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Abstract:  

Frequency determination using hardware-implemented N-Point FFT is useful when extracting 
multiple unknown frequencies from an input signal; however, due to a lack of resolution for the 
relatively low values of N easily implementable in hardware, precision is often too low for 
applications such as accurately tuning musical instruments. Thus, a stroboscopic instrument 
tuner was developed that relies on the principles of sampling and aliasing to detect even minute 
frequency differences of an input signal from a desired pitch. User input is retrieved, processed 
by a Raspberry Pi 3b microcontroller, and transferred to the MuddPi Mk. IV FPGA board, which 
contains logic for determining the difference in frequency between the desired and actual pitches. 
Deviations are displayed as a shifting pattern on an LED dot matrix display; if the pattern stands 
still, the note is in tune.  
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I. Introduction 

The goal of this project is to build a stroboscopic instrument tuner for audio frequencies in the 
range 69.3 Hz (C#2) to 1.0465 kHZ (C6). The project comprises of the following subsystems, 
listed along with their functions and the hardware used to realize these functions: 

1. Audio signal input and processing—take in a pure audio signal from a musical instrument 
(e.g., a single string played on a violin), filter and convert to a square wave usable by the 
FPGA board, and generate a pulse train of the same frequency to drive the power pins of 
the LED dot matrix display.  
Hardware: ADA1063 mic + amplifier breakout board, LM393N comparator, MuddPi 
Mk. IV FPGA board. 

2. LED dot matrix driver—drive an LED dot matrix display to be a periodically shifting 
pattern at a frequency determined by note being tuned to.  
Hardware: MuddPi Mk. IV FPGA board, two 5x8 bi-colour LED dot matrix displays 
(Arntd LTP2558AA) and 16 PNP transistors (2N3906). 

3. User interface—take user input to determine the note and octave being tuned to, parse 
into a binary representation, and input to the FPGA.  
Hardware: Raspberry Pi 3B, ADA1115 LCD 16x2 character display.  

The block diagram for the project is as shown below: 

 
Figure I.a. Block diagram of stroboscopic system tuner, with hardware components designated to 

perform each task shown in the blue dashed boxes. 



 

Shattler and Xin 3 

Altogether, the system functions as an extremely accurate adjustable stroboscopic tuner. The user 
interface is such that the current note being tuned to is always displayed on the LCD monitor, 
and updates continuously as new inputs are provided (i.e., new values of ftarget are selected). 
Furthermore, the visualization method used for the LED matrix is such that, for a given audio 
input frequency fin deviating in pitch from the pitch being tuned to ftarget by frequency  | fin −fΔ =  
ftarget |, a pattern of four lit LED columns (Fig. I.b.) will shift across the screen every  if /Δf ;1 fΔ  
is 0, then four-column pattern will remain stationary on the display (although due to the extreme 
accuracy of the tuner, this will rarely be perfectly attained). Further details on how the system 
operates can be found in the sections below. 

 
Figure I.b. Cartoon of line pattern scrolling across 5x16 LED dot matrix 

II. New Hardware 

The main new hardware used in this project are the two 5x8 bi-colour LED dot matrix display, 
the ADA1063 microphone and amplifier breakout board, and the ADA1115 LCD 16x2 character 
display and keypad kit. For analog signal pre-processing, we also used an LM393N comparator.  

The LED dot matrix displays operate in a manner very similar to the 7-segment displays used in 
various MicroPs labs throughout the semester, and as such will not be discussed in depth here. 
The wiring schematic for the LED dot matrix can be found in Sec. III.  

The ADA1063 mic and amplifier board has low power draw and includes an on-board low-pass 
filter to eliminate high-frequency noise (above 20 kHz), as well as an MAX4466 adjustable-gain 
amplification IC to provide a low-noise, high-amplitude output signal centered around 2.5 V [1]. 

The ADA1115 LCD display and keypad kit comes with a PCB designed to allow communication 
with the Pi over I2C, as opposed to the relatively complicated procedure for interfacing with the 
LCD display on its own. In addition, Adafruit offers a Python library with functions for writing 
characters to the LCD, reading user input from the on-board buttons, and other useful functions 
for using the display. The PCB can also be used as a Raspberry Pi shield, eliminating the need 
for the cobbler (this does, however, obstruct access to the majority of the GPIO pins, even 
though the LCD actually only needs to use 4 pins).  
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III. Schematics 

III.I Audio Pick-up and Analog Pre-Processing 

A circuit diagram for all breadboarded components for the microphone and analog 
pre-processing done on the mircophone signal is shown in Fig. III.a. The signal flow goes from 
top left to bottom right, and represents the bottom-left three blocks in the block diagram in 
Section I 

.  

Figure III.a. Circuit diagram for audio pick-up with microphone, analog filtering and 
pre-processing 

Audio signal processing begins when input audio (e.g., a single violin note being continuously 
played) with some frequency fin is converted into an analog waveform with DC offset 

and ranging between 0 and 5V peak to peak and of the same frequency by the.5VV DC = 2  
ADA1063 chip. 2nd-order Butterworth filter in the Sallen-Key topography, which cutoff 
frequency fc = 1 kHz. This cutoff frequency was chosen due to the maximum tunable frequency 
being set at 1046 Hz; this filter will significantly attenuate any frequencies greater than this, thus 
eliminating high-frequency noise from the input signal while passing through other frequencies 
with unity gain.  

The filtered signal is then provided as the non-inverting input to an LM393N analog comparator 
with reference voltage  Nominally, this circuit would output logical high.5V .V − = 2 = V DC  
when the input signal has voltage   and logical low when   However, due.5V ,V + > 2 .5V .V + < 2  
to small oscillations superimposed on the input signal by noise, this threshold can be crossed 
many times when the nominal value of the input is 2.5V, and generate a square wave signal that 
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switches between logical high and low very rapidly for a short period of time; this would clearly 
have a negative impact on later circuit performance.  

To combat this, hysteresis can be added to the circuit, which causes the comparator to go logic 
high when an upper threshold Vhigh is exceeded, and logic low when Vin  is below a low threshold 
Vlow. Given a wide enough range between Vhigh and Vlow, hysteresis can almost entirely eliminate 
the quick switching effect mentioned above. In our application, a hysteresis window of 0.1V was 
chosen, due to the relative instability of the input signal, especially in a noisy environment [2].  

Logical high is set by a pullup resistor connecting the comparator output to a 3.3V supply rail, 
which ensures that the comparator output falls within a voltage range suitable for input to the 
FPGA. Altogether, this comparator circuit serves to convert the periodic input waveform of 
frequency fin into a square wave ranging from 0 to 3.3V also of frequency fin with duty cycle 
50%. An example model using a sinusoidal input waveform is shown in Fig. II.b. 

 

                    
Figure II.b. Theoretical output of comparator circuit as described in Section II. 
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III.II Raspberry Pi and LCD Display Circuit 

 
Figure III.c. Circuit diagram for the wiring of the Raspberry Pi to the LCD display and FPGA 
 
Connections between the Raspberry Pi and the LCD display and FPGA consist entirely of 
straightforward serial buses and power lines (Fig. III.c):  

The Pi communicates with the LCD using the I2C protocol, and as such dedicated I2C bus pins 3 
(SDA) and 5 (SCK) on the Pi were connected to the relevant pins on the LCD display board; pin 
numbers on the LCD board schematic are not well-labeled in available documentation, but can 
be correlated directly with the Pi pinout due to the board being a Pi shield. Furthermore, power 
was provided to the LCD board from Pi pins 2 (5V) and 6 (GND).  

The Pi and the FPGA communicated using one-way master-to-slave SPI communication with the 
Pi acting as the master, and as such dedicated SPI bus pins 19 (MOSI) and 23 (SCLK) were 
connected to FPGA input pins 100 and 99, respectively. In addition, to ensure that voltage levels 
were consistent across the SPI bus, the Pi and FPGA grounds were connected.  
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III.III LED Dot Matrix Circuit  

 

Figure III.d. Circuit diagram of the wiring of the LED dot matrix to the FPGA (numbered pins 
are FPGA pins) 

The 5x8 LED dot matrix displays uses X-Y select to address the 40 dots on each display, with 
the two different LED colours (green and red-orange) being controlled by two disjoint sets of 
pins . For each LED colour—say, the red-orange LEDs—there are five cathode pins and eight 
anode pins. Each cathode pin is the cathode of the eight red-orange LEDs in a particular row  of 1

the matrix and each anode pin corresponds to the anode of the the five red-orange LEDs in 

1 What we refer to as “rows” here are referred to as “columns” in the Arntd LTP2558AA datasheet (and vice 
versa), as the datasheet uses a rotated coordinate axis. In this report we use our coordinate convention. 
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particular column of the matrix. As such, in order to turn on an LED in a particular row and 
column, we will need to pull the cathode for that row low and the anode for that column high. 
For our purposes, we only use one of the LED colours (red-orange), so we only needed to wire 
half of the pins on each 5x8 LED dot matrix. Moreover, since all five LEDs in a particular 
column are either all on or all off, all ten cathodes (five for each 5x8 LED dot matrix) can be 
connected to the same node, which is grounded. 

To select which column of LEDs turn on, we need to wire the 16 red-green LED anode pins on 
the two LED dot matrices to 16 output pins on the FPGA. When all five LEDs in a row are on, 
the average forward curent would be 65 mA and the peak forward current would be 500 mA, so 
we need a PNP transistor (2N3906) between each FPGA output and anode in order to supply the 
current. Pulling the FPGA pin which is connected to the base of the transistor low (high) turns on 
(off) the corresponding row of clumns. This configuration allows us to select the columns on the 
LED dot matrix to turn on such that we can scroll a line pattern across the LED dot matrix. Fig. 
III.d. shows the complete circuit diagram for the wiring of the LED dot matrix. 

IV. Microcontroller Design 

The Raspberry Pi 3b was used as the microcontroller in this project, and was primarily employed 
as a method for accepting, displaying, and transmitting user input. As discussed in Section II, the 
Pi uses I2C to communicate with LCD display/button plate; furthermore, an extensive Python 
library made available by Adafruit simplifies this communication by handling memory-mapping 
for I2C communication and providing functions such as write(message), clear_LCD(), 
and button.isPressed()[4]. In addition to the LCD board, the Pi communicates with the 
FPGA via a MOSI-only SPI connection, with the Pi acting as SPI master, as discussed above. 
This communication was also simplified through the use of the spi_dev Python module, which 
handles memory-mapping for SPI communication and provides functions that allow the one-way 
transfer of an 8-bit value when called. With these methods established, the general algorithm for 
retrieving user input and sending it to the FPGA is as follows. 

● Upon initialization of the program, open the SPI (with clock speed 122 kHz, CPOL = 
CPHA = 0) and I2C ports, generate an array of possible note and octave values, and 
default to tuning to A4; transmit this to the Pi over SPI. Display this value on the LCD, as 
well as instructions for changing the tuning pitch.  

● Next, using A4 as a base case, begin querying the button panel for user input. This 
involves iterating over an array consisting of the five buttons on the board and checking 
whether their .isPressed() attribute is true. 

● If a button is detected as being pressed, then wait 100 ms until the button is no longer 
being pressed, as each press should be registered only once. Then, either increment or 
decrement the octave or note being tuned to, or return the current note and octave, 
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depending on the button pressed. (If not returning, print the updated pitch to the LCD and 
wait for the next button press.  

● Once the current note is returned, encode the note/octave pair as an 8-bit binary number, 
and send it to the FPGA via SPI.  

● Repeat until the program is manually interrupted on the Pi (by using Ctrl-C) or the 
system is powered down.  

This allows for continuous flow of input from the user interface to the FPGA logic using the Pi 
as a middleman for receival, encoding and transmission. 

V. FPGA Design 

There are two main parts to the hardware implemented on the FPGA: the first part receives and 
parses the user-selected target pitch sent to the FPGA over SPI from the Raspberry Pi, and the 
second part uses the user input and input signal to generate a control signal for to drive the LCD 
dot matrix display: 

V.I. Receiving and Parsing User Input 

The FPGA in this case is the SPI slave while the Raspberry Pi is the SPI master, with data 
transfer only occurring from master to slave, so the block for receiving SPI data is relatively 
straightforward. Following in the design in Ref. [5], the spiSlaveReceiveOnly module 
takes in two inputs, sck and mosi, and outputs the byte received from the Raspberry Pi as an 
8-bit bus, which is updated by a shift register that shifts mosi into the least significant bit on 
the positive edge of sck.   

The byte received from the Raspberry Pi through SPI, spiOut, is formatted in the form 
00_xxxx_yy, where the four bits after the leading zeros encode the user selected note, 
nextNote, and the least significant two bits encode the user selected octave, nextOctave; 
the note and octave encodings for each note in our tuning range is provided in Appendix C. Since 
nextNote and nextOctave are clocked to sck, we pass them through a register clocked to 
the positive edge of the 40 MHz FPGA clock in order to synchronize them with the other signals 
used in the LCD dot matrix display driver.  

V.II. LCD Dot Matrix Display Driver 

The output of the synchroniser of the user-selected note and octave, currentNote and 
currentOctave are used to as control-signals to a multiplexer whose output, maxCount, is 
the number of 40 MHz FPGA clock cycles in one period of the target pitch, i.e. Ttarget = 1/ftarget.  

maxCount is then used as the input to the resettingCounter module, which contains a 
counter that resets and emits a pulse every time the counter reaches maxCount - 1, i.e. every 
time the counter has gone through maxCount cycles of the 40 MHz FPGA clock . As such, the 
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output of the resettingCounter module, registerEn, is an discrete impulse train at the 
frequency of the target pitch, ftarget, with the width of each pulse, w, being one period of the 
FPGA clock. 

Like its name suggests, registerEn, is used as the enable pin of a register, whose input, 
nextInput, is the analog signal output from the audio pick-up circuit (Sec. III) and whose 
output,  curretInput, is the sampled signal.  

Since registerEn, is a pulse train with frequency ftarget  and pulse width w = 1/(40 MHz), we 
are effectively sampling the analog signal with a sample frequency fs =  ftarget. As such when we 
are near target pitch, i.e. the frequency of the analog signal, fin is between fs/2 and 3fs/2, aliasing 
occurs, and the frequency of the sampled signal is the absolute value of the difference between 
the analog signal and the sampling frequency, i.e.  

faliased = | fin − fs | = | fin − ftarget | =   .fΔ  

faliased is used as the clock of the module that generates the LED dot matrix control signals. 
ledControl. The output of ledControl, is just a 16-bit bus, each of which is used to toggle 
the turn on/off a PNP transistor (2N3904) that drives the anodes of each column in the LED dot 
matrix. 16-bits are the output of a circular shift register, which is clocked to faliased, so the pattern 
shifts every 1/faliased. 

For input frequencies in the vicinity of ftarget, i.e. fs/2 < fin < 3fs/2, faliased = , so the pattern willfΔ  
shift every 1/ For instance if fin is 2 Hz out of tune compared to the target pitch, i.e  = 2 Hz,f .Δ fΔ  
the pattern shifts every 1/(2 Hz) = 0.5 s. Similarly, if fin = ftarget such that  = 0, 1/  becomesfΔ fΔ  
infinity, which means the pattern becomes stationary. So, the pattern scrolling across the LED 
dot matrix is stationary when note played is in tune, and scrolls faster the more out of tune it is in 
the range  fs/2 < fin < 3fs/2.  

VI. Results 

We successfully implemented a stroboscopic instrument tuner with the specifications laid out in 
Sec. I and the initial project proposal. Due to the high sensitivity of the tuner to small changes in 
frequency, as well as the difficulties of playing a long sustained note with uniform frequency on 
an instrument, it is quite difficult to get the pattern on the tuner to stay absolutely still for a long 
period of time. However, when the note played is in tune, the pattern does stay stationary for a 
time long enough for the user to distinguish it from the out of tune state. When tested with the 
same input signal against a phone tuner application, our stroboscopic instrument tuner has 
comparable performance in its ability to distinguishing in/out of tune notes. 
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Running the user interface involves running the getUI() function in ui.py with the 
following commands: 

$  sudo  python 
>>>  from  ui  import  * 
>>>  getUI() 

Upon start-up, the program defaults to tuning to A440 (or A4). The Left/Right arrow keys are 
used to change the note to tune to, while the Up/Down arrow keys are used to change the octave 
that the note is in. The Select key is used to select the target note to tune to. 

Prior to live testing with the actual analog input from the microphone, we tested the signal 
processing on the FPGA with square wave frequencies generated with a function generator. With 
the function generator signal, the pattern remained stationary for a very long period of time when 
the function generator is set to the correct frequency. The pattern begins to move even for very 
small deviations, such as 0.5 Hz from the target frequency.  

During live-testing, we used several different types of signals: notes from a phone tone generator 
application, notes played from a violin, notes played from a classical guitar, and whistled notes. 
In all cases, the microphone needed to be very close to the source in order to maximize signal, 
and on hindsight, perhaps a piezo pickup instead of a regular microphone may have suited our 
purposes better. In any case, for all the signals tried, the display remained stationary for a 
reasonably long period of time when the note played was in tune, and scrolls faster as the note 
played is more out of tune.  

One extra feature that would have been useful if implemented would be an indicator that showed 
whether the out of tune note was sharp or flat. As is, since the display scrolling rate is determined 
by the absolute value of the frequency difference, a note that is 2 Hz sharper and 2 Hz flatter than 
the target pitch result in the same pattern. Currently, the way to distinguish which way the note is 
out of tune is to arbitrarily pick a direction to tune at first, and determine whether the pattern 
slower or faster to determine whether it is approaching or moving further away from the target 
pitch, respectively. 

Finally, we note that when no audio signal is being picked up, e.g. in a quiet room, the pattern 
also remains stationary. However, as the tuner is clearly not in use when sitting in a quiet room, 
this was not considered to be a serious issue with the implementation. Altogether, the our 
implementation of a stroboscopic tuner has been quite successful. 
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VIII. Parts List 

Part No.  Part Description Quantity Price per unit 
(USD) 

Adafruit 1115 Blue & White 16x2 LCD + 
Keypad Kit for Raspberry Pi 

1x 19.95 

Adafruit 1063 Electret Microphone Amplifier - 
MAX4466 with Adjustable Gain 

1x 6.95 

Arntd LTP2558AA 2.3” 5x8 Bi-Color LED Dot 
Matrix Display - Red 
Orange/Green 

2x 1.49 

Total   29.98 + shipping 
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Appendix A: Raspberry Pi Code 

############################################################################### 

#  ui.py 
# 

#      Written  by:  Chen  Jie  Xin,  Zachary  Shattler 
#      Contact:     cxin@g.hmc.edu,  zshattler@g.hmc.edu 
#      Date  created:  25  November  2017 
#      Date  updated:  3  December  2017 
# 

#  Functions  for  strobe  tuner  UI. 
#      Created  for  FA2017,  ENGR  155  final  project. 
# 

#  Usage:  
#      $  sudo  python 
#      >>>  from  ui  import  * 
#      >>>  getUI() 
############################################################################### 

import  time 
import  sys 
import  Adafruit_CharLCD  as  LCD 
import  spidev 
 

notes  =  ["C",  "B",  "A#/Bb",  "A",  "G#/Ab",  "G",  "F#/Gb",  "F",  "E",  "D#/Eb",  "D",  "C#/Db"] 
octaves  =  [5,  4,  3,  2] 
buttons  =  {(LCD.SELECT,  1), 
   (LCD.UP,  2), 
   (LCD.DOWN,  3), 
   (LCD.LEFT,  4), 
   (LCD.RIGHT,  5)} 
 

lcd  =  LCD.Adafruit_CharLCDPlate() 
 

#  Open  SPI  port 
spi  =  spidev.SpiDev() 
spi.open(0,0) 

 

def  getUI(): 
#  Set  SPI  mode  to  0  and  SCK  to  122  kHZ  and  msbfirst  mode 
spi.mode  =  0 
spi.max_speed_hz  =  122000 
spi.lsbfirst  =  False 
 

#  Default  to  A440  (A3)  on  power  up 
oldNote  =  3 
oldOctave  =  1 
 

#  Encode  note  as  a  char 
toWrite  =  (oldNote  <<  2)  |  oldOctave 
 

#  Send  to  LCD  Display  
spi.xfer2([toWrite]) 

 

#  Main  loop 
while  True: 

print  "oldNote  =  "  +  str(oldNote)  +  ",  oldOctave  =  "  +  str(oldOctave) 
 

oldNote,  oldOctave  =  getLCDInput(oldNote,  oldOctave) 
toWrite  =  (oldNote  <<  2)  |  oldOctave 
print  "Value  sent:  "  +  bin(toWrite) 
 

spi.xfer2([toWrite]) 

print  "SPI  written!"  

 

#  Function  for  checking  LCD  for  user  input 
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def  getLCDInput(prevNote,  prevOctave):  

printNewNote(prevNote,  prevOctave) 
 

noteIndex  =  prevNote 
octIndex  =  prevOctave 
while  True: 

for  button  in  buttons: 
if  lcd.is_pressed(button[0]): 

while  (lcd.is_pressed(button[0])): 
time.sleep(0.1)  

if(button[1]  ==  1): 
return  noteIndex,  octIndex 

 

elif(button[1]  ==  2): 
octIndex  =  (octIndex  -  1)%4 

elif(button[1]  ==  3): 
octIndex  =  (octIndex  +  1)%4 

elif(button[1]  ==  4): 
noteIndex  =  (noteIndex  +  1)%12 

elif(button[1]  ==  5): 
noteIndex  =  (noteIndex  -  1)%12 

printNewNote(noteIndex,  octIndex) 
 

#  Function  for  updating  note  on  LCD  display  

def  printNewNote(note,  octave): 
lcd.clear() 

if(note  ==  0): 
oct  =  octaves[octave]  +  1  

else: 

oct  =  octaves[octave] 
 

lcd.message("Note:  "  +  notes[note]  +  str(oct)  +  "\n^v  +-8va   <>  b/#") 
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Appendix B: SystemVerilog Code 

/******************************************************************************* 

 *  strobeTunerMain.sv 
 * 
 *     Written  by:    Chen  Jie  Xin,  Zachary  Shattler 
 *     Contact:       cxin@g.hmc.edu  ,  zshattler@g.hmc.edu 
 *     Date  created:  25  November  2017 
 *     Date  updated:  3  December  2017 
 *  
 *  Main  for  module  for  running  a  strobe  tuner  on  an  FPGA.  
 *    Created  for  FA2017,  ENGR  155  final  project. 
 *****************************************************************************/ 
module  strobeTunerMain( 
  input  logic  clk,                      //  40  MHz  reference  clock 
  input  logic  reset,                    //  System  reset 
  input  logic  sck,                      //  SPI  serial  clock 
  input  logic  mosi,                     //  SPI  MOSI 
  input  logic  nextInput,                //  Next  sample  of  input  frequency 
  output  logic  refPitch,                //  Reference  pitch  for  debugging 
  output  logic  ledClk  ,                 //  Clock  for  LED  dot  matrix  for  debugging 
  output  logic  [15:0]  ledControlPins,   //  LED  control  pins 
  output  logic  [5:0]  onBoardLED);       //  Display  current  octave  and  pitch  on  onboard  LEDs  
 

  logic  registerEn,  spiDone,  currentInput; 
  

  logic  [3:0]  currentNote; 
  logic  [3:0]  nextNote; 
  

  logic  [1:0]  currentOctave;  
  logic  [1:0]  nextOctave; 
  

  logic  [7:0]  spiOut; 
  logic  [19:0]  maxCount; 
  

  //  SPI  receive  next  note  and  octave  from  Pi  
  spiSlaveReceiveOnly  ssro(sck,  mosi,  spiOut);  
  

  //  Update  note  and  octave 
  always_ff  @(posedge  clk) 
    {currentNote,  currentOctave}  <=  {nextNote,  nextOctave}; 
  

  //  Update  input  tone  sample  every  time  counter  resets 
  always_ff  @(posedge  clk,  posedge  reset) 
    if  (reset)            currentInput  <=  0; 
    else  if  (registerEn)  currentInput  <=  nextInput; 
  

  //  Module  for  selecting  maxCount  based  on  currentNote  and  currentOctave 
  maxCountSelect  mcs(currentNote,  currentOctave,  maxCount); 
  

  //  Counter  that  emits  a  pulse  for  one  40  MHz  period  every  maxCount  clock  cycles 
  resettingCounter  rc(clk,  reset,  maxCount,  registerEn); 
  

  //  LED  control  module  for  scrolling  pattern 
  ledControl  ledc(ledClk,  reset,  ledControlPins); 
  

  //  Pattern  scrolling  is  clocked  to  positive  edge  of  input  samples 
  assign  ledClk  =  currentInput; 
  

  //  Debugging  signals 
  assign  refPitch  =  registerEn; 
  assign  nextNote  =  spiOut[5:2]; 
  assign  nextOctave  =  spiOut[1:0]; 
  assign  onBoardLED  =  {currentNote,  currentOctave}; 
endmodule  
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/******************************************************************************* 

 *  spiSlaveReceiveOnly.sv 
 * 
 *     Adapted  from:  Digital  Design  and  Computer  Architecture,  ARM  Edition 
 *     Written  by:    Chen  Jie  Xin,  Zachary  Shattler 
 *     Contact:       cxin@g.hmc.edu  ,  zshattler@g.hmc.edu 
 *     Date  created:  25  Novemember  2017 
 *     Date  updated:  3  December  2017 
 *  
 *  Module  for  using  the  FPGA  as  an  SPI  slave  in  receive  only  mode.  
 *****************************************************************************/ 
  

module  spiSlaveReceiveOnly 
  (input  logic  sck,         //  From  master 
   input  logic  mosi,        //  From  master 
   output  logic  [7:0]  q);     //  Data  received  in  format  00_<note>_<octave> 
 

  

  //  Shift  in  next  bit  on  positive  edge  of  sck  and  increment  count  by  1 
  always_ff  @(posedge  sck) 
      q  <=  {q[6:0],  mosi}; 

 

endmodule 

 

/******************************************************************************* 

 *  maxCountSelect.sv 
 * 
 *     Written  by:    Chen  Jie  Xin,  Zachary  Shattler 
 *     Contact:       cxin@g.hmc.edu  ,  zshattler@g.hmc.edu 
 *     Date  created:  27  November  2017 
 *     Date  updated:  27  November  2017 
 *  
 *  Module  for  selecting  maximum  count  based  on  input  octave  and  note. 
 *    Created  for  FA2017,  ENGR  155  final  project. 
 *****************************************************************************/ 
 

module  maxCountSelect( 
  input  logic  [3:0]  note, 
  input  logic  [1:0]  octave, 
  output  logic  [19:0]  maxCount); 
  

logic  [19:0]  maxCountBase;  
  

  always_comb 
    begin 
      case(note) 
        4'b0000:  maxCountBase  =  20'h0_954f;   //  C 
        4'b0001:  maxCountBase  =  20'h0_9e2f;   //  B 
        4'b0010:  maxCountBase  =  20'h0_a797;   //  A# 
        4'b0011:  maxCountBase  =  20'h0_b18f;   //  A 
        4'b0100:  maxCountBase  =  20'h0_bc1d;   //  G#  

        4'b0101:  maxCountBase  =  20'h0_c74d;   //  G 
        4'b0110:  maxCountBase  =  20'h0_d327;   //  F# 
        4'b0111:  maxCountBase  =  20'h0_dfb5;   //  F 
        4'b1000:  maxCountBase  =  20'h0_ed03;   //  E 
        4'b1001:  maxCountBase  =  20'h0_fb1b;   //  D# 
        4'b1010:  maxCountBase  =  20'h1_0a09;   //  D  

        4'b1011:  maxCountBase  =  20'h1_19da;   //  C# 
        default:  maxCountBase  =  20'h0_0010;   //  Default  for  simulation 
    endcase  

  end 
  

  //  Left  shift  to  get  period  of  the  same  note,  but  n  octaves  lower 
  assign  maxCount  =  maxCountBase  <<  octave; 
  

endmodule  
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/******************************************************************************* 

 *  resettingCounter.sv 
 * 
 *     Written  by:    Chen  Jie  Xin,  Zachary  Shattler 
 *     Contact:       cxin@g.hmc.edu  ,  zshattler@g.hmc.edu 
 *     Date  created:  27  November  2017 
 *     Date  updated:  27  November  2017 
 *  
 *  Counter  that  emits  a  pulse  for  one  clock  cycle  and  resets  every  maxCount 
 *    clock  cycles. 
 *    Created  for  FA2017,  ENGR  155  final  project. 
 *****************************************************************************/ 
  

module  resettingCounter 
  (input  logic  clk, 
   input  logic  masterReset,  
   input  logic  [19:0]  maxCount, 
   output  logic  pulse); 
  

   logic  counterReset; 
   logic  [19:0]  currentCount; 
  

   //  Counter  register  with  asynchronous  master  reset  and  synchronous  counterReset 
   always_ff  @(posedge  clk,  posedge  masterReset) 
     if  (masterReset)        currentCount  <=  20'b0; 
     else  if  (counterReset)  currentCount  <=  20'b0; 
     else                    currentCount  <=  currentCount  +  20'b1; 
  

   //  Counter  starts  from  zero,  so  counterResets  when  count  is  maxCount  -  1 
   assign  counterReset  =  (currentCount  ==  maxCount  -  20'b1);  
   assign  pulse  =  counterReset; 
  

endmodule 

 

/******************************************************************************* 

 *  ledControl.sv 
 * 
 *     Written  by:    Chen  Jie  Xin,  Zachary  Shattler 
 *     Contact:       cxin@g.hmc.edu  ,  zshattler@g.hmc.edu 
 *     Date  created:  25  November  2017 
 *     Date  updated:  25  November  2017 
 *  
 *  Module  for  scrolling  a  pattern  across  a  5x16  LED  dot  matrix.  
 *    Created  for  FA2017,  ENGR  155  final  project. 
 *****************************************************************************/ 
  

module  ledControl( 
  input  logic  clk,  
  input  logic  reset,  
  output  logic  [15:0]  ledControl); 
  

  always_ff  @(posedge  clk,  posedge  reset) 
    if  (reset)  ledControl  <=  ~(16'b0010_0010_0010_0010); 
    else        ledControl  <=  {ledControl[0],  ledControl[15:1]}; 
  

endmodule 
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Appendix C: List of Notes and Frequencies 

Note Freq (Hz) note [3:0] octave [2:0] maxCount [20:0] 

C#2/Db2  69.30 1011 11 8CEB1 

D2 73.42 1010 11 8502B 

 D#2/Eb2  77.78 1001 11 7D8DF 

E2 82.41 1000 11 76802 

F2 87.31 0111 11 6FD9A 

 F#2/Gb2  92.50 0110 11 69930 

G2 98.00 0101 11 63A63 

 G#2/Ab2  103.83 0100 11 5E0DD 

A2 110.00 0011 11 58C74 

 A#2/Bb2  116.54 0010 11 53CBE 

B2 123.47 0001 11 4F17D 

C3 130.81 0000 11 4AA7B 

 C#3/Db3  138.59 1011 10 4676D 

D3 146.83 1010 10 42828 

 D#3/Eb3  155.56 1001 10 3EC70 

E3 164.81 1000 10 3B410 

F3 174.61 0111 10 37EDA 

 F#3/Gb3  185.00 0110 10 34C98 

G3 196.00 0101 10 31D32 

 G#3/Ab3  207.65 0100 10 2F078 

A3 220.00 0011 10 2C63A 

 A#3/Bb3  233.08 0010 10 29E5F 

B3 246.94 0001 10 278BF 

C4 261.63 0000 10 25538 



 

Shattler and Xin 19 

 C#4/Db4  277.18 1011 01 233B7 

D4 293.66 1010 01 21414 

 D#4/Eb4  311.13 1001 01 1F634 

E4 329.63 1000 01 1DA04 

F4 349.23 0111 01 1BF6A 

 F#4/Gb4  369.99 0110 01 1A64F 

G4 392.00 0101 01 18E99 

 G#4/Ab4  415.30 0100 01 1783C 

A4 440.00 0011 01 1631D 

 A#4/Bb4  466.16 0010 01 14F2F 

B4 493.88 0001 01 13C5F 

C5 523.25 0000 01 12A9D 

 C#5/Db5  554.37 1011 00 119DA 

D5 587.33 1010 00 10A09 

 D#5/Eb5  622.25 1001 00 0FB1B 

E5 659.25 1000 00 0ED03 

F5 698.46 0111 00 0DFB5 

 F#5/Gb5  739.99 0110 00 0D327 

G5 783.99 0101 00 0C74D 

 G#5/Ab5  830.61 0100 00 0BC1D 

A5 880.00 0011 00 0B18F 

 A#5/Bb5  932.33 0010 00 0A797 

B5 987.77 0001 00 09E2F 

C6 1046.50 0000 00 0954F 

 


