
output logic [3:0] counter);
always_ff @(posedge clk) begin
// I1If load is asserted, then we are calculating a new FFT. Reset.
if (reset) counter <= 4'b0;
// If load is not asserted, then calculate as normal.
else begin
counter <= counter + 4'bl; //once loaded, begin the counter

if (counter == 14) levelUp <= 1'bl; // prev value is 15 = you overflowed --> level up!
else levelUp <= 1'b0; // levelUp should not be asserted on non-overflow values
end
end
endmodule

/* <counter_level>

*/
module counter_ level (input logic clk, reset,
input logic levelUp,
output logic fft_done,

output logic [3:0] counter);
always_ff Q@ (posedge clk) begin
// If load is asserted, then we are calculating a new FFT. Reset.
if (reset) begin
counter <= 4'b0;
fft_done <= 1'b0;
end
// There are 5 layers in a 32-point FFT. Thus, if counter = 5, then
// we have finished the final layer.
else if (counter == 4'd5) begin
counter <= 4'd5;
fft_done <= 1'bl; // assert done
end
else begin
if (levelUp) counter <= counter + 4'bl;
end
end
endmodule

~

* <RAM2>

* Description:

* A 2-input RAM.

* CLOCK BEHAVIOR:

* - posedge: Writes data to RAM, if applicable.

* - negedge: No action.

* Inputs:

* - we: Write enable.

* - adr_A: First address for the RAM to perform a read/write on.

* - adr_B:

* (Note: Both adr A and adr_B must be large enough to store N. For example,

* if N = 32, then adr_A/B must be 5 bits long. If N = 64, 6 bits, etc.)
* - wd_A (size 2R):

*

module RAM2 (input clk, we,
input [4:0] adr_A, adr_B,
input [31:0] wd_A, wd_B,
output [31:0] rd_A, rd B);

// Instantiate the RAM with N entries of 2R bits.

// The RAM should store a one-to-one output for an N-point input, and thus
// it must necessarily have N addresses. For example, if N = 32, then the
// instantiation must be "... RAM[4:0]", to accomodate 5 bits of addresses.
logic [31:0] RAM[0:311];

always_ff @(posedge clk) begin
if (we) begin // if write enabled...
RAM[adr_A] <= wd_A; // write to address A
RAM[adr B] <= wd_B; // write to address B
end
end

// constantly read values out of RAM
assign rd_A = RAM[adr_A];
assign rd B = RAM[adr_ B];

endmodule

14




/* <mux2>
*/
module mux2 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, di,
input logic s,
output logic [WIDTH-1:0] y);
assign y = s ? d1:d0;
endmodule

/* <bitReverse>
* Description:

* For 5 bits.
*/
module bitReverse (input logic en,
input logic [4:0] in,

output logic [4:0] out);
logic [4:0] n; // dummy for for-loop
always_comb begin
if (en) begin

for (n = 0; n < 5; n++) begin
out[n] = in[4-n];
end
end
else begin
n = 0;
out = in;
end
end
endmodule
// Note: Twiddles are converted to Q05.10 from Q15, from Slade's paper.

/* <twRom_Re>
*/
module twROM Re (input logic [3:0] adr_tw,
output logic [15:0] twiddle);
always_comb begin
case (adr_tw)

4'00000: twiddle = 16'h0400;
4'p0001: twiddle 16'h03EC;
4'p0010: twiddle 16'h03B2;
4'p0011: twiddle 16'h0353;
4'p0100: twiddle 16'h02D4;
4'p0101: twiddle 16'h0238;
4'p0110: twiddle 16'h0187;
4'p0111: twiddle 16'h00C7;
4'p1000: twiddle 16'h0000;
4'p1001: twiddle 16"hFF39;
4'p1010: twiddle 16"hFE79;
4'p1011: twiddle 16'hFDC8;
4'p1100: twiddle 16"hFD2C;
4'01101: twiddle 16"hFCAD;
4'p1110: twiddle 16'hFC4E;
4'p1111: twiddle 16"hFC14;
default: twiddle = 16'h0400;
endcase
end
endmodule
/* <twRom_Im>
*/
module twROM Im (input logic [3:0] adr_tw,

output logic [15:0] twiddle);
always_comb begin
case (adr_tw)

4'p0000: twiddle = 16'h0000;
4'p0001: twiddle 16'h00C7;
4'p0010: twiddle 16'h0187;
4'p0011: twiddle 16'h0238;
4'p0100: twiddle 16'h02D4;
4'p0101: twiddle 16'h0353;
4'p0110: twiddle 16'h03B2;
4'p0111: twiddle 16"h03EC;
4'p1000: twiddle 16'h0066;
4'p1001: twiddle 16"h03EC;
4'p1010: twiddle 16'h03B2;
4'p1011: twiddle 16'h0353;
4'p1100: twiddle 16'h02D4;
4'p1101: twiddle 16'h0238;
4'p1110: twiddle 16'h0187;
4'p1111: twiddle 16'h00C7;
default: twiddle = 16'h0000;
endcase
end
endmodule

15




7.2. Main ATSAM Behavioral Loop (main.c)

#include "SAM4S4B.h"
#include "ST7735.h"
#include <stdlib.h>
#include <math.h>

// The channel we will use for ADC sampling rate
#define ADC_SAMPLE TC TC_CH1_ID

// FPGA-related pins

#define FPGA_CE PIO_PA1l7 // Chip enable pin (1 enable) [OUT to P58]
#define FPGA_LOAD PIO_PAl8 // Load pin (1 enable) [OUT to P59]
#define FPGA_DONE PIO_PA1l9 // Done pin [IN from P60]
// SCK goes to P42

// MOSI/sdi goes to P39

// MISO/sdo goes to P38

// Defining enable level for various FPGA pins
#define FPGA_CE EN 1
#define FPGA_LOAD_EN 1

// Define ADC pin for microphone usage
#define MIC ADC_CH9

// Structure to contain FFT values
typedef struct {

intl6_t REAL;

intl6_t IMAG;
} complexl6_t;

// Structure to contain normalized FFT values (need decimals)
typedef struct {

float REAL;

float IMAG;
} complexf t;

void init (void) {
samInit();
pioInit();
tcInit();
tcDelayInit () ;
// The ST7735R SPI communication method requires MSB first and SPI mode O.
// The ATSAM is already locked to MSB first (see Figures 33-3 and 33-4).
// SPI mode 0 is analogous to CPOL = 0 and NPCHA = 1 for the ATSAM.
// Note to self: Figure out a proper frequency for SCLK later.
spilInit();

// Setting pinmodes

pioPinMode (CS, PIO_OUTPUT) ;
pioPinMode (DC, PIO_OUTPUT) ;
pioPinMode (RST, PIO_OUTPUT) ;
pioPinMode (FPGA LOAD, PIO_OUTPUT);
pioPinMode (FPGA_CE, PIO_OUTPUT) ;
pioPinMode (FPGA_DONE, PIO_INPUT) ;

// Setting initial pin values

pioDigitalWrite(CS, !CS_EN); // ensure that the display is not SPI-enabled

pioDigitalWrite (DC, PIO_HIGH); // always assume DATA (high) is written unless CMD (low) is specified for write
pioDigitalWrite (RST, PIO_HIGH); // ensure that RST isn't immediately on

pioDigitalWrite (FPGA_CE, |FPGA_CE_EN) ;

pioDigitalWrite (FPGA LOAD, !FPGA_LOAD_EN);

initR();

adcInit (ADC_MR_LOWRES_BITS_10) ;
adcChannelInit (MIC, ADC_CGR_GAIN_X1, ADC_COR_OFFSET_OFF);

// Use TIMER_CLOCK1, which is MCK/2 (where MCK = 3578000) --> 1789000 Hz;

// The counter is 16 bits, which counts up to 65535, which means it caps in 65535/1789000 = 36.6 ms;

// For a 2000 Hz sampling frequency, the TC would be at:

// (1/2000 sec)* (1789000 Hz) = 894.5 = ~894

// Thus, reset if the counter is greater than 894.

tcChannelInit (ADC_SAMPLE TC, TC_CLK1 ID, TC MODE UP RC);

tcSetRC_compare (ADC_SAMPLE_TC, 894);

// took a million years to figure this out but as it turns out you need to reset the counter first to get it to run
tcResetChannel (ADC_SAMPLE_TC) ;

}

// (1) Update mic data from the connected mic using ADC channels.
void update mic_data(uintl6_t mic _data[], int fft_size) {
if (tcCheckRC_compare (ADC_SAMPLE TC)) {
// Shift elements of mic_data to the right by 1 index (kick out the oldest value)
for (int i = fft size-1; i > 0; i--) { mic_data[i] = mic_data[i-1]; }
// Put the newest value of mic_data (direct ADC steps) into the Oth index
// Basically, the 10-bit ADC goes into a 16-bit point, which is totally fine
// because we'll send it directly to the FPGA, which will interpret it as a Q05.10 number
// (which is fine since these numbers can't be negative, so we're technically just

16



// dividing by 275).

mic_data[0] = (uintl6_t) adcRead_step (MIC);
// Reset counter

tcResetChannel (ADC_SAMPLE_TC) ;

}

// (2) Convert mic data into fft
void get_fft(complexl6_t fft[], uintl6_t mic_datal], int fft_size) {
// BAssert LOAD and CE to prime the FPGA
pioDigitalWrite (FPGA_LOAD, FPGA_LOAD_EN) ;
tcDelayMicroseconds (1) ;
pioDigitalWrite (FPGA_CE,  FPGA_CE_EN);

// Send out the data to the FPGA
int i; uintlé_t sdi;
for (i = 0; i < fft_size; i++) {
sdi = mic_datali];
spisendReceivel6 (sdi) ;
}
// Deassert load and wait for FPGA to finish
pioDigitalWrite (FPGA LOAD, !FPGA_LOAD EN);
while (!pioDigitalRead (FPGA_DONE)) ;
// shift data in from FPGA

for (i = 0; i < fft_size; i++) {
// Send garbage data and get MSB (real) and LSB (imag) in return
fft[i] .REAL = spiSendReceivelé6 (0XFFFF) ;
fft[i].IMAG = spiSendReceivelé6 (0XFFFF) ;

}

// Deassert CE; transaction complete

tcDelayMicroseconds (1) ;

pioDigitalWrite (FPGA_CE, !FPGA_CE_EN) ;

}

// (3) Normalize the fft
void norm_fft(complexf t fft norm[], complexl6_t fft[], int fft_size) {
int 1i;
for (i = 0; i < fft_size/2; i++) {
// Divide by 32768 because the value we have is, despite being a 05.10
// number, technically a signed short. Hence, even though the max of
// a 05.10 number is 32, we instead divide by the max of a signed short.
fft norm[i] .REAL = ((float) fft[i].REAL)/32768.0;
fft norm[i].IMAG = ((float) fft[i].IMAG)/32768.0;

}

// (4) Calculate the normalized magnitude for each point in the fft
void get_mag(float fft mag[], complexf t fft norm[], int size) {
// Don't need to worry about overflow or whatnot since we normalized
// the magnitudes here. However, we do need to divide by root 2
// since that is the maximum a magnitude can be given both inputs
// are 1 (sqrt(l + 1) = sqrt(2)).
int i; float sgRe; float sqlm;
for (i = 0; 1 < size; i++) {
sqRe = powf (fft_norm[i].REAL,2);
sqIm = powf (fft_norm[i].IMAG,2);
// Taking magnitude and dividing by root 2
fft mag[i] = sqgrt((sqRe + sqIm)/2.0);
}
}

// (5) Convert the magnitude to a display height on the ST7735
void get_disp(uintlé_t fft disp[], float fft mag[], int size) {
int 1i;

for (i = 0; i < size; i++) {
// Magnitude is normalized to 1, just multiply by max height
fft _disp[i] = (uintlé_t) (fft_mag[i]*MAXHEIGHT);

}
}

int main (void) {
init();
draw_cal(); // integrity check
fillRect (0,0, MAXWIDTH, MAXHEIGHT,RGB565_BLACK); // black background

int fft_size = 32;

int bin_num = fft_size/2; // number of bins is half the size of fft
int bin_spc = 4; // pixels between bins

int bin_width = 4; // pixel width of bins

// Calculate blank space on the sides

int edge_spc = (MAXWIDTH- (bin_num*bin_width + (bin_num-1)*bin_spc))/2;

// Data structures necessary for processing sound data

uintle_tx* mic_data = malloc(fft_size * sizeof (uintlé6_t));
complexl6_t* fft = malloc(fft_size * sizeof (complexl6_t));
complexf t* fft norm = malloc(fftisize/Z * sizeof (complexf t));
float* fft_mag = malloc(fft_size/2 * sizeof (float));
uintl6_t* fft_disp = malloc(fft_size/2 * sizeof (uintlé_t));

// Assorted dummy variables
int i, %, y, w, h;

17




while (1) {
// erase the old data by painting it with black

for (i = 0; i < bin_num; i++) {
x = edge_spc + i*(bin_width + bin_spc);
y = 0;

w = bin_width;
h = fft displi];
//h = (int) (((double) mic data[i])/1024.0%128.0);
fillRect (x,y,w,h,RGB565_ BLACK) ;
}
// update mic data
update mic_data(mic_data, fft_size);
// update fft
get fft(fft,mic_data,fft_size);
// normalize fft
norm_fft (fft_norm, fft,fft_size);
// update fft mag (normalized to 1)
get_mag (fft_mag, fft_norm, fft_size/2);
// update fft disp (normalized to 128
get_disp (fft_disp, fft_mag, fft_size/2);
// show the current data by painting over with white

for (i = 0; i < bin_num; i++) {
x = edge_spc + i*(bin_width + bin_spc);
y = 0;

w = bin_width;
h = fft displi];
//h = (int) (((double) mic_data[i])/1024.0%128.0);
fillRect (x,y,w,h,RGB565 WHITE) ;
}
// Pause for a bit
//tcDelayMillis (33);
// We can't pause because we need to sample the mic!

7.3. Translated ST7735 Library (ST7735.h)

#ifndef ST7735_H
#define ST7735_H

/] —==m—————= <CODE BEGIN>——————m o m oo oo
#include "SAM4S4B.h"

// Datasheet: https://cdn-shop.adafruit.com/datasheets/ST7735R V0.2.pdf

// See Table 6.2 for a description of pin functions on the ST7735.

#define CS PIO_PAl6 // Chip select pin (0 enable)

#define DC PIO_PA9Y // Display data/command select pin (0 cmd, 1 data/param)
// Note: In the Arduino library, DC is instead RS.

#define RST PIO_PA10 // Reset pin (0 reset) - req. to properly init chip

// MISO is not required for this write-only display

// initR() initializes the ST7735R series (instead of the B or G series).

// initR() behavior changes based on the tab color of your ST7735's plastic

// wrap; for example, our ST7735 has a green tab, and thus uses INITR GREENTAB.
// Functionally speaking these macros will not be used; it's just here to

// explain the original C++ library code. We know that we are using a 128 by
// 128 ST7735R with a green tab.

#define INITR_GREENTAB 0x0

#define INITR_REDTAB 0x1

#define INITR_BLACKTAB 0x2

// Our ST7735 has dimensions of 128 by 128.
#define MAXWIDTH 128
#define MAXHEIGHT 128

// System command list as per Table 10.1.1

#define ST7735_NOP 0x00 // No operation

#define ST7735_SWRESET 0x01 // Software reset

#define ST7735_RDDID 0x04 // Read display ID

#define ST7735_RDDST 0x09 // Read display status
#define ST7735_SLPIN 0x10 // Sleep in and booster off
#define ST7735_SLPOUT 0x11 // Sleep out and booster on
#define ST7735_PTLON 0x12 // Partial mode on

#define ST7735_NORON 0x13 // Parital off (normal)
#define ST7735_INVOFF 0x20 // Display inversion off
#define ST7735_INVON 0x21 // Display inversion on
#define ST7735_DISPOFF 0x28 // Display off

#define ST7735_DISPON 0x29 // Display on

#define ST7735_CASET 0x2A // Column address set
#define ST7735_RASET 0x2B // Row address set

#define ST7735_RAMWR 0x2C // Memory write

#define ST7735 RAMRD 0x2E // Memory read

18



#define ST7735_PTLAR 0x30 // Partial start/end address set
#define ST7735_COLMOD 0x3A // Interface pixel format
#define ST7735_MADCTL 0x36 // Memory data access control

// Panel function command list as per Table 10.2.1

#define ST7735_FRMCTR1 0xBl // In normal mode (full colors)

#define ST7735_FRMCTR2 0xB2 // In idle mode (8-colors)

#define ST7735_FRMCTR3 0xB3 // In partial mode + full colors

#define ST7735_INVCTR 0xB4 // Display inversion control

#define ST7735_DISSETS 0xB6 //

#define ST7735_PWCTR1 0xCO // Power control setting

#define ST7735_PWCTR2 0xCl // Power control setting

#define ST7735_PWCTR3 0xC2 // In normal mode (full colors)

#define ST7735_PWCTR4 0xC3 // In idle mode (8-colors)

#define ST7735_PWCTRS 0xC4 // In partial mode + full colors

#define ST7735_VMCTR1 0xC5 // VCOM control 1

#define ST7735_RDID1 O0xDA // Read ID1

#define ST7735_RDID2 0xDB // Read ID2

#define ST7735_RDID3 0xDC // Read ID3

#define ST7735_RDIDA4 0xDD // Read ID4

#define ST7735_GMCTRP1 0xE0 // Gamma ('+' polarity) correction chars
#define ST7735_GMCTRN1 0xE1l // Gamma ('-' polarity) correction chars

// Color definitions, 16 bits each --> RGB 5-6-5 allocation (Section 9.8.5)
#define RGB565_BLACK 0x0000 // (00000,000000,00000)

(
#define RGB565 BLUE 0x001F // (00000,000000,11111)
#define RGB565_RED 0xF800 // (11111,000000,00000)
#define RGB565 GREEN 0x07E0 // (00000,111111,00000)
#define RGB565 CYAN 0x07FF // (00000,111111,11111)
#define RGB565 MAGENTA 0xF81F // (11111,000000,11111)
#define RGB565_YELLOW 0xFFEO // (11111,111111,00000)
#define RGB565_WHITE OxFFFF // (11111,111111,11111)

// Used for selecting whether you're sending data or command
#define DATA 0
#define CMD 1

// Define what values enable which slaves
#define CS_EN 0

// For an ST7735R with a green tab, colstart and rowstart are offset
#define COLSTART 2
#define ROWSTART 3

// Imported from Arduino library
#define DELAY 0x80

// Imported from Arduino library (comments included)

const static unsigned char Remd[] = {
21, // -—-——= <21 commands total for green tab>-----
/] -=——- <15 commands for red/green tab only>-----
ST7735_SWRESET, O0+DELAY, // 1: Software reset, 0 args, w/delay
150, // * 150 ms delay
ST7735_SLPOUT , O+DELAY, // 2: Out of sleep mode, 0 args, w/delay
255, // * 500 ms delay
ST7735_FRMCTR1, 3 , // 3: Frame rate ctrl - normal mode, 3 args:
0x01, 0x2C, 0x2D, // - Rate = fosc/(1x2+40) * (LINE+2C+2D
// (Note: fosc = 625 kHz (Section 10.2.1)
ST7735_FRMCTR2, 3 , // 4: Frame rate control - idle mode, 3 args:
0x01, 0x2C, 0x2D, // - Rate = fosc/(1x2+40) * (LINE+2C+2D
ST7735_FRMCTR3, 6 , // 5: Frame rate ctrl - partial mode, 6 args:
0x01, 0x2C, 0x2D, // - Dot inversion mode
0x01, 0x2C, 0x2D, // - Line inversion mode
ST7735_INVCTR , 1 , // 6: Display inversion ctrl, 1 arg, no delay:
0x07, // - No inversion
ST7735_PWCTR1 , 3 , // T1: Power control, 3 args, no delay:
0xA2, //
0x02, /7 - GVCL = -4.6V
0x84, // - AUTO mode
ST7735_PWCTR2 , 1 , // 8: Power control, 1 arg, no delay:
0xC5, 7/ - VGH25 = 2.4C VGSEL = -10 VGH = 3 * AVDD
ST7735_PWCTR3 , 2 , // 9: Power control, 2 args, no delay:
0x0A, // - Opamp current small
0x00, // - Boost frequency
ST7735_PWCTR4 , 2 , // 10: Power control, 2 args, no delay:
0x8A, // - BCLK/2, Opamp current small & Medium low
0x2A, //
ST7735_PWCTR5 , 2 , // 1l: Power control, 2 args, no delay:
0x8A, OxEE, //
ST7735_VMCTR1 , 1 ’ // 12: Power control, 1 arg, no delay:
0x0E, //
ST7735_INVOFF , 0 , // 13: Don't invert display, no args, no delay
ST7735_MADCTL , 1 ’ // 14: Memory access control (directions), 1 arg:
0xC8, // - row addr/col addr, bottom to top refresh
ST7735_COLMOD , 1 , // 15: set color mode, 1 arg, no delay:
0x05 , 1/ - 16-bit color
/] === <2 commands for green tab only>-----
ST7735 CASET , 4 , // 1: Column addr set, 4 args, no delay:

19




0x00, 0x02 , 1/ - XSTART = 0

0x00, 0x7F+0x02 ;1 - XEND = 127
ST7735_RASET , 4 , // 2: Row addr set, 4 args, no delay:
0x00, 0x01 ;1 - XSTART = 0
0x00, 0x9F+0x01 ;1 - XEND = 159
/] —==== <4 commands for red/green tab only>-----

ST7735_GMCTRP1,16 , // 1: Magical unicorn dust, 16 args, no delay:
0x02, Oxlc, 0x07, 0x12, //
0x37, 0x32, 0x29, Ox2d, //
0x29, 0x25, 0x2B, 0x39, //
0x00, 0x01, 0x03, 0x10, //

ST7735_GMCTRN1, 16 , // 2: Sparkles and rainbows, 16 args, no delay:
0x03, Oxld, 0x07, O0x06, //
0x2E, 0x2C, 0x29, 0x2D, //
0x2E, Ox2E, 0x37, Ox3F, //
0x00, 0x00, 0x02, O0x10, //

ST7735_NORON , O0+DELAY, // 3: Normal display on, no args, w/delay

10, // * 10 ms delay
ST7735_DISPON , O0+DELAY, // 4: Main screen turn on, no args w/delay
100 // * 100 ms delay

}i

void resetR(void) {
// The ST7735R resets on a low signal.
pioDigitalWrite (RST, PIO_HIGH);
tcDelayMillis (10);
pioDigitalWrite (RST, PIO_LOW) ;
tcDelayMillis (10) ;
pioDigitalWrite (RST, PIO_HIGH);
tcDelayMillis (10);

}

void writeR(char DC_sel, char send) {
// NOTE: If you are using a non-peripheral pin as the chip select for SPI

// communication, then you must configure that pin as high/low OUTSIDE

// of this function. (e.g: setHigh; setLow; writeR; writeR; setHigh;)

// See Section 9.4.1 for expected behavior for multi-byte writes.

if (DC_sel == CMD) { pioDigitalWrite(DC, PIO_LOW); } // sending CMD - pull low

spiSendReceive (send) ;
if (DC_sel == CMD) { pioDigitalWrite(DC, PIO_HIGH); } // only pull low while sending CMD
}

void initR(void) {
resetR(); // before anything else, perform a reset

char numComms; // stores number of commands in Rcmd[]

// Note: numArgs is in a format such that numArgs[7:4] = DELAY? (where
// an additional argument is necessary if DELAY? = 1111) and

/7 numArgs[3:0] is the actual number of parameters.

// e.g: numArgs = 1111 0001 will have 1 actual argument and 1 DELAY
// argument.

char numArgs; // stores number of args for an individual command
// Note: numParams will just be numArgs[3:0], effectively.

char numParams; // stores number of params for an individual command
uintlé_t addr = 0; // stores current index in Remd[]

uintl6_t ms; // stores delay necessary after executing command

numComms = Rcmd[addr++]; // Number of commands to follow
while (numComms--) { // For each command...
/] —==== <START: SPI Transaction>-----
pioDigitalWrite (CS,CS_EN); // chip enable
writeR (CMD, Remd [addr++]) ; // Issue command
numArgs = Rcmd[addr++]; // Number of args to follow
ms = numArgs & DELAY; // Extract delay bits (if no DELAY, ms = 0)
numParams = numArgs & ~DELAY; // Mask out delay bit to get numParams
while (numParams--) { // For each param...
writeR (DATA,Rcmd[addr++]) ; // Issue param
}
pioDigitalWrite(CS, !CS_EN); // chip disable

/] —==== <END: SPI Transaction>-----

if (ms) { // 1If we have a delay (i.e: nonzero ms)...
ms = Rcmd[addr++]; // Read post-command delay time (ms)
if(ms == 255) ms = 500; // If 255, delay for 500 ms instead

tcDelayMillis (ms) ;

}

void setAddrWindow (uint8_ t x0, uint8_t y0, uint8_t x1, uint8_t yl) {
writeR(CMD, ST7735_CASET); // Column addr set
writeR (DATA, 0x00);
writeR(DATA, x0+COLSTART); // XSTART
writeR (DATA, 0x00);
writeR (DATA, x1+COLSTART); // XEND

writeR(CMD, ST7735 RASET); // Row addr set
writeR (DATA, 0x00);

writeR (DATA, y0+ROWSTART); // YSTART
writeR (DATA, 0x00);

writeR(DATA, yl+ROWSTART); // YEND

writeR (CMD, ST7735 RAMWR) ; // write to RAM

20




}

/* Note: Coordinates are such that (x,y) = (0,0) is on the bottom right corner of
the TFT (when all the pins are at the bottom), and x increases leftwards
while y increases upwards.

*/
void fillRect (intl6_t x, intl6_t y, intlé6_t w, intl6_t h, intlé6_t color) {
/*
// Must offset x and y to the starting row and column
x += COLSTART;
y += ROWSTART;

// Set x and y bounds

int x max = COLSTART + MAXWIDTH - 1;
int y max = ROWSTART + MAXHEIGHT - 1;
*/

int x_max = MAXWIDTH-1;
int y_max = MAXHEIGHT-1;

// clipping code

if((x > x_max) || (y > y_max)) { return; }

if((x + w-1) > x_max) { w = x_max+l-x; }
if((y + h-1) > y max) { h = y max+l-y; }
/) === <START: SPI Transaction>-----
pioDigitalWrite (CS,CS_EN); // chip enable

setAddrWindow (x, y, x+tw-1, y+h-1);

unsigned char hi = color >> 8; // MSB to send
unsigned char lo = color; // LSB to send

// Write data for every pixel in the address window
for (y=h; y>0; y--) {
for (x=w; x>0; x--) {
writeR(DATA, hi);
writeR (DATA, lo);
}
}
pioDigitalWrite (CS, !CS_EN) ; // chip disable
/] === <END: SPI Transaction>-----
}

/* <draw_cal>
Draw the calibration screen.
(Just fills the screen black and draws a set of axes along the edges.)
*/
void draw_cal (void) {
fillRect (0,0, MAXWIDTH, MAXHEIGHT, RGB565_BLACK) ;

int color = RGB565_RED;
for(intle_t i = 0; i < 128; i++) {
fillRect (i, 0,1,1,color);
fillRect (0,1i,1,1,color);
if (i%4 == 3) {
switch(color) {
case RGB565_ RED: color = RGB565_YELLOW; break;
case RGB565_ YELLOW: color = RGB565_BLUE; break;
case RGB565 BLUE: color = RGB565_GREEN; break;

case RGB565_GREEN: color = RGB565_RED; break;
default: color = RGB565_BLACK; break;
}
}
}
}
[/ —mmmmmmmmm <CODE END>-----—-—--

#endif

21




