B.R.O.C.
Bluetooth Remotely-Operated Car

Final Project Report
December 13th, 2019

Omar Aleman and Leonardo Vilchez

Abstract:

The goal of this project was to make a remote control car using a bluetooth chip, ATSAM
microcontroller, FPGA, LEDs, gearbox, motors, wheels, and a chassis to hold it all together. The
wireless connection between the bluetooth chip and the PC with bluetooth support allows a
keyboard to be used as the controller that sends commands to the motors on the RC car. The
MMudd board with the FPGA and microcontroller, the bluetooth chip, and all the external
circuitry are all contained on one breadboard so that it is compact enough to fit on the RC car.
The functionality of the LEDs is based on the desired movement of the RC car. Thus, the user
presses specific keys on the keyboard to control the movement of the RC car equipped with
headlights and taillights in an intuitive manner.

l. Introduction:

Remote Controlled (RC) cars are battery-powered model cars that can be controlled
from a distance using a remote control. RC cars are exciting and fun for all ages, including
Mudd professors, which is why our final project is implementing a Bluetooth interface between a
PC and a bluetooth chip to interpret human input for controlling a small robot car.

The top-level block diagram of the system is shown in Figure 1.1. The python script (see
Appendix A) establishes a serial port connection between the bluetooth chip and the PC. It
wirelessly sends a character corresponding to a user input command on the keyboard to the
bluetooth chip (see Table 1.1). Once the connection is established, the bluetooth chip acts as a
transparent data gateway between the PC and the microcontroller. It is connected to the
microcontroller via UART, thus the microcontroller receives the character from the PC via
UART. The microcontroller interprets the data, powers the desired LEDs, and sends an
encoded data signal to the FPGA via SPI. The FPGA then decodes the data and finally sends
two PWM signals to the motors.

blactooth
W
e L R AT ATSAM o LEDs

seL (2)

.l il L Left Motor

FPGA PwM_ & Laa3D
direchonto:\h\[stol out 3fy S| Ri gt Motor

Figure 1.1: Top-Level Block Diagram

Keyboard Input UART character Desired Function
‘w’ ‘w’ straight forward
‘s’ ‘s straight backward
‘a’ ‘a’ spin left

Neld el spin right

‘w/ o+ ‘a’ ‘g’ forward left

‘w’ o+ ‘d’ ‘e forward right

‘s’ o+ af ‘z! backward left
s+ N ‘x! backward right
else ‘p’ pause

Table 1.1: Keyboard Input and corresponding UART character sent over bluetooth

Il. New Hardware

The new hardware we worked with was the BlueSMiRF Silver Bluetooth Modem from
SparkFun. It established a wireless connection (serial port connection) between the PC and the
RC car.

The user can enter two modes: command and data mode. Command mode is used to
configure the bluetooth module. Characteristics such as device name, baud rate, PIN code, and
data rate can be adjusted in command mode. We chose to work with the default settings
(115200 baud rate, 8 bits of data, 1 stop bit, no parity) for convenience. We also had to
configure the UART settings of the microcontroller to accept the data from the chip. The driver
settings of the PC must also be updated under Device Manager to match the bluetooth settings
[1]. In data mode, the bluetooth module acts as a transparent data gateway. Any data received
over the bluetooth connection is routed to the chip’s TX pin. Any data sent to the chips RX pin is
sent over the bluetooth connection.

The bluetooth chip has two LEDs (“Stat” and “Connect”) that indicate the status of the
module. To connect the PC and the bluetooth chip, the chip paired to the PC as a device. We
created a python script to establish a serial interface to communicate with the bluetooth chip.
The provided python script also has a function to enter command mode and configure the
bluetooth chip settings, but we weren’t able to get it working correctly.

We also worked with the L293D motor driver that acts as a current amplifier for the two
motors on the RC car. The PWM signals from the FPGA are routed to the ENABLE pins and the
motor wires are connected to the OUTPUT pins of the L293D chip.

lll. Schematics

The schematics in Figure 3.2 shows the connections between the FPGA and
microcontroller on the uMudd board, the LEDs, the BlueSMiRF chip, the motor driver and the
motors. Figure 3.1 shows how we fit circuits in the schematic on the breadboard.

The RX and TX pins on the BlueSMiRF chip are connected to the TX and RX pins on the
microcontroller so that they can communicate via UART. The BlueSMiRF is powered with 5
volts with a voltage regulator from an external battery. According to the Bluetooth User Guide
for the RN-42 chip, CTS needs to be grounded when interfacing with a microprocessor via
UART [2].

The L293D motor driver is used to drive our two DC motors, where each side of the
motor driver is used for one of the motors. Each side has an enable pin, two input pins, and two
output pins. When the enable pin is HIGH, the corresponding side of the motor driver will
activate and the motor will receive power. With this function we can control the speed of the
motor by connecting the enable pin to the PWM signal from the FPGA. When an input pin is set
HIGH, the current flows through the corresponding output pin, so by connecting the motor leads
to the output pins, we can control the direction that the motors spin by setting one input pin
HIGH and keeping the other LOW. Table 3.1 shows how the inputs control the direction of the
motors. Vcc is the internal voltage supply, which we connected to 5 volts, and Vss is the motor
voltage supply, which we connected to the battery voltage, which is about 8 volts, so that the
motors would be driven with the most power.

The headlight and taillight LEDs are connected to four microcontroller GPIO pins with
current limiting resistors. The taillights use 75Q resistors and the headlights use 45Q resistors
because the yellow LEDs were less bright than the red LEDs when they used the same
resistors so we wanted to make them brighter.

The microcontroller MISO, MOSI and SPCK pins are connected to the FPGA sdo, sdi
and sck pins for SPI communication.

There is also a pushbutton with a 10k pull-down resistor connecting 5V to the reset for
the PWM module in the FPGA. It wasn’t necessary after testing and debugging for the PWM
module, but there was no harm in keeping it.

LT i

Figure 3.1: Breadboard Circuit

<V vin
E b oot T 6RO
w sV vz
LR L Pl (reset)
& = " 10k
1 [e2x (Pwm_ L)
P20 (Pwm- 1)
P3) (directhon Contwol [67)
sV -
732 (diveckon bt 11])
o — I
- Foble Ve, Vee P33 (gireckon Gt [21)
direction(ontyol [0] ———— mpet 1 Wngut3 [———— direction(ontvol (2] P3U (divechon (miml [37)
Outgatl Quph3 —{PS& (k)
() [+] —759 (sdi)
- B 1 S ¢ o (sdo)
on0 S en0—] -
= PAY (urx00)
Output2 ODudgutY pal0 (1TA0C)
' ~ \ [1] [7- P — L} ~ i 32
dmc.choncmhg“E] Ingut (ngut 4 direcion(ontvol [3] (80
Vss Erav Yy PR —omi3 (west)
——fpatu (3PCk)
Y5
PA\Q (FRONT_LEPT_LED)
Hsan
? ers & v PA20 (FroNT_1EHT _LED)
z Vees—I 50
L GNOY PAZI (BALY _LEFT_LED)
ok A s
R uzx 00 PA- 2L (BACK _RIGKT_LED)
L4 -
g X f—TXpo
2 eTs MMudd
Figure 3.2: Breadboard Schematic
Motor Motor Driver pins | FPGA pins Forward Backward
Left Input 1 directionControl [0 |Low High
]
Input 2 directionControl[1 | High Low
]
Right Input 3 directionControl[2 | High Low
]
Input 4 directionControl[3 |Low High
]

Table 3.1: Direction Control of Motors

IV. Microcontroller Design

In the main function of our code, an infinite while loop is used to update the motor control
and LED control signals. The microcontroller receives an 8-bit command character from the
bluetooth chip via UART which represents the desired function of the RC car (forward,
backward, left, right, etc). This command character is then given to a function that encodes the
desired function of the motors in an 8-bit control signal. This function encodes the desired
functionality for each motor in two 4-bit parts: 1 bit for direction and 3 bits for PWM power level
based on the desired direction of the car.

The microcontroller then sends this control signal to the FPGA via SPI with a hardcoded
CS signal called LOAD. First, the load pin is turned high. Then, the control signal is sent. Finally,
the load pin is turned low. Rinse and repeat.

To control the LEDs, an LED control function takes in the command character from the
bluetooth chip and an external counter variable initialized outside the while loop. The command
character dictates what the 2 headlight and 2 tail light LEDs do. The LEDs either blink to act as
turn signals when the car is turning left or right, the tail light LEDs blink when the car is going
backwards, or all the LEDs blink when the car is spinning. This function also outputs the counter
variable so that it maintains its value for when the LED control function is called in the next
iteration of the while loop.

To blink the LEDs, a separate blink function is called in the LED control function which
takes in two LED pins and the external counter variable. This function checks the value of the
counter and either drives the LED pins high or low if the counter is less than 15 or between 15
and 30, respectively, followed by a 5 ms delay and increments the counter or resets the counter
if it is equal to 30, then it returns the counter variable (the delay function is given in the header
file for the Timer Counter peripheral). This way, the counter will increase for each iteration of the
while loop and the LED control function only has a delay of around 5 ms, stacking the delays so
that the LEDs will stay on or off for the desired amount of time without creating a large delay
that will slow down the rate at which the control signal is sent to the FPGA to change the
function of the motors, which would in turn slow down the response of the RC car to the
keyboard input.

V. FPGA Design

The top level module of our FPGA takes in 5 inputs: sck, sdi, load, clk, and reset, and
outputs the PWM signals for the two motors, PWM_L and PWM_R, along with a 4-bit signal for
the four input pins on the L293D, directionControl[3:0] and an sdo signal. The sck, sdi and load
inputs and the sdo output are for SPI communication with the microcontroller, the clk input is
from the external 40MHz crystal oscillator on the pMudd board, and the reset input is from a
push button on the breadboard. Within the top level modules there are 4 other modules, an SPI
module, a decoder module, and two PWM modules. The block diagram of this top-level module
is shown in Figure 5.1.

The inputs of the SPI module are sck, sdi, load and clk, and it outputs the 8-bit control
signal that contains the encoded signals for the desired behavior of the motors,
controlSignal[7:0], along with the sdo signal. In this module there is also an internal signal that
holds in the incoming data while it's waiting for all 8 bits of the control signal to be transferred,
loadingSignal[7:0]. There is a shift register with an enable that, on the rising edge of sck, when
the input load is asserted, shifts the 7 least significant bits of loadingSignal[7:0] over once to the
7 most significant bits, and shifts in the sdi input to become the new least significant bit. After 8
sck cycles, the entire 8-bit control signal is loaded and load is driven low by the microcontroller.
Then, there is an 8-bit register with an enable that, on the rising edge of clk, when load is
deasserted, gives the value of the completed loading signal to the control signal output
controlSignal[7:0]. The sdo output is set to 0 since the FPGA is not talking to the microcontroller.

The controlSignal[7:0] output from the SPI module is held as internal logic in the top level
module and then sent to the decoder module, which outputs the PWM percent for the left and
right motors, percent L and percent R, along with the directionControl[3:0] output. The decoder
has four case statements that decide the direction bits and the PWM percent of each motor. The
direction of the left and right motor is encoded in controlSignal[7] and controlSignal[3],
respectively, while the power level of the left and right motors are encoded in controlSignal[6:4]
and controlSignal[2:0], respectively. The direction bit of each motor dictates the two bits of the
direction control signal that correspond to each motor, directionControl[1:0] for the left motor
and directionControl[3:2] for the right motor. Tables 5.1 and 5.2 show the logic of the direction
control case statements for the left and right motors. The three power level bits give the power
level between 0 and 7 for each motor, and the PWM percent output of each motor is determined
by the power level of that motor. Table 5.3 shows the corresponding PWM percent for each
power level.

controlSignal([7] directionControl[1l] directionControl[0]
1 (forward) 1 0
0 (backward) 0 1

Table 5.1: Left motor direction control logic

controlSignal[3] directionControl[3] directionControl[2]
1 (forward) 1 0
0 (backward) 0 1

Table 5.2: Right motor direction control logic

Power Level PWM Percent
0 0%

1 40%

2 50%

3 60%

4 70%

5 80%

6 90%

7 100%

Table 5.3: Corresponding PWM Percent for Motor Power Level

The percent L and percent R outputs from the decoder module are held in internal logic
in the top level module and then sent to the two PWM modules for each motor, which then
output PWM_L and PWM_R. The PWM module takes in a clk and reset and an 8-bit percent
input, percent[7:0], and outputs the PWM signal. This module also has an 8-bit internal logic
signal count[7:0] which holds the current value of the counter, and a single internal logic bit
restart which resets the counter. The restart bit is assigned to be high when the count[7:0] signal
reaches 100 in binary. The counter increments count on the rising edge of clk and has an
asynchronous reset with the reset input and a synchronous reset with the restart bit. Thus, the
counter will continuously count up to 100 and reset back to 0. The PWM output is assigned to
be high when the count signal is less than or equal to the percent input and low otherwise,
creating a signal that is high for the desired percentage of the time.

Cle Pk

sck sdi lmd sdo $
L ‘I‘ l T covtrol oL | b pWM s PWM_L
Sifam\ /L
I/ D, g
SPl 8 decodeS .
’/
cT: pentls agnk PN PWM_R
i)
cle rLd’
L‘
7 — direchon (enteol (320)

Figure 5.1: Top-Level FPGA Module Block Diagram

VI. Results

We successfully sent PWM data wirelessly via Bluetooth, avoided significant delays
between the motor direction and LED signal updates, and executed the navigation of the RC car
perfectly.

The team experienced difficulty exiting command mode when configuring the bluetooth
chip settings. Entering command mode was successful (as indicated by the blinking of the Stat
LED on the chip); however, exiting command mode proved to be a failure. The instructions on
the datasheet were followed but did not work in practice.

In the mechanical design of the robot, the uyMudd board would sometimes disconnect
from the breadboard since the board was lifted up by female header pins, which is supporting
the entire PCB on one side, making it easy to fall to the side and disconnect when bumped. In
the future, we would like to add support for the other side of the pMudd board and zip-tie it down
to make it more secure.

There were no differences between our initial proposal and final results. We fully
executed the desired functionality of our RC car.

References

[1] https://learn.sparkfun.com/tutorials/using-the-bluesmirf/all
[2] https://cdn.sparkfun.com/assets/1/e/e/5/d/5217b297757b7fd3748b4567.pdf

Parts List

Part Source Vendor Part # Price

Blue SMiRF https://www.sparkfun. | WRL-12577 27.95
com/products/12577

Breadboard https://www.amazon. | None 8.99
com/gp/product/BO1E
V6LJ7G/ref=ppx_yo
dt_b_asin_title_o00
s00?ie=UTF8&psc=1

Gearbox https://www.pololu.co | Polulu 114 N/A
m/product/114

L293D https://www.digikey.c [497-2936-5-ND N/A
om/product-detail/en/
stmicroelectronics/L2
93D/497-2936-5-ND/
634700

DC Motors https://www.pololu.co | FA-130RA N/A
m/file/0J11/fa_130ra.

pdf

https://learn.sparkfun.com/tutorials/using-the-bluesmirf/all
https://cdn.sparkfun.com/assets/1/e/e/5/d/5217b297757b7fd3748b4567.pdf
https://www.sparkfun.com/products/12577
https://www.sparkfun.com/products/12577
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EV6LJ7G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.pololu.com/product/114
https://www.pololu.com/product/114
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.digikey.com/product-detail/en/stmicroelectronics/L293D/497-2936-5-ND/634700
https://www.pololu.com/file/0J11/fa_130ra.pdf
https://www.pololu.com/file/0J11/fa_130ra.pdf
https://www.pololu.com/file/0J11/fa_130ra.pdf

Appendix A - python script

@author: Leonardo Vilchez - lvilchez@g.hmc.edu
@author: Omar Aleman - oaleman@g.hmc.edu

date: 12/11/2819

Bluetooth Connection with BlueSmirf

import serial

import time

import keyboard

ser = serial.Serial(port='C0OM4',baudrate=115200, parity = serial.PARITY_NONE, stopbits=serial.STOPBI

def commandMode():
start = "$"
end = '-°
brate = 'SU,96°

time.sleep(©.5)

ser.write(start.encode())
ser.write(start.encode())
ser.write(start.encode())

time.sleep(6.1)
ser.write(brate.encode())

ser.write(end.encode())
ser.write(end.encode())
ser.write(end.encode())

def checkPort():
if ser.isOpen():
command = 'A'
ser.write(command.encode())
print("write")
else:
print ("Cannot open serial port.")

while True:
try:

if keyboard.is_pressed('a') and keyboard.is_pressed('w'):
command = 'q'
ser.write(command.encode())
print('forward left')

elif keyboard.is_pressed('d') and keyboard.is_pressed('w'):
command = ‘e’
ser.write(command.encode())
print('forward right')

elif keyboard.is_pressed('a’') and keyboard.is_pressed(’'s’):
command = 'z’
ser.write(command.encode())
print('backward left')

elif keyboard.is_pressed('d') and keyboard.is_pressed('s"'):
command = 'x'
ser.write(command.encode())

print('backward right')

elif keyboard.is_pressed('w'): # forward
command = "w'
ser.write(command.encode())
print("forwards")

elif keyboard.is_pressed('s'): # backwards
command = 's’
ser.write(command.encode())
print('backwards")

elif keyboard.is_pressed('a’): / left
command = ‘a’
ser.write(command.encode())
print('left')

elif keyboard.is_pressed('d'): # right
command = 'd’
ser.write(command.encode())
print('right")

elif keyboard.is_pressed('x'): #exit program
break

else: #pause
command = 'p’
ser.write(command.encode())
print('pause’)

except:
break

ser.close() # closes COM port

Appendix B - Keil yVision code

// E155 Final Project

// RC Car.c - interfaces with bluetooth chip wvia UART, controls LEDs and sends motor control signal to
FPGA via SPI

// Omar Aleman - oaleman@g.hmc.edu

// Leonardo Vilchez - lwvilchez@qg.hmc.edu

/4 12/11/19

finclude "SAM4S4E/SAMAS4BE.h"
f#include <string.h>
#include <stdlib.h>
#include <stdio.h>

// LED pins

fdefine FRONT LEFT LED 19
#define FRONT RIGHT LED 20
#define BACK LEFT_LED 21
f#define BACK RIGHT LED 22

// SPI load pin
#define LOAD PIN 30

LELELTILELEL L P i i i i did b di dddirt ddid b iiid b dd it bdiidd i dd id i i i i i id ltbii i i i r i ni ey

// FPGA Communication Functions

FEIEEEEEEL R B TR LA ELEEEL LR LR LR LB AL LR LE L L LR LR L T

/* Returns the control signal corresponding to the command from the bluetooth chip
* -- Input: command signal from bluetooth chip wia UART
x -- Output: corresponding contrel signal based on the FPGA decoder */
char getControl (char command) {
if (command == 'w'){ // forward
return 0xFF;
}
else if (command == 's'){ // backward
return 0x77;
}
else if (command == 'a'){ // left
return 0x7F;
}
else if (command == 'd'){ // right
return OxF7;
}
else if {command == 'g'}{ // forward left
return OxCF;

else if (command == 'e'){ // forward right
return 0xFC;

}

else if (command == 'z'){ // backward left
return 0x47;

else if {command == 'x'){ // backward right
return 0x74;

}

else if (command == 'p'){ // pause
return 0x00;

}

else return 0x00; // pause {(default)

}

/* Sends control signal to FPGA via SPI with LOAD PIN
x -- Input: control signal to send to FPGA */
void sendControlSPI (char control) {
pioDigitalWrite (LOAD PIN,1);
spiSendReceive (control) ;
pioDigitalWrite (LOAD PIN,D);
}

LEELLLLETE L L E L it bddd i fddddr i ddd it s ddidrddditiddteddddd it itiddidititidiirlieid!
// LED Functions
LELELL LT LS L LS L R R LS LR L LS ELE T L L LR L LA RO L LR LR L E T EE L LT E LR L r ety

/* Blinks two LEDs while avoiding large delays in the main while loop

136
137
138

140
141
142
143

*
*

in

}
/*

*

*

-=- Input: two pins and the counter variable
-- Qutput: the counter wariable */
t blink({int pin0O, int pinl, int counter){

if (counter < 15)({
pioDigitalWrite (pin0,1);
piocDigitalWrite (pinl,1);
tcDelayMillis(5); // 5 ms delay
counter++;

}

else if (counter < 30)({
pioDigitalWrite (pin0,0);
pioDigitalWrite (pinl, 0);
tcDelayMillis(5}; // 5 ms delay
counter++;

}

else counter = (;

return counter;

Controls the function of the LEDs
-- Input: command signal from bluetocoth chip wia UART and the counter variable
-- Qutput: the counter wariable */

int LEDcontrol (char command, int counter) (

}

//
/Y
l

if (command == 'g'){ // forward left
counter = blink(FRONT LEFT LED,BACK LEFT LED,counter);
pioDigitalWrite (FRONT RIGHT LED,1);
pioDigitalWrite (BACK_RIGHT_LED, 1)/

}

else if (command == 'e'}){ // forward right
counter = blink(FRONT RIGHT LED,BACK RIGHT LED,counter);
pioDigitalWrite (FRONT LEFT_LED, 1);
pioDigitalWrite (BACK_LEFT_LED, 1);

}

else if (command == 's' || command == 'z' || command == 'x') { // backward
counter = blink(BACK LEFT_LED, BACK RIGHT_LED,counter);
pioDigitalWrite (FRONT_LEFT_LED, 1)
pioDigitalWrite (FRONT RIGHT LED,1);

}

else if (command == 'a' || command == 'd') { // spinning
blink (FRONT_LEFT_LED,BACK_RIGHT_LED,counter);
counter = blink(FRONT RIGHT LED,BACK LEFT LED,counter);

}

else if (command == 'p') { // pause
pioDigitalWrite (FRONT RIGHT LED,0);
pioDigitalWrite (BACK RIGHT LED, 0);
pioDigitalWrite(FRONT_LEFT_LED,U};
picDigitalWrite (BACK_ LEFT_LED, 0);

}

else{
pioDigitalWrite (FRONT RIGHT LED,1);
pioDigitalWrite (BACK_RIGHT_LED, 1)
pioDigitalWrite (FRONT_ LEFT_LED, 1);
plioDigitalWrite (BACK_LEFT_LED, 1);

}

return counter;

FEELLEEEEETELTCEEEEL L EEE L LT LR T P8P C LB E LR P8P B R TR E S PR L8 L LR
Main Function

FELLEELEELETE L L P T EE TR PP i i i i iidid b di it bdbibditiidid b iiiidiidiid ddriir it i id ittt iy

int main(void) {

samInit (); // sets up external 40MHz clk for uC and disables watchdog timer

pioInit{); // sets up pio peripheral

uartInit (UART_MR_PAR NO, 22); // baudrate = 113636.36 (as close to 115200 as we could get, 1.35% error)
spilnit (MCK FREQ/244000,0,1);

// "clock divide" = master clock frequency / desired baud rate

// the phase for the SPI clock is 1 and the polarity is 0

tcDelayInit();// TC channel 0, MCK/2, counter increases then resets low when an RC match occurs

// Sets LED and LOAD pins as PIO output pins
pioPinMode (FRONT_LEFT_LED, PIO_OUTPUT);

144 pioPinMode (FRONT RIGHT LED,PIO OUTPUT);

145 pioPinMode (BACK_LEFT LED, PIO_OUTPUT) ;

146 pioPinMode (BACK_RIGHT_LED,PIC OUTPUT);

147 piloPinMode (LOAD_PIN, PIO OUTPUT);

148

149 int counter = 0; // counter for LED control
150

154 while (1) {

152 // Wait for BlueSMiRF to send character from PC
153 while (luartRxReady());

154

185 // Receive char from BlueSMiRF

156 char command = uartRx();

157

158 // Get control char to send to FPGA

159 char control = getControl (command);

160

lel // send command to FPGA via SPI

le2 sendControlSPI (control);

163

164 // controls LED based on command from PC
165 counter = LEDcontrol (command, counter);
166

167 }

168 }

169

Appendix C - FPGA Quartus Verilog

Vo ~NoOuihw N

// E155 Final Project

// RC_Car.sv - recieves and decodes motor control signal from microcontroller via SPI and
drives motors accordingly

// Omar Aleman - oaTeman@?.hmc.edu

// Leonardo vilchez - Tvilchez@g.hmc.edu

J/ 12/11/2019

%%%?///
// Top Level Module
%%%?///
module RC_Car(input Tlogic clk, reset,
input Tlogic sck,
input Tlogic sd1, Toad,
output logic sdo,
output logic PWM_R, PWM_L,
output Togic [3:0] directionControl);
logic [7:0] controlsignal; // control signal from MCU via SPI
lTogic [7:0] percent_R, percent_L; // PwM percent for left and right motors
// SPI module to recieve controlSignal from MCU
spi SPI(clk, sck, load, sdi, sdo, controlSignal);
// decoder module to interpret controlSignal
decoder DEC(controlSignal, percent_L, percent_R, directionControl);
// PwM modules to create PWM signals for motors
pwm PWMR(c1k, reset, percent_R, PWM_R);
pwm PWML(clk, reset, percent_L, PWM_L);
endmodule
ﬁ%?%///
// PWM Module
%%?%///
module pwm(input Tlogic clk, reset,
input Tlogic [7:0] percent,
output logic PWM) ;

Togic [7:0] count;
Togic restart; // restart counter when count gets to 100

// restart - high when count[7:0] = 100
assign restart = (~count[7])&count[6]&count[5]&(~count[4])&(~count[3])&ount[2]&(~count[1l
1 &(~count[0]); // 100

// counter - use restart to restart counter on rising edge of clock when count reaches 10
always_ff@(posedge clk, posedge reset)
if (reset) count <= (17
e1se if (restart) count <= 0;
else count <= count+l;

// set PWwM to be high whenever count is less than or equal to percent
assign PWM = (count <= percent);

endmodule

e e L e
S
~
o
b
Mo
~
™~
~=
~Q
~a
~c
~ =
~m
~
~
)
~
g
B
>~
B
b
o
~
=
s
~
o 8
~
~
~
b
~
b
s
b
™~
S
~
By
=
s
o
T
~
b
~
=
s
o
~
~
™~
b
-
b
=
s
~
i
~
~
~
b
~
oo
T
~
™~
e
™~
~
=
b
~
~
S
b
~
b
o
~
™~
S
o
e
=
s

module decoder(input Togic [7:0] controlsignal,
output logic [7:0] percent_L, percent_R,
output logic [3:0] directionControl);

66 // directionControl decoder - left motor

67 always_comb

68 Case(contr0151gna1[7])

69 1'b1: directionControl[1:0] = 2'b10; // forward
70 1'h0: directionControl[1:0] = 2'b01; // backward
71 endcase

72

73 // directionControl decoder - right motor

74 always_comb

75 case(controlsignal[3])

76 1'b1l: directionControl[3:2] = 2'b01; // forward
77 1'b0: directionControl[3:2] = 2'b10; // backward
78 endcase

79

80 // PWM percent_L decoder

81 always_comb

82 case(contr0151gna1[6 41)

83 3'b000: percent_L = 0; // powerlv]l 0 (stop)
84 3'b001: percent_L = 40; // powerlvl 1

85 3'b010: percent_L = 50; // powerlvl 2

86 3'b011: percent_L = 60; // powerlvl 3

87 3'b100: percent_L = 70; // powerlvl 4

88 3'b101: percent_L = 80; // powerlvl 5

89 3'b110: percent_L = 90; // powerlv]l 6

90 3'b111: percent_L = 100; // powerlvl 7

91 endcase

92

93 // PWM percent_R decoder

94 always_comb

95 case(contro151gna1[2 01)

96 3'b000: percent_R = 0; // powerlvl 0 (stop)

97 3! bOOl: percent_R = 40; // powerlvl 1

98 3'b010: percent_R = 50; // powerlv] 2

99 3'b011: percent_R = 60; // powerlvl 3

100 3'b100: percent_R = 70; // powerlvl 4

101 3'b101: percent_R = 80; // powerlvl 5

102 3'b110: percent_R = 90; // powerlvl 6

103 3'b111: percent_R = 100; // powerlvl 7

104 endcase

105

%8? endmodule

108 %ﬁjx///
109 // SPI Module

110 %%ﬁ;///
111

112 module spi(input Tlogic clk,

113 input Togic sck,

114 input Togic Toad,

115 input Tlogic sdi,

116 output logic sdo

117 output Tog1c [7:0] contr0151gna1),

118

119 logic [7:0] loadingsignal; // 8-bit control signal while it's being loaded
120

121 // 8-bit shift register with enable

122 // load is asserted - apply 8 sclks to shift in 8-bit control signal
123 always_ff@(posedge sck)

124 if(load) loadingSignal <= {loadingSignal[6:0],sdi};
125

126 // 8-bit register with enable

127 // then load is deasserted - send complete 8-bit loadingSignal to controlsignal
128 a?ways ff@(posedge clk)

129 fl~ 1oad§ controlSignal <= loadingSignal;

130

131 // sdo doesn't do anything

132 assign sdo = 0;

133

134 endmodule
135

