
B.R.O.C.
Bluetooth Remotely-Operated Car

Final Project Report
December 13th, 2019

Omar Aleman and Leonardo Vilchez

Abstract:

The goal of this project was to make a remote control car using a bluetooth chip, ATSAM
microcontroller, FPGA, LEDs, gearbox, motors, wheels, and a chassis to hold it all together. The
wireless connection between the bluetooth chip and the PC with bluetooth support allows a
keyboard to be used as the controller that sends commands to the motors on the RC car. The
µMudd board with the FPGA and microcontroller, the bluetooth chip, and all the external
circuitry are all contained on one breadboard so that it is compact enough to fit on the RC car.
The functionality of the LEDs is based on the desired movement of the RC car. Thus, the user
presses specific keys on the keyboard to control the movement of the RC car equipped with
headlights and taillights in an intuitive manner.

I. Introduction:

Remote Controlled (RC) cars are battery-powered model cars that can be controlled
from a distance using a remote control. RC cars are exciting and fun for all ages, including
Mudd professors, which is why our final project is implementing a Bluetooth interface between a
PC and a bluetooth chip to interpret human input for controlling a small robot car.

The top-level block diagram of the system is shown in Figure 1.1. The python script (see
Appendix A) establishes a serial port connection between the bluetooth chip and the PC. It
wirelessly sends a character corresponding to a user input command on the keyboard to the
bluetooth chip (see Table 1.1). Once the connection is established, the bluetooth chip acts as a
transparent data gateway between the PC and the microcontroller. It is connected to the
microcontroller via UART, thus the microcontroller receives the character from the PC via
UART. The microcontroller interprets the data, powers the desired LEDs, and sends an
encoded data signal to the FPGA via SPI. The FPGA then decodes the data and finally sends
two PWM signals to the motors.

Figure 1.1: Top-Level Block Diagram

Keyboard Input UART character Desired Function

‘w’ ‘w’ straight forward

‘s’ ‘s’ straight backward

‘a’ ‘a’ spin left

‘d’ ‘d’ spin right

‘w’ + ‘a’ ‘q’ forward left

‘w’ + ‘d’ ‘e’ forward right

‘s’ + ‘a’ ‘z’ backward left

‘s’ + ‘d’ ‘x’ backward right

else ‘p’ pause

Table 1.1: Keyboard Input and corresponding UART character sent over bluetooth

II. New Hardware

The new hardware we worked with was the BlueSMiRF Silver Bluetooth Modem from
SparkFun. It established a wireless connection (serial port connection) between the PC and the
RC car.

The user can enter two modes: command and data mode. Command mode is used to
configure the bluetooth module. Characteristics such as device name, baud rate, PIN code, and
data rate can be adjusted in command mode. We chose to work with the default settings
(115200 baud rate, 8 bits of data, 1 stop bit, no parity) for convenience. We also had to
configure the UART settings of the microcontroller to accept the data from the chip. The driver
settings of the PC must also be updated under Device Manager to match the bluetooth settings
[1]. In data mode, the bluetooth module acts as a transparent data gateway. Any data received
over the bluetooth connection is routed to the chip’s TX pin. Any data sent to the chips RX pin is
sent over the bluetooth connection.

The bluetooth chip has two LEDs (“Stat” and “Connect”) that indicate the status of the
module. To connect the PC and the bluetooth chip, the chip paired to the PC as a device. We
created a python script to establish a serial interface to communicate with the bluetooth chip.
The provided python script also has a function to enter command mode and configure the
bluetooth chip settings, but we weren’t able to get it working correctly.

We also worked with the L293D motor driver that acts as a current amplifier for the two
motors on the RC car. The PWM signals from the FPGA are routed to the ENABLE pins and the
motor wires are connected to the OUTPUT pins of the L293D chip.

III. Schematics

The schematics in Figure 3.2 shows the connections between the FPGA and
microcontroller on the µMudd board, the LEDs, the BlueSMiRF chip, the motor driver and the
motors. Figure 3.1 shows how we fit circuits in the schematic on the breadboard.

The RX and TX pins on the BlueSMiRF chip are connected to the TX and RX pins on the
microcontroller so that they can communicate via UART. The BlueSMiRF is powered with 5
volts with a voltage regulator from an external battery. According to the Bluetooth User Guide
for the RN-42 chip, CTS needs to be grounded when interfacing with a microprocessor via
UART [2].

The L293D motor driver is used to drive our two DC motors, where each side of the
motor driver is used for one of the motors. Each side has an enable pin, two input pins, and two
output pins. When the enable pin is HIGH, the corresponding side of the motor driver will
activate and the motor will receive power. With this function we can control the speed of the
motor by connecting the enable pin to the PWM signal from the FPGA. When an input pin is set
HIGH, the current flows through the corresponding output pin, so by connecting the motor leads
to the output pins, we can control the direction that the motors spin by setting one input pin
HIGH and keeping the other LOW. Table 3.1 shows how the inputs control the direction of the
motors. Vcc is the internal voltage supply, which we connected to 5 volts, and Vss is the motor
voltage supply, which we connected to the battery voltage, which is about 8 volts, so that the
motors would be driven with the most power.

The headlight and taillight LEDs are connected to four microcontroller GPIO pins with
current limiting resistors. The taillights use 75Ω resistors and the headlights use 45Ω resistors
because the yellow LEDs were less bright than the red LEDs when they used the same
resistors so we wanted to make them brighter.

The microcontroller MISO, MOSI and SPCK pins are connected to the FPGA sdo, sdi
and sck pins for SPI communication.

There is also a pushbutton with a 10k pull-down resistor connecting 5V to the reset for
the PWM module in the FPGA. It wasn’t necessary after testing and debugging for the PWM
module, but there was no harm in keeping it.

Figure 3.1: Breadboard Circuit

Figure 3.2: Breadboard Schematic

Motor Motor Driver pins FPGA pins Forward Backward

Left Input 1 directionControl[0

]

Low High

Input 2 directionControl[1

]

High Low

Right Input 3 directionControl[2

]

High Low

Input 4 directionControl[3

]

Low High

Table 3.1: Direction Control of Motors

IV. Microcontroller Design

In the main function of our code, an infinite while loop is used to update the motor control
and LED control signals. The microcontroller receives an 8-bit command character from the
bluetooth chip via UART which represents the desired function of the RC car (forward,
backward, left, right, etc). This command character is then given to a function that encodes the
desired function of the motors in an 8-bit control signal. This function encodes the desired
functionality for each motor in two 4-bit parts: 1 bit for direction and 3 bits for PWM power level
based on the desired direction of the car.

The microcontroller then sends this control signal to the FPGA via SPI with a hardcoded
CS signal called LOAD. First, the load pin is turned high. Then, the control signal is sent. Finally,
the load pin is turned low. Rinse and repeat.

To control the LEDs, an LED control function takes in the command character from the
bluetooth chip and an external counter variable initialized outside the while loop. The command
character dictates what the 2 headlight and 2 tail light LEDs do. The LEDs either blink to act as
turn signals when the car is turning left or right, the tail light LEDs blink when the car is going
backwards, or all the LEDs blink when the car is spinning. This function also outputs the counter
variable so that it maintains its value for when the LED control function is called in the next
iteration of the while loop.

To blink the LEDs, a separate blink function is called in the LED control function which
takes in two LED pins and the external counter variable. This function checks the value of the
counter and either drives the LED pins high or low if the counter is less than 15 or between 15
and 30, respectively, followed by a 5 ms delay and increments the counter or resets the counter
if it is equal to 30, then it returns the counter variable (the delay function is given in the header
file for the Timer Counter peripheral). This way, the counter will increase for each iteration of the
while loop and the LED control function only has a delay of around 5 ms, stacking the delays so
that the LEDs will stay on or off for the desired amount of time without creating a large delay
that will slow down the rate at which the control signal is sent to the FPGA to change the
function of the motors, which would in turn slow down the response of the RC car to the
keyboard input.

V. FPGA Design

The top level module of our FPGA takes in 5 inputs: sck, sdi, load, clk, and reset, and
outputs the PWM signals for the two motors, PWM_L and PWM_R, along with a 4-bit signal for
the four input pins on the L293D, directionControl[3:0] and an sdo signal. The sck, sdi and load
inputs and the sdo output are for SPI communication with the microcontroller, the clk input is
from the external 40MHz crystal oscillator on the µMudd board, and the reset input is from a
push button on the breadboard. Within the top level modules there are 4 other modules, an SPI
module, a decoder module, and two PWM modules. The block diagram of this top-level module
is shown in Figure 5.1.

The inputs of the SPI module are sck, sdi, load and clk, and it outputs the 8-bit control
signal that contains the encoded signals for the desired behavior of the motors,
controlSignal[7:0], along with the sdo signal. In this module there is also an internal signal that
holds in the incoming data while it’s waiting for all 8 bits of the control signal to be transferred,
loadingSignal[7:0]. There is a shift register with an enable that, on the rising edge of sck, when
the input load is asserted, shifts the 7 least significant bits of loadingSignal[7:0] over once to the
7 most significant bits, and shifts in the sdi input to become the new least significant bit. After 8
sck cycles, the entire 8-bit control signal is loaded and load is driven low by the microcontroller.
Then, there is an 8-bit register with an enable that, on the rising edge of clk, when load is
deasserted, gives the value of the completed loading signal to the control signal output
controlSignal[7:0]. The sdo output is set to 0 since the FPGA is not talking to the microcontroller.

The controlSignal[7:0] output from the SPI module is held as internal logic in the top level
module and then sent to the decoder module, which outputs the PWM percent for the left and
right motors, percent_L and percent_R, along with the directionControl[3:0] output. The decoder
has four case statements that decide the direction bits and the PWM percent of each motor. The
direction of the left and right motor is encoded in controlSignal[7] and controlSignal[3],
respectively, while the power level of the left and right motors are encoded in controlSignal[6:4]
and controlSignal[2:0], respectively. The direction bit of each motor dictates the two bits of the
direction control signal that correspond to each motor, directionControl[1:0] for the left motor
and directionControl[3:2] for the right motor. Tables 5.1 and 5.2 show the logic of the direction
control case statements for the left and right motors. The three power level bits give the power
level between 0 and 7 for each motor, and the PWM percent output of each motor is determined
by the power level of that motor. Table 5.3 shows the corresponding PWM percent for each
power level.

controlSignal[7] directionControl[1] directionControl[0]

1 (forward) 1 0

0 (backward) 0 1

Table 5.1: Left motor direction control logic

controlSignal[3] directionControl[3] directionControl[2]

1 (forward) 1 0

0 (backward) 0 1

Table 5.2: Right motor direction control logic

Power Level PWM Percent

0 0%

1 40%

2 50%

3 60%

4 70%

5 80%

6 90%

7 100%

Table 5.3: Corresponding PWM Percent for Motor Power Level

The percent_L and percent_R outputs from the decoder module are held in internal logic
in the top level module and then sent to the two PWM modules for each motor, which then
output PWM_L and PWM_R. The PWM module takes in a clk and reset and an 8-bit percent
input, percent[7:0], and outputs the PWM signal. This module also has an 8-bit internal logic
signal count[7:0] which holds the current value of the counter, and a single internal logic bit
restart which resets the counter. The restart bit is assigned to be high when the count[7:0] signal
reaches 100 in binary. The counter increments count on the rising edge of clk and has an
asynchronous reset with the reset input and a synchronous reset with the restart bit. Thus, the
counter will continuously count up to 100 and reset back to 0. The PWM output is assigned to
be high when the count signal is less than or equal to the percent input and low otherwise,
creating a signal that is high for the desired percentage of the time.

Figure 5.1: Top-Level FPGA Module Block Diagram

VI. Results

We successfully sent PWM data wirelessly via Bluetooth, avoided significant delays
between the motor direction and LED signal updates, and executed the navigation of the RC car
perfectly.

The team experienced difficulty exiting command mode when configuring the bluetooth
chip settings. Entering command mode was successful (as indicated by the blinking of the Stat
LED on the chip); however, exiting command mode proved to be a failure. The instructions on
the datasheet were followed but did not work in practice.

In the mechanical design of the robot, the µMudd board would sometimes disconnect
from the breadboard since the board was lifted up by female header pins, which is supporting
the entire PCB on one side, making it easy to fall to the side and disconnect when bumped. In
the future, we would like to add support for the other side of the µMudd board and zip-tie it down
to make it more secure.

There were no differences between our initial proposal and final results. We fully
executed the desired functionality of our RC car.

References

[1] https://learn.sparkfun.com/tutorials/using-the-bluesmirf/all
[2] https://cdn.sparkfun.com/assets/1/e/e/5/d/5217b297757b7fd3748b4567.pdf

Parts List

Part Source Vendor Part # Price

Blue SMiRF https://www.sparkfun.
com/products/12577

WRL-12577 27.95

Breadboard https://www.amazon.
com/gp/product/B01E
V6LJ7G/ref=ppx_yo_
dt_b_asin_title_o00_
s00?ie=UTF8&psc=1

None 8.99

Gearbox https://www.pololu.co
m/product/114

Polulu 114 N/A

L293D https://www.digikey.c
om/product-detail/en/
stmicroelectronics/L2
93D/497-2936-5-ND/
634700

497-2936-5-ND N/A

DC Motors https://www.pololu.co
m/file/0J11/fa_130ra.
pdf

FA-130RA N/A

https://learn.sparkfun.com/tutorials/using-the-bluesmirf/all
https://cdn.sparkfun.com/assets/1/e/e/5/d/5217b297757b7fd3748b4567.pdf
https://www.sparkfun.com/products/12577
https://www.sparkfun.com/products/12577
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.pololu.com/product/114
https://www.pololu.com/product/114
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.pololu.com/file/0J11/fa_130ra.pdf
https://www.pololu.com/file/0J11/fa_130ra.pdf
https://www.pololu.com/file/0J11/fa_130ra.pdf

Appendix A - python script

Appendix B - Keil µVision code

Appendix C - FPGA Quartus Verilog

