
The MicroPs (Prisoner’s) Racetrack

Final Project Report
December 13, 2019

E155

Russell Bingham and Jane Cho Watts

Abstract:

The goal of this project was to create an interactive HotWheels race track with motor actuated parts and
an LCD screen to display race information like game state and score. Key technical work for the project
included a custom C library to interact with the LCD screen, PWM control implemented on the FPGA,
3D printed mechanical parts, and multi-mode game logic on the FPGA to unify the elements of the
system. Two game modes were implemented for the final design, both based on classic game theory
decision problems: the Prisoner’s Dilemma (hence the name) and the Chicken Game. All elements of the
stated problem were solved to specification, and the behavior of the game components was tuned such
that the game is playable with variable results in both modes.

Page 1

Introduction
The motivation for this project was to use HotWheels cars in an interesting and motorized

context. The LACMA Metropolis exhibit was a showcase of this to the extreme [1-2], with hundreds of
cars constantly circling in a motorized city, and when MATTEL gave out HotWheels cars at the HMC
Career Fair, the idea of a motorized HotWheels race track was cemented.

The block diagram of the eventual system is shown in Figure 1. In general, the system is
subdivided such that the FPGA handles the system inputs and the action of the game, while the FPGA
handles the system output to the user via the LCD screen. As such, the FPGA code includes a custom
FPGA PWM routine, a state FSM that acts to handle switch debouncing, and outputs game state
information to the ATSAM via GPIO pins. By contrast, the ATSAM takes in game state information from
the FPGA, outputs appropriate information to the LCD, and reads the finish switches to keep track of the
score.

Mechanically, the race track is functionally segmented into three subsections. The “send station”,
with its custom 3D-printed holding slots and start gates, functions as the staging area for the two cars.
This section includes two micro-servos to release the cars at the same time, and is thus connected to the
FPGA. The second station, the track itself, is primarily made up of stock HotWheels track running the
length of the race course. The track includes a motor-actuated ramp at the beginning of its flat run-out,
and is thus connected to the FPGA. At the end of the course, the so-called “receive station” contains the
limit switches that detect the end of the race when hit by a car. These switches are connected to the FPGA
to signal the end-of-game state change, and are also connected to the ATSAM so that it can keep track of
the score.

Figure 1: System block diagram

Page 2

New Hardware

This project includes three primary new hardware components: the HD44780U LCD screen, the
four TowerPro SG92R micro-servos, and the two MXRS KW11-3Z-2 limit switches. Their use
considerations and implementation details are outlined below.

1. HD44780U LCD

The LCD screen (HD44780U) contains 2 rows of display characters, each with 16 characters. The
screen requires various setup procedures to run and take in data, as detailed in its datasheet [3]. Once set
up, the screen requires the user to sequentially write each character to the screen by moving its internal
write address (referred to as the “cursor”) to the desired spot, then sending the value of the desired ASCII
character via its 8-bit GPIO bus. One of the primary technical accomplishments of this project was
implementing a custom ATSAM library to accomplish this functionality. The library was based on the
screen’s datasheet and on the Arduino LiquidCrystal library the screen is designed to run on. The LCD
interface software also includes functionality to take in entire strings and print them sequentially to the
screen, making the interface very easy to use.

The screen is wired to the GPIO pins of the ATSAM with a status pin, an enable pin, and an 8-pin
data bus, as shown in the system schematic.

2. SG92 Tower Pro Servo Motors

The TowerPro SG92R servo motors are standard servos, in a very small size, rated for 2.5 kg-cm
of torque load [4]. They take in 5V power supply and a PWM signal to control their rotational position
within a 180-degree range. The position of the motor within this range is controlled by the width of the
incoming PWM pulse, which can range from 1 ms to 2 ms. Values outside of this range are rejected by
the servo’s internal input controls. For this project, the PWM signals are generated by a custom FPGA
routine, which uses a counter and a slowed clock of 78 kHz to vary the length of the PWM pulse in the
output signal across the desired range with 150 different discrete positions. Specifics of Verilog code and
block diagram can be found in the FPGA section.

These motors exhibited a consistent issue with oscillating around the desired value. This was
addressed with bypass capacitors of 0.1uF and a separate power supply.

3. MXRS KW11-3Z-2 Limit Switches

The MXRS KW11-2Z-2 limit switches are a simple model of limit switch which output a high
voltage when their contact bar is pressed by a force. As such, they function similarly to a push button, and
are wired similarly, with a 2.2 kOhm pull-down resistor between the ground terminal and ground. The
data terminal of the switch is merely pulling from the same contact as the ground terminal, and the switch
is thus electrically identical to a push button. For this project, the output terminal of both limit switches
was wired to both the ATSAM and the FPGA via GPIO pins for both devices.

Page 3

Schematics

The full schematic of all components on our breadboard can be found in Figure 2 below.

Figure 2: Full schematic

Page 4

Mechanical Design
The project also required customized mechanical design of the racetrack, including a Send Station,
Actuated Ramps, and a Receive Station. Figure 3 shows a block diagram of these components’ locations.

Figure 3: Block diagram of station locations

The mechanical setup, entirely completed, can be seen in Figure 4. A large wood board and a tall 2x4
wood block were assembled using wood screws, then spray painted black to contrast with the bright
orange HotWheels tracks and custom components that were affixed to the base with hot glue.

Figure 4: Front/Side view of physical setup

Page 5

Part Design:
The following parts were custom designed for the project’s application, and 3D printed in the HMC
Machine Shop. All six of the individual printed parts performed as expected and formed an effective
interface between the microMudd board, the new hardware, and the physical system.

1. Send Station Case & L-shaped Guides

Figure 5: Front/back view of send station sase

Figure 6: Servo motor and mounting block locations for send station

The send station case has two slots for Player 1 and Player 2’s cars to be inserted into. Underneath, there
is a lip extruded at the correct height for the servo extension arm to rest on, to ensure that the weight of
the car will not dislocate the arm. The case also has cut outs for wood screws into the wooden column and
2 servo motors. The L-shaped guides were printed afterwards to increase stability of the cars during
release.

2. Send Station Servo Fan Extensions

Figure 7: Servo arm fan extension

Page 6

The extension for the servo arm serves to more effectively block the cars from going down the track as
they rest in the send station. This shape covers the full area of the drop zone, and when the motors turn 90
degrees at the start of the race, the cars fall consistently through the chute. The fan’s curved shape allows
for its rotation across the flat lip surface of the Send Stati

3. Ramp Servo Extension & Pivot Block

Figure 7: Track ramp and structural block

The track ramps are the width of the HotWheels track and have a pin extension on the side facing away
from the servo that is secured in the hole of a structural support block. The ramps have a rounded edge to
save material, distinguish one side from the other, and provide a straight launch path on the uncurved
upper side. This system was very structurally sound, and remained in place and actuatable even after the
ramp servos were internally damaged by car impacts.

Page 7

FPGA Design

As noted above, the FPGA handles the game logic, the user inputs via push buttons and limit
switches, and the PWM control for the servo motors in the race course. The design of each of these
subsections is described below.

A. Game Logic

The game logic for the race is described by a seven-state FSM, implemented on the FPGA. The full state
transition diagram can be seen in Figure 8, and the motor state output for each game mode can be seen in
Tables 1 and 2 for Prisoner’s and Chicken mode, respectively.

Figure 8: State transition diagram of game logic FSM

In prose, the logic of the game is as follows:

1. Reset game with reset button
First, to reset the state of the game logic and track state, the players will press the reset button on the
breadboard. This will set the release station gates to closed and the track ramps to down. Once the two
cars are placed in their respective slots in the release station, the game is ready to begin.

2. Start
Once the cars are placed in their slots and the players are ready, one player can press the start button,
which will begin a 3 second countdown on the LCD display. When the count reaches zero, the motors in
the release station will toggle, releasing the two cars to go down the tracks.

Page 8

3. Control player buttons
As the cars are moving down the vertical drop below the release station, the players must each make a
snap decision about whether to press their control button, and if so, when. The different effects of a button
press by either or both players is shown in the tables below, but effectively, in Prisoner’s mode, pressing
the button makes the other player’s ramp activate, and vice versa for Chicken mode.

4. Ramp sections
The ramp sections will be at the bottom of the initial vertical drop on the track. In testing, we have found
that this gives the players less than a second to make their button decision, and fractions of a second to
time their press correctly. We believe that this time interval will be so small that there will be a significant
possibility that a player will press their button too slowly and the cars will pass the ramps before they can
react. This will generate an element of skill and suspense to the game, making it fun to play.

5. Finish

At the end of the tracks, there will be two limit switches to sense when the cars have reached the end of
the race. As soon as either switch is tripped, the FPGA changes state and records the winner. This
increments the score count in the ATSAM and the LCD changes to display the running score between the
players. The game flow loops back to reset, and the players should press the reset button and get ready for
a new race.

Table 1: Prisoner’s Dilemma Game Mode Ramp Logic

Table 2: Chicken Game Mode Ramp Logic

Page 9

B. PWM Module

The FPGA also housed the PWM module to drive the servo motors to desired angles. To run the PWM’s
counter, generate_slowclk() module from Lab 3, which uses a multi-bit counter and observes the most
significant bit to slow down the FPGA’s 40 MHz clock, was reused. Using the following equation:

 / Nf out = f clk * p

and counter value p = 1 and number of counter bits N = 9, the slowclk module generated a clock of 78
kHz, or a period of 0.013 ms.

Knowing the period, or amount of time for a single count, the number of slowclk counts for each desired
PWM duty cycle was calculated. For example:

uty cycle of 1 ms 7 countsD * 0.013 ms
1 slowclk count = 7

In this case, a PWM duty cycle of 1 ms (the lower limit for the servo) would be equivalent to 77 slowclk
counts. With the calculated count values, the PWM compares the duty cycle count and current counter
value, then outputs 1 if the counter is less than the duty cycle count and outputs 0 if the counter exceeds
the duty cycle count. Finally, the PWM resets its counter once the PWM period (20 ms, or 1563 counts) is
reached to produce a periodic signal. The block diagram for this logic can be found in Appendix C.

Page 10

Microcontroller

At a high level, the ATSAM reads the current FSM state from 3 GPIO pins and then reacts to that
state by printing the appropriate text to the LCD screen. Its only other output function is communicating
to the FPGA when the 3 second-long countdown state has finished, at which point it sets a separate GPIO
pin to high. Thus, the majority of the code in the primary C file is devoted to reading the game state and
using the separate LCD screen interface, developed for the ATSAM from scratch with reference to the
Arduino LiquidCrystal library’s functionality.

The ATSAM routines to interface with the LCD are organized in a header file (lcdControl.h - see
Appendix B). To operate the LCD with this code, one must call the lcdBegin() function, which writes the
appropriate settings into the LCD’s settings memory. After initialization, the user can use the
printToLCD() function to print two strings to the two rows of the display. This function loops through the
passed-in length of each string, and moves the cursor and writes the character at each spot. The
moveCursor() function sets the current DDRAM write address (cursor) using the appropriate signal flags
and digital bus values, and the write() function sets the digital bus lines to the correct values then pulses
the enable pin for 1 ms to cause the screen to accept the character and write it to the cursor’s position on
the screen. The lcdControl.h interface also includes a range of other utility functions to operate the display
that are C implementations of each function available in the LiquidCrystal library.

Results

In short, this project was successful and completed all of its stated objectives. The game state
machine was accurate and reliable, and the FPGA consistently sent the correct PWM signals to the
motors. The ATSAM reacted to the game state information as desired and printed informative text to the
attached LCD screen without bugs. Beyond the stated objectives of the project, a second game mode was
also implemented that allows players to test out a different game theory problem in the HotWheels race
track context. The mechanical parts designed to interface with the servo motors and race cars behaved as
intended, and the 3D printed structures were solid and consistent.

The primary shortcoming of the project was that the forces involved in actuating the various
moving parts eventually did internal damage to the TowerPro SG92R servos, resulting in power
problems, skipping motors, and by the end of Demo Day, a couple completely dead motors. While this
was not entirely unexpected given the speed of the cars racing down the track, the magnitude and
frequency of these motor malfunctions had a detrimental effect on the entertainment value of the final
product. Future work on the system would focus partially on integrating more robust servos (see the
TowerPro SG5010) so that the system holds up under extended use.

Other future work would include adding an option for the racers to tie in the event of both cars
jumping off or past the race track, optimizing the track shape for consistency, and collecting more race
data to quantify the effectiveness of different race configurations.

Page 11

References

[1] C. Burden, Metropolis II (the movie), https://www.youtube.com/watch?v=llacDdn5yIE
[2] Metropolis II - Hot Wheels Kinetic Sculpture - at LACMA,
https://www.youtube.com/watch?v=TA8fj-MJe5s&t=40s
[3] Hitachi, HD44780U (LCD-II) Datasheet, https://cdn-shop.adafruit.com/datasheets/HD44780.pdf
[4] TowerPro, SG92R, http://www.towerpro.com.tw/product/sg92r-7/
[5] MXRS KW-11-3Z-2 Limit Switches:
https://www.amazon.com/MXRS-Hinge-Momentary-Button-Switch/dp/B07MW2RPJY/
[6] Arduino LiquidCrystal Library: https://www.arduino.cc/en/Reference/LiquidCrystal

Parts List

Item Qty Source Vendor Part # Price

LCD Display 1 Adafruit (SparkFun) 1447 (HD44780) $10.95

Servo Motor 4 Adafruit (TowerPro) 4326 (SG92R) $23.80 ($5.95 each)

Hot Wheels Car &
Mega Track Pack

1 (40 ft) Amazon
(MATTEL)

B0721CGJMT $19.99

Hot wheel Cars 1 (Pack of 5) Amazon
(MATTEL)

B002ZCZ0F6 $4.99

Limit switches 2 Amazon (MXRS) MXRS
KW11-3Z-2

$6.49 ($0.54 each,
pack of 12)

Total $63.39

Page 12

Appendix A: Verilog Code
/*

Jane Cho Watts

Russell Bingham

Email: jwatts@hmc.edu, rbingham@g.hmc.edu

Date Created: 11/20/2019

Purpose: Run Game Logic, send/receive signals to/from connected components, including

motors, buttons, limit switches, and microcontroller (controlling the LCD screen)

*/

//definitions for angle case # of each motor state

`define down 3'd0

`define up 3'd1

`define jump 3'd2

`define leftClosed 3'd3

`define leftOpen 3'd4

`define rightClosed 3'd5

`define rightOpen 3'd6

//

module FinalProject_fpga(input clk, reset, // 40 Mhz clock

input logic startButton, resetButton,

player1Button, player2Button, player1Finish, player2Finish, modeSwitch, startSignal,

// input button signals & input signal from MCU

output logic releaseMotor1, releaseMotor2,

gameMotor1, gameMotor2, //output PWM motor signals

output logic statePin2, statePin1, statePin0,

scorePin // GPIO comms pins

);

logic slowclk;

logic [2:0] state, nextState; // state holders

//generates a slower clock to run the entire system

generate_slowclk slowCLK(clk, reset, slowclk);

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= 0;

else state <= nextState;

// nextState logic

// see FSM diagram

always_comb

case (state)

3'b000: if (startButton) nextState = 3'b110; // start

else nextState = 3'b000;

3'b110: if (startSignal) nextState = 3'b001; // countdown

Page 13

else nextState = 3'b110;

3'b001: if (player1Button) nextState = 3'b010; // racing

else if (player2Button) nextState = 3'b011;

else if (player1Finish) nextState = 3'b101;

else if (player2Finish) nextState = 3'b101;

else nextState = 3'b001;

3'b010: if (player2Button) nextState = 3'b100; // p1 press

else if (player1Finish) nextState = 3'b101;

else if (player2Finish) nextState = 3'b101;

else nextState = 3'b010;

3'b011: if (player1Button) nextState = 3'b100; // p2 press

else if (player1Finish) nextState = 3'b101;

else if (player2Finish) nextState = 3'b101;

else nextState = 3'b011;

3'b100: if (player1Finish) nextState = 3'b101; // both press

 else if (player2Finish) nextState = 3'b101;

else nextState = 3'b100;

3'b101: if (resetButton) nextState = 3'b000; // race over

else nextState = 3'b101;

default: nextState = 3'b000;

endcase

// set these correctly for the different race states and modes

logic [2:0] motor1State, motor2State, startGateStateLeft, startGateStateRight;

// output logic

// see FSM diagram

// left game motor logic

always_comb

case (state)

3'b000: motor1State <= modeSwitch ? `up : `down; //load

3'b110: motor1State <= modeSwitch ? `up : `down; //countdown

3'b001: motor1State <= modeSwitch ? `up : `down; //race

3'b010: motor1State <= modeSwitch ? `jump : `down; //p1 press

3'b011: motor1State <= modeSwitch ? `down : `up;//p2 press

3'b100: motor1State <= modeSwitch ? `down : `jump;//both

3'b101: motor1State <= `down; //finish

default: motor1State <= `down;

endcase

// right game motor logic

always_comb

case (state)

3'b000: motor2State <= modeSwitch ? `up : `down; //load

3'b110: motor2State <= modeSwitch ? `up : `down; //countdown

3'b001: motor2State <= modeSwitch ? `up : `down; //race

3'b010: motor2State <= modeSwitch ? `down : `up;//p1 press

3'b011: motor2State <= modeSwitch ? `jump : `down;//p2 press

3'b100: motor2State <= modeSwitch ? `down : `jump;//both

Page 14

3'b101: motor2State <= `down; //finish

default: motor2State <= `down;

endcase

// left release motor logic

always_comb

case (state)

3'b000: startGateStateLeft <= `leftClosed;

3'b110: startGateStateLeft <= `leftClosed; // countdown

3'b001: startGateStateLeft <= `leftOpen; // start

3'b010: startGateStateLeft <= `leftOpen;

3'b011: startGateStateLeft <= `leftOpen;

3'b100: startGateStateLeft <= `leftOpen;

3'b101: startGateStateLeft <= `leftClosed;

default: startGateStateLeft <= `leftClosed;

endcase

// right release motor logic

always_comb

case (state)

3'b000: startGateStateRight <= `rightClosed;

3'b110: startGateStateRight <= `rightClosed; // countdown

3'b001: startGateStateRight <= `rightOpen; // start

3'b010: startGateStateRight <= `rightOpen;

3'b011: startGateStateRight <= `rightOpen;

3'b100: startGateStateRight <= `rightOpen;

3'b101: startGateStateRight <= `rightClosed;

default: startGateStateRight <= `rightClosed;

endcase

// run motors based on output logic

PWMsignal startMotor1(slowclk, reset, startGateStateLeft, releaseMotor1);

PWMsignal startMotor2(slowclk, reset, startGateStateRight, releaseMotor2);

PWMsignal trackMotor1(slowclk, reset, motor1State, gameMotor1);

PWMsignal trackMotor2(slowclk, reset, motor2State, gameMotor2);

// give state and score info to ATSAM

assign statePin2 = state[2];

assign statePin1 = state[1];

assign statePin0 = state[0];

endmodule

//

module generate_slowclk(input clk, reset, output slowclk);

/*

Jane Cho Watts

Email: jwatts@hmc.edu

Date Created: 9/25/19

Page 15

Purpose: This module takes in the 40 MHz clk from FPGA Pin 88, and outputs a slower

clk 'slowclk'

This is to match the slower clock that the Dual Digit Display

needs to time-multiplex, and avoid asynchronous design.

*/

logic [8:0] N; //counter bit to generate slower frequency

always_ff@(posedge clk, posedge reset) //counter

if(reset) N <= 0;

else N <= N + 1;

//we look at the most significant bit of N, which will be switching at a lower

frequency than clk

assign slowclk=N[8];

//fout = fclk p / N = (40MHz)*1/2^9 = 78 kHz // new slowclk_period = .0128 ms

endmodule

//

module PWMsignal(input slowclk, reset,

input [2:0] angle,

output PWM_out);

logic resetPWM;

logic [10:0] PWMperiod_cnts, //# of counts in PWM waveform period

dutycycle_cnts, //# of counts in duty cycle

PWMcnts; //# of current counts

assign PWMperiod_cnts = 1563; //20 ms (1563 slowclk_periods)

// allowable range roughly 75 to 150

always_comb

case(angle)

3'd0: dutycycle_cnts = 134; // down

3'd1: dutycycle_cnts = 100; // up

3'd2: dutycycle_cnts = 129; // jump

3'd3: dutycycle_cnts = 140; // leftClosed

3'd4: dutycycle_cnts = 70; // leftOpen

3'd5: dutycycle_cnts = 65; // rightClosed

3'd6: dutycycle_cnts = 140; // rightOpen

default: dutycycle_cnts = 86;

endcase

//counter for PWM clock signal

always_ff @(posedge slowclk)

if (resetPWM) PWMcnts <= 0;

else PWMcnts <= PWMcnts + 1;

assign resetPWM = (PWMcnts > PWMperiod_cnts) | (reset); //new cycle

//set as 1 during duty cycle, set as 0 otherwise

assign PWM_out = (PWMcnts < dutycycle_cnts);

endmodule

Page 16

Appendix B: C Code
// main_code.c

// Russell Bingham and Jane Watts

// rbingham@g.hmc.edu, jwatts@g.hmc.edu
// 12/12/19

//

// Run Prisoner's Racetrack system

// displays data to screen, keeps track of countdown and score

//

// #includes

//

#include <stdio.h>

#include <stdlib.h>

#include "SAM4S4B.h"

#include "lcdControl.h"

//

// Constants

//

volatile unsigned long* PMC_WPMR = (unsigned long*) 0x400E04E4; // Pointer to the

write protect mode register

volatile unsigned long* PMC_PCER0 = (unsigned long*) 0x400E0410; // Pointer to the

PMC_PCER0 register

volatile unsigned long* WDT_MR = (unsigned long*) 0x400E1454; // Pointer to the

WDT_MR register

//

// Messages

// The following are the LCD display message routines for each game state

//

void state000(void) { //Loaded

 //Screen 1

 printToLCD("E155 Prisoner's ", " Racetrack ", 16, 16);

 tcDelayMillis(200);

 //Screen 2

 //Message will change depending on Mode

 if(pioDigitalRead(PIO_PB3)==0){ //read mode

 printToLCD("Mode: Prisoner's", "START to begin! ", 16, 16);

 } else {

 printToLCD("Mode: Chicken ", "START to begin! ", 16, 16);

 }

}

void state110(void) { //Countdown

Page 17

mailto:jwatts@g.hmc.edu

 printToLCD(" Ready to Race! ", " 3 ", 16, 16);

 tcDelayMillis(150);

 printToLCD(" Ready to Race! ", " 2 ", 16, 16);

 tcDelayMillis(150);

 printToLCD(" Ready to Race! ", " 1 ", 16, 16);

 tcDelayMillis(150);

 //send StartSignal to the FPGA to indicate motors to release

 pioDigitalWrite(PIO_PA9, 1); //startSignal = 1

}

void state001(void) { //Start Racing

 if(pioDigitalRead(PIO_PB3)==0){

 printToLCD("VroOoo0o0ooOoom!", "Mode: Prisoner's", 16, 16);

 } else {

 printToLCD("VroOoo0o0ooOoom!", "Mode: Chicken ", 16, 16);

 }

 pioDigitalWrite(PIO_PA9, 0); //startSignal = 0, reset for next game

}

void state010(void) { //P1 only Press

 printToLCD("Player 1 Button ", "Press Recognized", 16, 16);

}

void state011(void) { //P2 only Press

 printToLCD("Player 2 Button ", "Press Recognized", 16, 16);

}

void state100(void) { //Both Press

 printToLCD(" Both Players ", "Press Recognized", 16, 16);

}

int state101(char* temp) { //Done!

 if ((strcmp(temp, "1") + 1) == 1) {

 printToLCD("Race Completed! ", "Winner: Player 1", 16, 16);

 tcDelayMillis(300);

 return 0; // return 0 if p1 won

 }

 else {

 printToLCD("Race Completed! ", "Winner: Player 2", 16, 16);

 tcDelayMillis(300);

 return 1; // return 1 if p2 won

 }

}

//

// Main

Page 18

//

int main(void) {

 *PMC_WPMR = 0x504D4300; // Writes a password to the write protect mode register

 *WDT_MR |= 1 << 15; // Set the WDDIS bit to 1 to disable the watchdog timer

 //GPIO initializiation

 pioInit();

 pioPinMode(PIO_PA12, PIO_INPUT); //state[0]

 pioPinMode(PIO_PA13, PIO_INPUT); //state[1]

 pioPinMode(PIO_PA14, PIO_INPUT); //state[2]

 pioPinMode(PIO_PA25, PIO_INPUT); // score signal

 pioPinMode(PIO_PA9, PIO_OUTPUT); //start signal

 pioDigitalWrite(PIO_PA9, 0); //initialize start signal as 0

 pioPinMode(PIO_PB3, PIO_INPUT); //mode swtich

 //initialize LCD display

 lcdBegin(16, 2);

 // intialize variables for print loops

 char state[3] = "000";

 char lastState[3] = "000";

 char p1Score[11] = "Player 1: _";

 char p2Score[11] = "Player 2: _";

 char temp[1];

 int mode, lastMode;

 int score1 = 0;

 int score2 = 0;

 int scoreTemp = 0;

 int doneFlag = 0;

 while (1) {

 strcpy(lastState, state); // keep track of most recent state

 lastMode = mode; // most recent mode

 // read state vals through GPIO

 state[0] = pioDigitalRead(PIO_PA12) + '0';

 state[1] = pioDigitalRead(PIO_PA13) + '0';

 state[2] = pioDigitalRead(PIO_PA14) + '0';

 mode = pioDigitalRead(PIO_PB3); // read mode from SW3

 temp[0] = pioDigitalRead(PIO_PA25) + '0';

 // if state is different or mode has changed

 // call print function for each state (see above)

 if ((strcmp(lastState, state) + 1) != 1 || lastMode != mode) {

 if ((strcmp(state, "000") + 1) == 1) {

 state000();

 doneFlag = 0; // new game, allow another score

 }

 else if ((strcmp(state, "110") + 1) == 1) {

 state110();

Page 19

 }

 else if ((strcmp(state, "001") + 1) == 1) {

 pioDigitalWrite(PIO_PA9, 0); // countdown over //CHANGEME

 state001();

 }

 else if ((strcmp(state, "010") + 1) == 1){

 state010();

 }

 else if ((strcmp(state, "011") + 1) == 1){

 state011();

 }

 else if ((strcmp(state, "100") + 1) == 1){

 state100();

 }

 else if ((strcmp(state, "101") + 1) == 1){

 if (doneFlag != 1) {

 doneFlag = 1; // allow only one score per race

 // see state101() for scoreTemp return vals

 scoreTemp = state101(temp);

 // increment scores

 if (scoreTemp == 0) {score1 = score1 + 1;}

 else {score2 = score2 +

1;}

 // play game to 10 points, then reset

 if (score1 > 4) {

 printToLCD("Player 1 Wins!!!", "Woo0oO0OoOooO00o", 16, 16);

 score1 = 0;

 score2 = 0;

 }

 else if (score2 > 4) {

 printToLCD("Player 2 Wins!!!", "Woo0oO0OoOooO00o", 16, 16);

 score1 = 0;

 score2 = 0;

 }

 else {

 p1Score[10] = (score1 + '0');

 p2Score[10] = (score2 + '0');

 printToLCD(p1Score, p2Score, 11, 11);

 }

 tcDelayMillis(300);

 }

 printToLCD(" Press RESET ", " to start over ", 15, 16);

 }

 else {printToLCD("Unexpected State", " ", 16, 2);}

 }

 }

 return 0;

}

Page 20

/*

lcdControl.h

Author: Russell Bingham

Email: rbingham@g.hmc.edu

E155 MicroPs Final Project

Header file to provide functions to control the HD445780U LCD

Based on the Arduino LiquidCrystal library with Prof Harris' permission

*/

#include "SAM4S4B.h"

// pinouts

#define RS 15

#define EN 16

#define D0 17

#define D1 18

#define D2 19

#define D3 20

#define D4 21

#define D5 22

#define D6 23

#define D7 24

// commands

#define LCD_CLEARDISPLAY 0x01

#define LCD_RETURNHOME 0x02

#define LCD_ENTRYMODESET 0x04

#define LCD_DISPLAYCONTROL 0x08

#define LCD_CURSORSHIFT 0x10

#define LCD_FUNCTIONSET 0x20

#define LCD_SETCGRAMADDR 0x40

#define LCD_SETDDRAMADDR 0x80

// flags for display entry mode

#define LCD_ENTRYRIGHT 0x00

#define LCD_ENTRYLEFT 0x02

#define LCD_ENTRYSHIFTINCREMENT 0x01

#define LCD_ENTRYSHIFTDECREMENT 0x00

// flags for display on/off control

#define LCD_DISPLAYON 0x04

#define LCD_DISPLAYOFF 0x00

#define LCD_CURSORON 0x02

#define LCD_CURSOROFF 0x00

#define LCD_BLINKON 0x01

#define LCD_BLINKOFF 0x00

Page 21

// flags for display/cursor shift

#define LCD_DISPLAYMOVE 0x08

#define LCD_CURSORMOVE 0x00

#define LCD_MOVERIGHT 0x04

#define LCD_MOVELEFT 0x00

// flags for function set

#define LCD_8BITMODE 0x10

#define LCD_4BITMODE 0x00

#define LCD_2LINE 0x08

#define LCD_1LINE 0x00

#define LCD_5x10DOTS 0x04

#define LCD_5x8DOTS 0x00

uint8_t _displaycontrol;

uint8_t _displayfunction;

uint8_t _displaymode;

uint8_t _numlines;

int _row_offsets[4] = {0x00, 0x40, 0x00 + 16, 0x40 + 16};

/************ low level data pushing commands **********/

// pulses the EN pin for 1ms

void pulseEnable(void) {

 pioDigitalWrite(EN, 0);

 tcDelayMicroseconds(1);

 pioDigitalWrite(EN, 1);

 tcDelayMicroseconds(1); // enable pulse must be >450ns

 pioDigitalWrite(EN, 0);

 tcDelayMicroseconds(100); // commands need > 37us to settle

}

// write character to d0-7 bus, then pulses enable to push

void writeBits(uint8_t value) {

 pioDigitalWrite(D0, (value & (1 << 0)) >> 0);

 pioDigitalWrite(D1, (value & (1 << 1)) >> 1);

 pioDigitalWrite(D2, (value & (1 << 2)) >> 2);

 pioDigitalWrite(D3, (value & (1 << 3)) >> 3);

 pioDigitalWrite(D4, (value & (1 << 4)) >> 4);

 pioDigitalWrite(D5, (value & (1 << 5)) >> 5);

 pioDigitalWrite(D6, (value & (1 << 6)) >> 6);

 pioDigitalWrite(D7, (value & (1 << 7)) >> 7);

 pulseEnable();

}

// write either command or data, with automatic 4/8-bit selection

void send(uint8_t value, uint8_t mode) {

Page 22

 pioDigitalWrite(RS, mode);

 writeBits(value);

}

/*********** mid level commands, for sending data/cmds */

void command(uint8_t value) {

 send(value, 0);

}

void write(uint8_t value) {

 send(value, 1);

}

/********** high level commands, for the user! */

void clear()

{

 command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero

 tcDelayMicroseconds(2000); // this command takes a long time!

}

void home()

{

 command(LCD_RETURNHOME); // set cursor position to zero

 tcDelayMicroseconds(2000); // this command takes a long time!

}

// assumes input is valid

// row <

void setCursor(uint8_t col, uint8_t row)

{

 command(LCD_SETDDRAMADDR | (col + _row_offsets[row]));

}

// Turn the display on/off (quickly)

void noDisplay() {

 _displaycontrol &= ~LCD_DISPLAYON;

 command(LCD_DISPLAYCONTROL | _displaycontrol);

}

void display() {

 _displaycontrol |= LCD_DISPLAYON;

 command(LCD_DISPLAYCONTROL | _displaycontrol);

}

// Turns the underline cursor on/off

void noCursor() {

 _displaycontrol &= ~LCD_CURSORON;

 command(LCD_DISPLAYCONTROL | _displaycontrol);

}

void cursor() {

Page 23

 _displaycontrol |= LCD_CURSORON;

 command(LCD_DISPLAYCONTROL | _displaycontrol);

}

// Turn on and off the blinking cursor

void noBlink() {

 _displaycontrol &= ~LCD_BLINKON;

 command(LCD_DISPLAYCONTROL | _displaycontrol);

}

void blink() {

 _displaycontrol |= LCD_BLINKON;

 command(LCD_DISPLAYCONTROL | _displaycontrol);

}

// These commands scroll the display without changing the RAM

void scrollDisplayLeft(void) {

 command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);

}

void scrollDisplayRight(void) {

 command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);

}

// This is for text that flows Left to Right

void leftToRight(void) {

 _displaymode |= LCD_ENTRYLEFT;

 command(LCD_ENTRYMODESET | _displaymode);

}

// This is for text that flows Right to Left

void rightToLeft(void) {

 _displaymode &= ~LCD_ENTRYLEFT;

 command(LCD_ENTRYMODESET | _displaymode);

}

// This will 'right justify' text from the cursor

void autoscroll(void) {

 _displaymode |= LCD_ENTRYSHIFTINCREMENT;

 command(LCD_ENTRYMODESET | _displaymode);

}

// This will 'left justify' text from the cursor

void noAutoscroll(void) {

 _displaymode &= ~LCD_ENTRYSHIFTINCREMENT;

 command(LCD_ENTRYMODESET | _displaymode);

}

// Allows us to fill the first 8 CGRAM locations

// with custom characters

void createChar(uint8_t location, uint8_t charmap[]) {

 location &= 0x7; // we only have 8 locations 0-7

Page 24

 command(LCD_SETCGRAMADDR | (location << 3));

 for (int i=0; i<8; i++) {

 write(charmap[i]);

 }

}

// initializer function

void lcdBegin(uint8_t cols, uint8_t lines) {

 pioInit();

 tcDelayInit();

 _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;

 _displayfunction |= LCD_2LINE;

 if (lines > 1) {

 _displayfunction |= LCD_2LINE;

 }

 _numlines = lines;

 // set pinouts with PIO header

 pioPinMode(RS, PIO_OUTPUT);

 pioPinMode(EN, PIO_OUTPUT);

 pioPinMode(D0, PIO_OUTPUT);

 pioPinMode(D1, PIO_OUTPUT);

 pioPinMode(D2, PIO_OUTPUT);

 pioPinMode(D3, PIO_OUTPUT);

 pioPinMode(D4, PIO_OUTPUT);

 pioPinMode(D5, PIO_OUTPUT);

 pioPinMode(D6, PIO_OUTPUT);

 pioPinMode(D7, PIO_OUTPUT);

 // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!

 // from datasheet, need at least 40ms after power rises above 2.7V, wait 50

 tcDelayMicroseconds(50000);

 // pull both RS and R/W low to begin commands

 pioDigitalWrite(RS, 0);

 pioDigitalWrite(EN, 0);

 //put the LCD into 8 bit mode

 // this is according to the hitachi HD44780 datasheet

 // page 45 figure 23

 // Send function set command sequence

 command(LCD_FUNCTIONSET | _displayfunction);

 tcDelayMicroseconds(4500); // wait more than 4.1ms

 // second try

 command(LCD_FUNCTIONSET | _displayfunction);

Page 25

 tcDelayMicroseconds(150);

 // third go

 command(LCD_FUNCTIONSET | _displayfunction);

 // finally, set # lines, font size, etc.

 command(LCD_FUNCTIONSET | _displayfunction);

 // turn the display on with no cursor or blinking default

 _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;

 display();

 // clear it off

 clear();

 // Initialize to default text direction (for romance languages)

 _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;

 // set the entry mode

 command(LCD_ENTRYMODESET | _displaymode);

}

// clears the screen and prints text to both rows of the LCD

void printToLCD(uint8_t row1[], uint8_t row2[], uint8_t length1, uint8_t length2) {

 clear();

 // loop through top row

 for (int i = 0; i < length1; ++i) {

 setCursor(i, 0);

 write(row1[i]);

 }

 // loop through bottom row

 for (int i = 0; i < length2; ++i) {

 setCursor(i, 1);

 write(row2[i]);

 }

}

Page 26

Appendix C: PWM Module Block Diagram

Page 27

