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Abstract:

Frequency determination using hardware-implemented N-Point FFT is useful when extracting
multiple unknown frequencies from an input signal; however, due to a lack of resolution for the
relatively low values of N easily implementable in hardware, precision is often too low for
applications such as accurately tuning musical instruments. Thus, a stroboscopic instrument
tuner was developed that relies on the principles of sampling and aliasing to detect even minute
frequency differences of an input signal from a desired pitch. User input is retrieved, processed
by a Raspberry Pi 3b microcontroller, and transferred to the MuddPi Mk. IV FPGA board, which
contains logic for determining the difference in frequency between the desired and actual pitches.
Deviations are displayed as a shifting pattern on an LED dot matrix display; if the pattern stands
still, the note is in tune.
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1. Introduction

The goal of this project is to build a stroboscopic instrument tuner for audio frequencies in the
range 69.3 Hz (C#2) to 1.0465 kHZ (C6). The project comprises of the following subsystems,
listed along with their functions and the hardware used to realize these functions:

1. Audio signal input and processing—take in a pure audio signal from a musical instrument
(e.g., a single string played on a violin), filter and convert to a square wave usable by the
FPGA board, and generate a pulse train of the same frequency to drive the power pins of
the LED dot matrix display.

Hardware: ADA1063 mic + amplifier breakout board, LM393N comparator, MuddPi
Mk. IV FPGA board.

2. LED dot matrix driver—drive an LED dot matrix display to be a periodically shifting
pattern at a frequency determined by note being tuned to.

Hardware: MuddPi Mk. IV FPGA board, two 5x8 bi-colour LED dot matrix displays
(Arntd LTP2558 AA) and 16 PNP transistors (2N3906).

3. User interface—take user input to determine the note and octave being tuned to, parse
into a binary representation, and input to the FPGA.

Hardware: Raspberry Pi 3B, ADA1115 LCD 16x2 character display.

The block diagram for the project is as shown below:
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Figure I.a. Block diagram of stroboscopic system tuner, with hardware components designated to
perform each task shown in the blue dashed boxes.
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Altogether, the system functions as an extremely accurate adjustable stroboscopic tuner. The user
interface is such that the current note being tuned to is always displayed on the LCD monitor,

and updates continuously as new inputs are provided (i.e., new values of are selected).

target
Furthermore, the visualization method used for the LED matrix is such that:g for a given audio
input frequency f; deviating in pitch from the pitch being tuned to ftarget by frequency Af =|f,, —
Jiarger 1 @ pattern of four lit LED columns (Fig. L.b.) will shift across the screen every 1/Af;if Af
is 0, then four-column pattern will remain stationary on the display (although due to the extreme
accuracy of the tuner, this will rarely be perfectly attained). Further details on how the system

operates can be found in the sections below.

scrolling direction

>
»

Figure L.b. Cartoon of line pattern scrolling across 5x16 LED dot matrix
II. New Hardware

The main new hardware used in this project are the two 5x8 bi-colour LED dot matrix display,
the ADA1063 microphone and amplifier breakout board, and the ADA1115 LCD 16x2 character
display and keypad kit. For analog signal pre-processing, we also used an LM393N comparator.

The LED dot matrix displays operate in a manner very similar to the 7-segment displays used in
various MicroPs labs throughout the semester, and as such will not be discussed in depth here.
The wiring schematic for the LED dot matrix can be found in Sec. III.

The ADA1063 mic and amplifier board has low power draw and includes an on-board low-pass
filter to eliminate high-frequency noise (above 20 kHz), as well as an MAX4466 adjustable-gain
amplification IC to provide a low-noise, high-amplitude output signal centered around 2.5 V [1].

The ADA1115 LCD display and keypad kit comes with a PCB designed to allow communication
with the Pi over I’C, as opposed to the relatively complicated procedure for interfacing with the
LCD display on its own. In addition, Adafruit offers a Python library with functions for writing
characters to the LCD, reading user input from the on-board buttons, and other useful functions
for using the display. The PCB can also be used as a Raspberry Pi shield, eliminating the need
for the cobbler (this does, however, obstruct access to the majority of the GPIO pins, even
though the LCD actually only needs to use 4 pins).
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II1. Schematics

111.1 Audio Pick-up and Analog Pre-Processing

A circuit diagram for all breadboarded components for the microphone and analog
pre-processing done on the mircophone signal is shown in Fig. IIl.a. The signal flow goes from
top left to bottom right, and represents the bottom-left three blocks in the block diagram in
Section I
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Figure IIl.a. Circuit diagram for audio pick-up with microphone, analog filtering and
pre-processing

Audio signal processing begins when input audio (e.g., a single violin note being continuously
played) with some frequency f, is converted into an analog waveform with DC offset

V pe = 2.5V and ranging between 0 and 5V peak to peak and of the same frequency by the
ADA1063 chip. 2"-order Butterworth filter in the Sallen-Key topography, which cutoff
frequency f. = 1 kHz. This cutoff frequency was chosen due to the maximum tunable frequency
being set at 1046 Hz; this filter will significantly attenuate any frequencies greater than this, thus
eliminating high-frequency noise from the input signal while passing through other frequencies
with unity gain.

The filtered signal is then provided as the non-inverting input to an LM393N analog comparator
with reference voltage V- = 2.5V =V .. Nominally, this circuit would output logical high
when the input signal has voltage V', > 2.5V, and logical low when V. <2.5V. However, due
to small oscillations superimposed on the input signal by noise, this threshold can be crossed
many times when the nominal value of the input is 2.5V, and generate a square wave signal that
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switches between logical high and low very rapidly for a short period of time; this would clearly
have a negative impact on later circuit performance.

To combat this, hysteresis can be added to the circuit, which causes the comparator to go logic
high when an upper threshold ¥,
v,

low*

o 18 €xceeded, and logic low when V,, is below a low threshold

hysteresis can almost entirely eliminate

low

Given a wide enough range between V., and V,
the quick switching effect mentioned above. In our application, a hysteresis window of 0.1V was
chosen, due to the relative instability of the input signal, especially in a noisy environment [2].

Logical high is set by a pullup resistor connecting the comparator output to a 3.3V supply rail,
which ensures that the comparator output falls within a voltage range suitable for input to the
FPGA. Altogether, this comparator circuit serves to convert the periodic input waveform of
frequency f, into a square wave ranging from 0 to 3.3V also of frequency f,, with duty cycle
50%. An example model using a sinusoidal input waveform is shown in Fig. IL.b.
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Figure IL.b. Theoretical output of comparator circuit as described in Section II.
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IILII Raspberry Pi and LCD Display Circuit
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Figure IIl.c. Circuit diagram for the wiring of the Raspberry Pi to the LCD display and FPGA

Connections between the Raspberry Pi and the LCD display and FPGA consist entirely of
straightforward serial buses and power lines (Fig. IIl.c):

The Pi communicates with the LCD using the I°C protocol, and as such dedicated I>C bus pins 3
(SDA) and 5 (SCK) on the Pi were connected to the relevant pins on the LCD display board; pin
numbers on the LCD board schematic are not well-labeled in available documentation, but can
be correlated directly with the Pi pinout due to the board being a Pi shield. Furthermore, power
was provided to the LCD board from Pi pins 2 (5V) and 6 (GND).

The Pi and the FPGA communicated using one-way master-to-slave SPI communication with the
Pi acting as the master, and as such dedicated SPI bus pins 19 (MOSI) and 23 (SCLK) were
connected to FPGA input pins 100 and 99, respectively. In addition, to ensure that voltage levels
were consistent across the SPI bus, the Pi and FPGA grounds were connected.



111l LED Dot Matrix Circuit

Shattler and Xin 7

vee
3900 vee
ledControl[4] / PINA3
3900
14 15 ledControl[1] / PIN51
ANODE 7 RED ANODE 3 GREEN ledControl(1]
1
3 | anooe 7 Green ANODE 3 ReD |- 2&
vee 1000
12 17 vee
CATHODE 5 RED AANCDE 1 GREEN
3900 3900
ledControl[7] / PINAY 11 | CATHODE 5 GREEN ANODE 1 RED |8 ledControl[31 / PINS3
10 19
ANODE 5 RED CATHODE 4 GREEN
o 20 1000
ANODE 5 GREEN CATHODE 4 RED
1000Q
8
vee "—/\/\/\/— CATHODE 3 RED ARNTD LTP2558AA  CATHODE 3 GREEN | 2
5 » 1009 vee
3900 CATHODE 3 GREEN CATHODE 3 RED —/\/\/\/— 3900
ledControl[5] / PING4 1000 6 2
CATHODE 2 RED ANODE 4 GREEN ledControl[0] / PINSO
5 24
CATHODE 2 GREEN ANODE 4 RED
vee 4 25
ANODE Row 8 RED CATHODE 1 GREEN
3900 , » w000 vee
ledControl[6]/ PIN46 ANODE Row 8 GREEN CATHODE 1 RED 4/\/\/\/—< 3900
2 | ANODE Row 6 RED ANoDE 2 GREEN | 27 edControl[2]/ PINS2
1 28
ANODE Row 6 GREEN ANODE 2 RED
vee
3900 vee
ledControl[14] / PIN31
3900
14 15 |
ANODE 7 RED ANCDE 3 GREEN ledControl[10] / PIN38
2 | ANODE 7 GREEN ANODE 3 RED |22
v 1000
< 12 17 vee
CATHODE 5 RED ANODE 1 GREEN
3900 3000
ledControl[12] / PIN33 | CatHoDE 5 GREEN ANODE 1 R |22 ledControl[8] / PIN62
10
ANODE 5 RED CATHODE 4 GReeN | *°
1009
9 20
ANODE 5 GREEN CATHODE 4 RED 4%
1000
vee & CATHODE 3 RED ARNTD LTP25584A  CATHODE 3 GREEN | 21
7 22 1000 vee
3900 CATHODE 3 GREEN CATHODE 3 RED 3000
ledControl(15] / PIN30 1000 ¢ 2
'—/\/\/\/— CATHODE 2 RED ANCDE 4 GREEN ledControl[11]/ PIN34
® | carvope 2 GReen ANODE 4 RED [—22
vee 4 25
ANODE Row & RED CATHODE 1 GREEN
3900 : " 1000 vee
ledControl(13] f PIN32 ANODE Row 8 GREEN CATHODE 1 RED 3900
2
ANODE Row 6 RED ANGDE 2 GReEN | 27 edControl[9] /PINSS
1 28
ANODE Row 6 GREEN ANODE 2 RED

Figure III.d. Circuit diagram of the wiring of the LED dot matrix to the FPGA (numbered pins
are FPGA pins)

The 5x8 LED dot matrix displays uses X-Y select to address the 40 dots on each display, with
the two different LED colours (green and red-orange) being controlled by two disjoint sets of
pins . For each LED colour—say, the red-orange LEDs—there are five cathode pins and eight
anode pins. Each cathode pin is the cathode of the eight red-orange LEDs in a particular row' of
the matrix and each anode pin corresponds to the anode of the the five red-orange LEDs in

! What we refer to as “rows” here are referred to as “columns” in the Arntd LTP2558AA datasheet (and vice
versa), as the datasheet uses a rotated coordinate axis. In this report we use our coordinate convention.
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particular column of the matrix. As such, in order to turn on an LED in a particular row and
column, we will need to pull the cathode for that row low and the anode for that column high.
For our purposes, we only use one of the LED colours (red-orange), so we only needed to wire
half of the pins on each 5x8 LED dot matrix. Moreover, since all five LEDs in a particular
column are either all on or all off, all ten cathodes (five for each 5x8 LED dot matrix) can be
connected to the same node, which is grounded.

To select which column of LEDs turn on, we need to wire the 16 red-green LED anode pins on
the two LED dot matrices to 16 output pins on the FPGA. When all five LEDs in a row are on,
the average forward curent would be 65 mA and the peak forward current would be 500 mA, so
we need a PNP transistor (2N3906) between each FPGA output and anode in order to supply the
current. Pulling the FPGA pin which is connected to the base of the transistor low (high) turns on
(off) the corresponding row of clumns. This configuration allows us to select the columns on the
LED dot matrix to turn on such that we can scroll a line pattern across the LED dot matrix. Fig.
II1.d. shows the complete circuit diagram for the wiring of the LED dot matrix.

IV. Microcontroller Design

The Raspberry Pi 3b was used as the microcontroller in this project, and was primarily employed
as a method for accepting, displaying, and transmitting user input. As discussed in Section II, the
Pi uses 12C to communicate with LCD display/button plate; furthermore, an extensive Python
library made available by Adafruit simplifies this communication by handling memory-mapping
for I2C communication and providing functions such as write (message), clear LCD(),
and button.isPressed () [4]. In addition to the LCD board, the Pi communicates with the
FPGA via a MOSI-only SPI connection, with the Pi acting as SPI master, as discussed above.
This communication was also simplified through the use of the spi dev Python module, which
handles memory-mapping for SPI communication and provides functions that allow the one-way
transfer of an 8-bit value when called. With these methods established, the general algorithm for
retrieving user input and sending it to the FPGA is as follows.

e Upon initialization of the program, open the SPI (with clock speed 122 kHz, CPOL =
CPHA = 0) and 12C ports, generate an array of possible note and octave values, and
default to tuning to A4; transmit this to the Pi over SPI. Display this value on the LCD, as
well as instructions for changing the tuning pitch.

e Next, using A4 as a base case, begin querying the button panel for user input. This
involves iterating over an array consisting of the five buttons on the board and checking
whether their . isPressed () attribute is true.

e If a button is detected as being pressed, then wait 100 ms until the button is no longer
being pressed, as each press should be registered only once. Then, either increment or
decrement the octave or note being tuned to, or return the current note and octave,
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depending on the button pressed. (If not returning, print the updated pitch to the LCD and
wait for the next button press.

e Once the current note is returned, encode the note/octave pair as an 8-bit binary number,
and send it to the FPGA via SPI.

e Repeat until the program is manually interrupted on the Pi (by using Ctrl-C) or the
system is powered down.

This allows for continuous flow of input from the user interface to the FPGA logic using the Pi
as a middleman for receival, encoding and transmission.

V. FPGA Design

There are two main parts to the hardware implemented on the FPGA: the first part receives and
parses the user-selected target pitch sent to the FPGA over SPI from the Raspberry Pi, and the
second part uses the user input and input signal to generate a control signal for to drive the LCD
dot matrix display:

V.I. Receiving and Parsing User Input

The FPGA in this case is the SPI slave while the Raspberry Pi is the SPI master, with data
transfer only occurring from master to slave, so the block for receiving SPI data is relatively
straightforward. Following in the design in Ref. [5], the spiSlaveReceiveOnly module
takes in two inputs, sck and mosi, and outputs the byte received from the Raspberry Pi as an
8-bit bus, which is updated by a shift register that shifts mosi into the least significant bit on
the positive edge of sck.

The byte received from the Raspberry Pi through SPI, spiOut, is formatted in the form

00 xxxx_yy, where the four bits after the leading zeros encode the user selected note,
nextNote, and the least significant two bits encode the user selected octave, nextOctave;
the note and octave encodings for each note in our tuning range is provided in Appendix C. Since
nextNote and nextOctave are clocked to sck, we pass them through a register clocked to
the positive edge of the 40 MHz FPGA clock in order to synchronize them with the other signals
used in the LCD dot matrix display driver.

VI LCD Dot Matrix Display Driver

The output of the synchroniser of the user-selected note and octave, currentNote and
currentOctave are used to as control-signals to a multiplexer whose output, maxCount, is
the number of 40 MHz FPGA clock cycles in one period of the target pitch, i.€. T, .= 1/firger

arget -

maxCount is then used as the input to the resettingCounter module, which contains a
counter that resets and emits a pulse every time the counter reaches maxCount - 1, 1i.e. every
time the counter has gone through maxCount cycles of the 40 MHz FPGA clock . As such, the
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output of the resettingCounter module, registerEn, is an discrete impulse train at the
frequency of the target pitch, f,

agerr With the width of each pulse, w, being one period of the
FPGA clock.

Like its name suggests, registerEn, is used as the enable pin of a register, whose input,
nextInput, is the analog signal output from the audio pick-up circuit (Sec. III) and whose
output, curretInput, is the sampled signal.

Since registerkEn, is a pulse train with frequency f,,, .

and pulse width w = 1/(40 MHz), we
are effectively sampling the analog signal with a sample frequency f; = f,, . As such when we
are near target pitch, i.e. the frequency of the analog signal, £, is between f/2 and 3f,/2, aliasing
occurs, and the frequency of the sampled signal is the absolute value of the difference between
the analog signal and the sampling frequency, i.e.

fz;liasedz |.f;n _f; | = |f;n _f;arget | = Af .

Jaiasea 15 Used as the clock of the module that generates the LED dot matrix control signals.
ledControl. The output of 1ledControl, is just a 16-bit bus, each of which is used to toggle
the turn on/off a PNP transistor (2N3904) that drives the anodes of each column in the LED dot
matrix. 16-bits are the output of a circular shift register, which is clocked to £,
shifts every 1/f,

so the pattern

liased?>

liased*

For input frequencies in the vicinity of ;... 1.€. /2 <[, < 3//2, flj.ca = Af , s0 the pattern will
shift every 1/ Af. For instance if £, is 2 Hz out of tune compared to the target pitch, i.e Af'=2 Hz,
the pattern shifts every 1/(2 Hz) = 0.5 s. Similarly, if £ = /... such that Af=0, 1/Af becomes
infinity, which means the pattern becomes stationary. So, the pattern scrolling across the LED

dot matrix is stationary when note played is in tune, and scrolls faster the more out of tune it is in
the range f/2 <f, <3f/2.

VI. Results

We successfully implemented a stroboscopic instrument tuner with the specifications laid out in
Sec. I and the initial project proposal. Due to the high sensitivity of the tuner to small changes in
frequency, as well as the difficulties of playing a long sustained note with uniform frequency on
an instrument, it is quite difficult to get the pattern on the tuner to stay absolutely still for a long
period of time. However, when the note played is in tune, the pattern does stay stationary for a
time long enough for the user to distinguish it from the out of tune state. When tested with the
same input signal against a phone tuner application, our stroboscopic instrument tuner has
comparable performance in its ability to distinguishing in/out of tune notes.
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Running the user interface involves running the getUI () function in ui.py with the

following commands:

$ sudo python
>>> from ui import *
>>> getUI ()

Upon start-up, the program defaults to tuning to A440 (or A,). The Left/Right arrow keys are
used to change the note to tune to, while the Up/Down arrow keys are used to change the octave
that the note is in. The Select key is used to select the target note to tune to.

Prior to live testing with the actual analog input from the microphone, we tested the signal
processing on the FPGA with square wave frequencies generated with a function generator. With
the function generator signal, the pattern remained stationary for a very long period of time when
the function generator is set to the correct frequency. The pattern begins to move even for very
small deviations, such as 0.5 Hz from the target frequency.

During live-testing, we used several different types of signals: notes from a phone tone generator
application, notes played from a violin, notes played from a classical guitar, and whistled notes.
In all cases, the microphone needed to be very close to the source in order to maximize signal,
and on hindsight, perhaps a piezo pickup instead of a regular microphone may have suited our
purposes better. In any case, for all the signals tried, the display remained stationary for a
reasonably long period of time when the note played was in tune, and scrolls faster as the note
played is more out of tune.

One extra feature that would have been useful if implemented would be an indicator that showed
whether the out of tune note was sharp or flat. As is, since the display scrolling rate is determined
by the absolute value of the frequency difference, a note that is 2 Hz sharper and 2 Hz flatter than
the target pitch result in the same pattern. Currently, the way to distinguish which way the note is
out of tune is to arbitrarily pick a direction to tune at first, and determine whether the pattern
slower or faster to determine whether it is approaching or moving further away from the target
pitch, respectively.

Finally, we note that when no audio signal is being picked up, e.g. in a quiet room, the pattern
also remains stationary. However, as the tuner is clearly not in use when sitting in a quiet room,
this was not considered to be a serious issue with the implementation. Altogether, the our
implementation of a stroboscopic tuner has been quite successful.
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VIII. Parts List

Part No. Part Description Quantity | Price per unit
(USD)
Adafruit 1115 Blue & White 16x2 LCD + 1x 19.95
Keypad Kit for Raspberry Pi
Adafruit 1063 Electret Microphone Amplifier - | 1x 6.95
MAX4466 with Adjustable Gain
Arntd LTP2558AA 2.3” 5x8 Bi-Color LED Dot 2x 1.49
Matrix Display - Red
Orange/Green
Total 29.98 + shipping
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Appendix A: Raspberry Pi Code

FHEAHA AR R R R R R R R R

# ui.py

#

# Written by: Chen Jie Xin, Zachary Shattler
# Contact: cxin@g.hmc.edu, zshattler@g.hmc.edu
# Date created: 25 November 2017

# Date updated: 3 December 2017

#

# Functions for strobe tuner UI.

# Created for FA2017, ENGR 155 final project.
#

# Usage:

# $ sudo python

# >>> from ui import *

# >>> getUI ()

FHEHEH AR R R R R
import time

import sys

import Adafruit CharLCD as LCD

import spidev

notes = ["C", "B", "A#/Bb", "A", "G#/Ab", "G", "F#/Gb", "F", "E", "D#/Eb", "D", "C#/Db"]
octaves = [5, 4, 3, 2]
buttons = { (LCD.SELECT, 1),

LCD.UP, 2),

(

(LCD.DOWN, 3),
(LCD.LEFT, 4),
(LCD.RIGHT, 5)}

lcd = LCD.Adafruit CharLCDPlate ()

# Open SPI port
spi = spidev.SpiDev ()
spi.open(0,0)

def getUI():
# Set SPI mode to 0 and SCK to 122 kHZ and msbfirst mode
spi.mode = 0
spi.max_speed hz = 122000
spi.lsbfirst = False

# Default to A440 (A3) on power up
oldNote = 3
oldOctave =1

# Encode note as a char
toWrite = (oldNote << 2) | oldOctave

# Send to LCD Display
spi.xfer2 ([toWritel])

# Main loop
while True:
print "oldNote = " + str(oldNote) + ", oldOctave = " + str(oldOctave)

oldNote, oldOctave = getLCDInput (oldNote, oldOctave)
toWrite = (oldNote << 2) | oldOctave

print "Value sent: " + bin(toWrite)

spi.xfer2 ([toWritel])
print "SPI written!"

# Function for checking LCD for user input
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def getLCDInput (prevNote, prevOctave):
printNewNote (prevNote, prevOctave)

noteIndex = prevNote
octIndex = prevOctave
while True:
for button in buttons:
if lcd.is pressed(button[0]):
while (lcd.is pressed(button([0])):
time.sleep(0.1)
if (button[l] == 1):
return notelIndex, octIndex

elif (button[l] == 2):

octIndex = (octIndex - 1)%4
elif (button[l] == 3):

octIndex = (octIndex + 1)%4
elif (button[l] == 4):

noteIndex = (noteIndex + 1)%12
elif (button[l] == 5):

noteIndex = (noteIndex - 1)%12

printNewNote (noteIndex, octIndex)

# Function for updating note on LCD display
def printNewNote (note, octave):
lcd.clear ()
if (note == 0):
oct = octaves[octave] + 1
else:
oct = octaves[octave]

lcd.message ("Note: " + notes[note] + str(oct) + "\n"v +-8va <> b/#")
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strobeTunerMain.sv

Written by: Chen Jie Xin, Zachary Shattler
Contact: cxin@g.hmc.edu , zshattler@g.hmc.edu
Date created: 25 November 2017

Date updated: 3 December 2017

Main for module for running a strobe tuner on an FPGA.
Created for FA2017, ENGR 155 final project.

****************************************************************************/

dule strobeTunerMain (

input logic clk, // 40 MHz reference clock

input logic reset, // System reset

input logic sck, // SPI serial clock

input logic mosi, // SPI MOSI

input logic nextInput, // Next sample of input frequency

output logic refPitch, // Reference pitch for debugging

output logic ledClk , // Clock for LED dot matrix for debugging

output logic [15:0] ledControlPins, // LED control pins

output logic [5:0] onBoardLED) ; // Display current octave and pitch on onboard LEDs

logic registerEn, spiDone, currentInput;

logic [3:0] currentNote;
logic [3:0] nextNote;

logic [1:0] currentOctave;
logic [1:0] nextOctave;

logic [7:0] spiOut;
logic [19:0] maxCount;

// SPI receive next note and octave from Pi
spiSlaveReceiveOnly ssro(sck, mosi, spiOut);

// Update note and octave
always ff @ (posedge clk)
{currentNote, currentOctave} <= {nextNote, nextOctave};

// Update input tone sample every time counter resets
always ff @ (posedge clk, posedge reset)

if (reset) currentInput <= 0;

else if (registerEn) currentInput <= nextInput;

// Module for selecting maxCount based on currentNote and
maxCountSelect mcs (currentNote, currentOctave, maxCount) ;

// Counter that emits a pulse for one 40 MHz period every
resettingCounter rc(clk, reset, maxCount, registerEn);

// LED control module for scrolling pattern
ledControl ledc(ledClk, reset, ledControlPins);

// Pattern scrolling is clocked to positive edge of input
assign ledClk = currentInput;

// Debugging signals

assign refPitch = registerEn;

assign nextNote = spiOut[5:2];

assign nextOctave = spiOut[1l:0];

assign onBoardLED = {currentNote, currentOctave};
dmodule

currentOctave

maxCount clock cycles

samples
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/‘k‘k***‘k**‘k****‘k**‘k*******‘k**‘k****‘k**‘k****‘k**‘k****‘k**********‘k**‘k****‘k**‘k****‘k**‘k

* spiSlaveReceiveOnly.sv

Adapted from:
Written by:
Contact:

Date created:
Date updated:

Module for using

Digital Design and Computer Architecture, ARM Edition
Chen Jie Xin, Zachary Shattler

cxin@g.hmc.edu , zshattler@g.hmc.edu

25 Novemember 2017

3 December 2017

the FPGA as an SPI slave in receive only mode.

module spiSlaveReceiveOnly
(input logic sck,
input logic mosi,
output logic [7:0] q);

// From master
// From master

// Shift in next bit on positive edge of sck and increment count by 1

always ff @ (posedge sck)
q <= {gq[6:0], mosi};

endmodule

// Data received in format 00 <note> <octave>

**‘k****‘k**‘k****‘k**‘k**‘k*‘k**‘k**‘k*‘k**‘k**‘k****‘k**‘k****‘k***************‘k*********/

/‘k‘k***‘k**‘k****‘k**‘k*******‘k**‘k****‘k**‘k****‘k**‘k****‘k**********‘k**‘k****‘k**‘k****‘k**‘k

* maxCountSelect.sv

*

* Written by: Chen Jie Xin, Zachary Shattler

* Contact: cxin@g.hmc.edu , zshattler@g.hmc.edu

* Date created: 27 November 2017

* Date updated: 27 November 2017

*

* Module for selecting maximum count based on input octave and note.
* Created for FA2017, ENGR 155 final project

*

**‘k****‘k**‘k****‘k**‘k**‘k*‘k**‘k**‘k*‘k**‘k**‘k****‘k**‘k****‘k***************‘k*********/

module maxCountSelect (

input logic [3:0] note,
input logic [1:0] octave,
output logic [19:0] maxCount);

logic [19:0] maxCountBase;

always comb

begin
case (note)

4'p0000: maxCountBase = 20'h0_954f; // C
4'pb0001: maxCountBase = 20'h0 _9e2f; // B
4'pb0010: maxCountBase = 20'h0 _a797; // A#
4'p0011: maxCountBase = 20'h0_bl8f; // A
4'b0100: maxCountBase = 20'h0 _bcld; // G#
4'p0101: maxCountBase = 20'h0 _c74d; // G
4'b0110: maxCountBase = 20'h0_d327; // F#
4'p0111: maxCountBase = 20'hO0_dfb5; // F
4'p1000: maxCountBase = 20'h0_ed03; // E
4'b1001: maxCountBase = 20'h0_fblb; // D#
4'1010: maxCountBase = 20'hl 0a09; // D
4'p1011: maxCountBase = 20'hl 19da; // C#
default: maxCountBase = 20'h0_0010; // Default for simulation

endcase

end

// Left shift to get period of the same note,
assign maxCount = maxCountBase << octave;

endmodule

but n octaves lower
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/‘k‘k***‘k**‘k****‘k**‘k*******‘k**‘k****‘k**‘k****‘k**‘k****‘k**********‘k**‘k****‘k**‘k****‘k**‘k

resettingCounter.sv

Written by:
Contact:

Date created:
Date updated:

clock cycles.
Created for FA2017,

module resettingCounter
(input logic clk,
input logic masterReset,
input logic [19:0]
output logic pulse);

logic counterReset;
logic [19:0]

// Counter register with
always_ ff @ (posedge clk,

Chen Jie Xin,
cxin@g.hmc.edu ,
27 November 2017
27 November 2017

Zachary Shattler
zshattler@g.hmc.edu

Counter that emits a pulse for one clock cycle and resets every maxCount

ENGR 155 final project.

****‘k**‘k****‘k**‘k**‘k****‘k**‘k****‘k**‘k****‘k**‘k****‘k**‘k‘k******‘k**‘k****‘k**‘k****‘k*/

maxCount,

currentCount;

asynchronous master reset and synchronous counterReset
posedge masterReset)

if (masterReset) currentCount <= 20'b0;

else if (counterReset) currentCount <= 20'b0;

else currentCount <= currentCount + 20'bl;
// Counter starts from zero, so counterResets when count is maxCount - 1
assign counterReset = (currentCount == maxCount - 20'bl);

assign pulse =

endmodule

counterReset;

/‘k**‘k****‘k**‘k****‘k**‘k**‘k*‘k**‘k**‘k*‘k**‘k**‘k****‘k**‘k****‘k**‘k************************

ledControl.sv

Written by:
Contact:
Date created:

Chen Jie Xin,
cxin@g.hmc.edu ,
25 November 2017
25 November 2017

Zachary Shattler
zshattler@g.hmc.edu

Module for scrolling a pattern across a 5x16 LED dot matrix.

*

*

*

*

* Date updated:
*

*

* Created for FA2017,
*

ENGR 155 final project.

******~k*******~k*******~k******************~k*******~k**************************/

module ledControl (
input logic clk,
input logic reset,
output logic [15:0]

ledControl) ;

always ff @ (posedge clk, posedge reset)
if (reset) ledControl <= ~(16'b0010 0010 0010 _0010);
else ledControl <= {ledControl[0], ledControl[15:1]};

endmodule
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Note Freq (Hz) note [3:0] octave [2:0] maxCount [20:0]
C#2/Db2 69.30 1011 11 8CEB1
D2 73.42 1010 11 8502B
D#2/EDb2 77.78 1001 11 7D8DF
E2 82.41 1000 11 76802
F2 87.31 0111 11 6FD9A
F#2/Gb2 92.50 0110 11 69930
G2 98.00 0101 11 63A63
G#2/RAb2 103.83 0100 11 5EODD
A2 110.00 0011 11 58C74
A#2/Bb2 116.54 0010 11 53CBE
B2 123.47 0001 11 4F17D
C3 130.81 0000 11 4AATB
C#3/Db3 138.59 1011 10 4676D
D3 146.83 1010 10 42828
D#3/EDb3 155.56 1001 10 3EC70
E3 164.81 1000 10 3B410
F3 174.61 0111 10 37EDA
F#3/Gb3 185.00 0110 10 34C98
G3 196.00 0101 10 31D32
G#3/Ab3 207.65 0100 10 2F078
A3 220.00 0011 10 2C63A
A#3/Bb3 233.08 0010 10 29ES5F
B3 246.94 0001 10 278BF
c4 261.63 0000 10 25538
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C#4/Db4 277.18 1011 01 233B7
D4 293.66 1010 01 21414
D#4/Eb4 311.13 1001 01 1F634
E4 329.63 1000 01 1DA04
F4 349.23 0111 01 1BF6A
F#4/Gb4 369.99 0110 01 1AG4F
G4 392.00 0101 01 18E99
G#4/Ab4 415.30 0100 01 1783C
A4 440.00 0011 01 1631D
A#4/Bb4 466.16 0010 01 14F2F
B4 493.88 0001 01 13C5F
C5 523.25 0000 01 12A9D
C#5/Db5 554.37 1011 00 119DA
D5 587.33 1010 00 10A09
D#5/EDb5 622.25 1001 00 0FB1B
E5 659.25 1000 00 0EDO3
175 698.46 0111 00 0DFBS
F#5/Gb5 739.99 0110 00 0D327
G5 783.99 0101 00 0C74D
G#5/Ab5 830.61 0100 00 0BC1D
A5 880.00 0011 00 0B18F
A#5/Bb5 932.33 0010 00 O0A797
B5 987.77 0001 00 09E2F
Ccé 1046.50 0000 00 0954F




