Weather Visualizing Cloud Lamp

Elizabeth Poss and Cordelia Stiff
E155 Final Project Report
December 8, 2017
Abstract: String lights of various shapes and sizes have become a staple of

whimsical interior decorating. Our product aims to incorporate the functionality and
excitement of home internet of things devices while still channeling that sense of
whimsy. We have designed a cloud-shaped lamp which emulates current weather
activity. Users control the lamp’s power and brightness through a web server hosted by a
Raspberry Pi, which also gets weather data from an API. This is communicated to an

FPGA which decodes the weather data and uses SPI to control six LED strands. The

cloud can display sunrise, sunset, and varying intensities of rain, snow, and lightning.

A. Introduction:

We created a lamp, shaped like a cloud, which displays real-time weather. Our
finished prototype can both access current weather data, and display LEDs in patterns
and colors which visualizes sunrise, sunset, and varying intensities of rain, snow, cloud
cover, and lightning. The cloud is controlled via a web server, which allows the user to
control the brightness of the lamp, and turn it on and off. A Raspberry Pi hosts the web
server, and makes an API call to OpenWeatherMap’s current weather API. Once the
relevant weather data has been obtained and processed, it is transmitted to the FPGA
via SPI. The FPGA uses a decoder to select the associated weather actions, and generates

the data sent to the six LED strands, which are also controlled via SPI.



Raspberry Pi FPGA

Weather AP| Retrieval LED Strip

Data Processing
v 7
Cot Data 55
;-Oe[ Interpretation A LED Strip
pa
Sp‘('____—'
Via SPI —v
/ \V LED Strip
(\b‘? a SP
2
Apache Web Server Webserver code Do"\\d\ \

oy
- | G:}
«——HTML codeT] /
User Input— | =

Figure One: Block Diagram of our system.

B. New Hardware:

Our new hardware element is the LED strands which we used to simulate
weather. Our primary design choice concerned the choice of LEDs. For ease of
comparison and ordering, we focused on LED options carried by Adafruit. LED strands
were necessary for the rain/snow strands, so we chose to use strands in all parts of the
lamp. We chose 30 LEDs per meter, the lowest LED density, since the size of the lamp
and necessary length of the rain strands prioritized length over light density. This also
allowed us to buy a greater length of LED strands. Finally, we chose DotStar LEDs over
NeoPixels. The DotStar’s strength in update speed, and use of SPI instead of PWM
made us more comfortable using it, and made it preferable for things like our rain or
lightning animations.

The DotStar LED strands we chose were composed of connected APA102C LEDs.

These LEDs take a 5V and GND connection, as well as CI (clock in) and DI (data in). The



datasheet gives no specific constraints for the speed of the SPI transmission, and none
were observed during testing beyond a rough max of ~1MHz, likely due to breadboard
capacitance. The data sent was arranged in the following form: 4 bytes of 0, 4 bytes of
information per LED, and an ending sequence of 4 bytes of 1. Each LED took the
format shown in Figure 2. The 5 bit global brightness value remains constant within a
strand, but the RGB values are LED specific. An off LED pattern was designated with o
values for brightness and RGB (32’hE0000000). This allows us to set specific LEDs on

or off, to create patterns for our rain.

LED Frame 32 Bits
MSB LSBMSE LSI
111t UL RI RED

Figure 2: Data format for the APA102C.
These 4 bytes would be necessary for each
LED in the strand being controlled.™
In testing, it was observed that a data sequence with data for more LEDs than

were present in the strand could be sent without error. However, if the information to
control N LEDs was sent to a strand of length greater than N, then the N+1 LED in the
strand would glow white, while the remaining LEDs would be dark as expected.
Preliminary attempts showed no errors when the starting and ending sequences were

omitted, but we chose to stick to the format recommended by the datasheet, and thus

cannot guarantee that their omission would not lead to some bugs.



Ultimately, our SPI transmission was controlled by a second ‘load’ clock. This
clock was timed to have a high period just longer than our longest necessary
transmission time - in this case the time necessary to send 512 bits - and the data was
retransmitted every clock cycle of load. This allowed us to generate rain by changing
which bits were set on and off without having to call our SPI module multiple times.

The resources we consulted cautioned about power and current considerations.
Fortunately, all of our strands at full brightness and white light never went above 2
Amps. However, for visualizations like lightning and rain, the current would swing
dramatically as strands were turned on and off. While this was not a problem for a
power supply, current and power considerations would be necessary for a project with
more LEDs.

C. Schematics

See schematic below.



Figure 3: All elements were connected to the same ground. Everything but the Pi was

connected to the same 5V power. Pins connected to the FPGA were multiples of the same

Vee/GNC/DI/CI format for the LED strands, and an Enable, MOSI, and SCLK for
communication with the Pi.



D. Microcontroller Design:

The overall function of the Raspberry Pi was to control the settings for the lamp
by retrieving the weather data from an API and hosting a web server to allow users to
change basic settings of the lamp. There are three main modules on the Raspberry Pi,
which I will now discuss in detail.

Section One - Web Server Code:

This section of code was used to host a web server, which allowed users to pick
basic settings for the lamp. The webserver had two buttons, which turn the lamp on or
off, and a text field, which lets user set a brightness for the cloud. We used Apache2 to
host our web server, so most of the code for this was done in that format.

The web server relies on three main C functions. Two of the functions simply
write a pin HIGH or LOW, respectively. These are used to turn the cloud on or off, as we
will later check that pin in the main function. The other C file takes a brightness value
from the text field using the GET HTTP protocol. It then processes the output of that
field to get the integer brightness value. Finally, it writes that value out to a text file. This
text file can later be accessed by our main function.

Section Two - API Call and Processing:

This section of the code does the processing to determine what series of bits
should be sent to the FPGA. It is written in Python, and takes two inputs - a zip code,
which determines the location that the API should check, and a user brightness. We will

describe where these inputs come from in Section 3.



The first section of this code makes a request to the OpenWeatherMap API, with
the chosen zip code. This will return a dictionary, which contains the weather conditions
in that location.

We now need to process the bits. In the second part of this function, we check for
several weather conditions: rain, snow, or lightning. This is done by checking the
appropriate part of the dictionary for various weather conditions.' If we find any of
these conditions, we then set the appropriate bits of our output. We then use the Python
datetime library to get the current time. As the API uses Unix format for sunrise and
sunset time, we also use the datetime library to convert to the format used in the rest
of the datetime library. Using these times, we can check if we’re within 30 minutes of
either sunrise or sunset, and set the sunrise and sunset bits of our output.

Finally, we need to handle brightness. If the user has set the brightness to o, then
we use weather data to set brightness. The API call contains a section for cloudiness, so
we can simply set the brightness bits to correspond to cloudiness. If the user picks a
different brightness value, we first take the value modulo 31, so we don’t overflow our
five bit brightness value, and then set the brightness bits to this value.

Once we have the series of bits that we want to send, we simply convert them into
an integer, and return the value.

Section Three - Main Function:

This is the function that does the main control for the cloud. We first initialize the

various libraries we need, as well as the pins we will need to read to see if the cloud

should be on or off. We then loop forever, so that the cloud is always on.



The first step we take is to get the brightness that the user has set. As we stated
above in the description of the web server code, this is saved to a text file. Therefore, we
simply need to open the file and read out the brightness.

We now need to check if the cloud should be on. In order to do this, we read the
pin mentioned above in the web server section. If this pin is 0, we simply set the weather
bits to 0 and do nothing else. Otherwise, we run a C function that gets the output of our
Python function. We pass in a hard-coded zip code, as well as the user set brightness.
We then check to make sure that the returned integer from our Python code is not equal
to 0, which ensures that an error in the API call will not turn the cloud off. If we get a o,
we use the old bits - otherwise, we use the new bits calculated by the API call.

Finally, we need to send this data to the FPGA. We first write our SPI enable pin
to 1. We then use the EasyPI0.h function spiSendReceivel6 to send the relevant
bits to the FPGA, and then set the enable pin back to 0. We then delay for a brief period
of time, as making successive API calls can cause the system to break. The loop then

repeats forever, thus ensuring the cloud updates when the weather changes.

E. FPGA Design:
The FPGA served to accept weather data from the Pi, and control the LEDs. One
SPI connection was made to the Pi, and six were made to the LED strands. Controlling
the LEDs on the FPGA was necessary, as the rain strands had to be connected at only

one end- this meant we would have needed an absolute minimum of three SPI



connections, which would be too many for the Pi. In addition, the rain and lightning
visualizations required multiple clocks, which makes this better suited to the FPGA.
Section One- LED Control (SPI)

Six APA102C LED strands of various lengths were controlled by the FPGA. The
data sent to each strand was determined by the format discussed in Section B. A data
generation module took in a parameter length of the led strand, and a desired
brightness and color, and output the full data string that would be sent to the strand.
Rain was created using an 1edpattern variable which marked the LED that would be
on at a given instance. A series of ternary operators based on 1edpattern created the
SPI data string, which was sent to the SPI module. ledpattern was updated at the
desired speed of the rain, and right shifted a single on LED in a loop through the bits of
the variable. This simulated a raindrop falling down the strand. The color and speed of
the rain could be modified with module inputs.

Section Two- Weather Decoder

A decoder converted weather signals like rain or sunset into LED control actions.
The Pi communicates 16 bits, which include a five bit brightness value, single bits for
sunrise, sunset, and rain/snow, and two bit precipitation and lightning values. The
brightness value goes straight to the brightness input for the SPI generation modules,
unless the precipitation value is zero, in which case brightness for the rain strands is
zero, or if the lightning value is nonzero, in which case brightness for the lightning
creating lantern changes in order to simulate lightning. This lightning creation logic

uses a series of ANDed and XNOR’ed clock bits to create a flashing pattern, with varying



intensities based on the two lightning bits. The precipitation bits control speed, an input
to the rain generation which controls the clock speed at which 1edpattern updates.
Finally, the rain/snow bit controls the color of the rain (blue for rain and white for
snow), and sunrise and sunset change the colors of the lanterns from their default white
to purples and oranges.

Section Three- Pi Communication (SPI)

The SPI connection with the Pi used a basic shift register. The Pi controlled an
enable pin, and shifting only occurred while the enable pin was high. At the falling edge
of the enable, the communicated value was shifted to the output of the function,
ensuring that the decoder and LED control modules were controlled by a constant value.

F. Results:

We were able to complete our project successfully. Our lamp is covered in
stuffing to make it appear like a cloud, and both the lantern strands and rain strands
work correctly. We are able to generate all of the patterns we promised (rain, snow, and
lightning), as well as various color patterns for sunrise and sunset. Finally, as promised,
we created a web server that allows users to adjust brightness and turn the cloud on and

off.



Figure 4: Completed Prototype. The cloud is displaying a sunset. The rain strands are not
active. Hardware is visible in the upper right, protected from electrical shorts in a cardboard
box.

The most difficult parts of our design were the two SPI connections. On the
FPGA, we needed to both receive bits from the Raspberry Pi, and then turn these bits
into the appropriate bits to send to the LED strips over SPI. While the basic SPI

connection was simple to design, each side of this had particular needs that made the



process more difficult. For the Raspberry Pi SPI, we needed to ensure that we were
getting the entire series of bits from the Pi before sending them on to our LED SPI
module, so we didn’t send bad patterns to the LED strips. This was achieved by
attaching an “enable” pin from the Raspberry Pi, so we know exactly when the bits have
begun to send, and when they’ve stopped sending. Ultimately the primary difficulty in
testing this came from physical problems- our wires were too long, and created
interference which caused the data read by the FPGA to be incorrect. Replacing the
connections fixed this problem.

For the LED strands, we needed to create an SPI module that could take in basic
inputs such as RGB color, brightness, and the length of the LED strand we were trying
to use, and convert this into the proper series of bits. This was mainly done using block
assignments and ternary operators, to assign the proper series of bits.

Our final prototype was consistent with our project proposal.

G. References
[1] Shiji Lighting. APA102C Datasheet. Adafruit.

https://cdn-shop.adafruit.com/datasheets/APA102.pdf
[2] OpenWeatherMap. Current Weather Data (API Documentation).

https://openweathermap.org/current
[3]S. Harris and D. Harris, Digital Design and Computer Architecture: Arm edition,
Elsevier Science, 2015.

H. Parts List

Part Name Link Price per Units Total Cost
Unit Needed
Paper Lanterns ASIN:B01M630EBF $10.99 1 $10.99

Pillow Batting Found in Makerspace N/A N/A N/A



https://cdn-shop.adafruit.com/datasheets/APA102.pdf
https://openweathermap.org/current

Dotstar 30 LED/m Adafruit: $19.95
LED Strip

$39.99

I. Code
spimoduletest.sv:

module paramcounter #(parameter N)
(input logic clk,
input logic reset,
output logic [N-1:0]q);
I/l basic parameterized counter
always_ff @(posedge clk, posedge reset)
if (reset) q<= 0;
else q<=q+1;
endmodule

module paramspi #(parameter N)(input logic clk,
input logic sck,
output logic mosi,
input logic [N-1:0]datain);
logic[N-1:0]p=0;//=160'b0;
logic[25:0]counter;
paramcounter #(26) loadclk(clk,1'b0,counter);
logic load;
/' load clock calculated to take slightly longer than SPI for 512 bits
assign load = counter[16];
assign mosi = p[N-1];
always_ff @(posedge sck)
if(load)
p<=datain;
else p<= {p[N-2:0],1'b0};
Il p is filled with zeros as they don’t change the LED actions
endmodule

/I makes an led strand simulate rain
// rain strands are either 10 or 12

/I commanding a strand of 10 leds with the information for 12 doesn’t cause errors, so assume a

length of 12 leds for all rain commands

/[ rain will probably always be white, but it can take any color input

modaule rain (input logic clk,




input logic sck,
input logic [4:0]globalbrightness,
input logic [7:0]blue,
input logic [7:0]green,
input logic [7:0]red,
input logic [1:0]speed,
output logic mosi);
/I create slow clock- constrained by time to control entire strand via spi (load clock)
logic [29:0]slockcount;
paramcounter #(30) slockmake(clk, 1'b0, slockcount);
logic slock;

assign slock = slockcount[22-speed];

/l raininstance is the dataout sent to the led strand, ledpattern is the on/off pattern (12 bits, 1 on,
0 off)

logic [0:11]ledpattern;

logic[14*32-1:0]raininstance;
generateRainlnstance eachrain(ledpattern, globalbrightness, blue, green, red, raininstance);

paramspi #(14*32) testled(clk,sck,mosi,raininstance);

// rotates led pattern- the two modules above will be called again every time ledpattern changes
always_ff @(posedge slock)

begin
if(ledpattern == 12'b000000000000)
ledpattern <= 12'b100000000000;
else
ledpattern <= ledpattern >> 1;
end
endmodule

/I uses ledpattern to create the spi output for an individual moment of rain
module generateRainlnstance(
input logic [0:11]ledpattern,
input logic [4:0]globalbrightness,
input logic [7:0]blue,
input logic [7:0]green,
input logic [7:0]red,
output logic[0:14*32-1]ledstring);
/I constants based on datasheet
logic[31:0]startbits;



logic[31:0]endbits;

logic[31:0]ledbits;

logic[31:0]offled;

assign offled = 32'hE0000000;

assign startbits = 32'b0;

assign endbits = 32'hFFFFFFFF;

assign ledbits = {3'b111,globalbrightness,blue,green,red};

/[ assigns each part of ledstring bitwise (this is why the length is constant)

assign ledstring[0:31] = startbits;

assign ledstring[32*1:32*2-1] = (ledpattern[0] == 1)? ledbits :
assign ledstring[32*2:32*3-1] = (ledpattern[1] == 1)? ledbits :
assign ledstring[32*3:32*4-1] = (ledpattern[2] == 1)? ledbits :
assign ledstring[32*4:32*5-1] = (ledpattern[3] == 1)? ledbits :
assign ledstring[32*5:32*6-1] = (ledpattern[4] == 1)? ledbits :
assign ledstring[32*6:32*7-1] = (ledpattern[5] == 1)? ledbits :
assign ledstring[32*7:32*8-1] = (ledpattern[6] == 1)? ledbits :
. offled;

assign ledstring[32*8:32*9-1] = (ledpattern[7] == 1)? ledbits

offled;
offled;
offled;
offled;
offled;
offled;
offled;

assign ledstring[32*9:32*10-1] = (ledpattern[8] == 1)? ledbits : offled;
assign ledstring[32*10:32*11-1] = (ledpattern[9] == 1)? ledbits : offled;
assign ledstring[32*11:32*12-1] = (ledpattern[10] == 1)? ledbits : offled;
assign ledstring[32*12:32*13-1] = (ledpattern[11] == 1)? ledbits : offled;

assign ledstring[32*13:32*14-1] = endbits;
endmodule

[/l for communication between pi and fpga
module spi_slave_receive_only(input logic pien,

/[From master
pimosi,//From master

data); // Data received
logic [15:0] q;
always_ff @(posedge pisck)
begin

q<={q[14:0],pimosi};
end

input logic pisck,
input logic

output logic [15:0]

/l pien is an enable pin connected to the pi, it stays high for the duration of sending

always_ff @(negedge pien)
data <=q;
endmodule



I create the SPI output to turn a led with numleds a singled color as input
module valueGenOneColor#(parameter numleds)(
input logic [4:0]globalbrightness,
input logic [7:0]blue,
input logic [7:0]green,
input logic [7:0]red,
output logic[0:((numleds+2)*32)-1]ledstring);
logic[31:0]startbits;
logic[31:0]endbits;
logic[31:0]ledbits;
assign startbits = 32'b0;
assign endbits = 32'hFFFFFFFF;
assign ledbits = {3'b111,globalbrightness,blue,green,red};

/I {m{n}} replicates n m times
assign ledstring = {startbits, {numleds{ledbits}}, endbits};
endmodule

module spimoduletest(input logic clk,
input logic pimosi,
input logic pisck,
input logic pien,
output logic sckout,
output logic sckout2,
output logic sckout3,
output logic mosilarg,
output logic mosimed,
output logic mosismal,
output logic mosirain1,
output logic mosirain2,
output logic mosirain3);

I/l reset, enable, and slow clock for led SPIs

logic reset, sck;

assign reset = 1'b0;

/I bit size of sck clock counter

parameter sckN = 30;

logic [sckN-1:0]counter;

paramcounter #(sckN) sckmake(clk, reset, counter);
assign sck = counter|[6];



/I sets clock output pins
assign sckout = sck;
assign sckout2 = sck;
assign sckout3 = sck;

/I we have the following LED strands (followed by length)

/' largest(14), medium(6), smalls(6), rain1(10), rain2(12), rain3(12)
/I parameter constants of number of leds, followed by bit length
parameter larglen = 14;

parameter largb = ((larglen+2)*32);

parameter medlen = 6;

parameter medb = ((medlen+2)*32);

parameter smallen = 6;

parameter smalb = ((smallen+2)*32);

parameter rainilen = 10;

parameter rain1b = ((rain1len+2)*32);

parameter rain2len = 12;

parameter rain2b = ((rain2len+2)*32);

parameter rain3len = 12;

parameter rain3b = ((rain3len+2)*32);

logic [15:0] spiout;
/fassign spiout = 16'b00_11111_1__0_11_1_11_11;
spi_slave_receive_only inittest(pien,pisck, pimosi,spiout);

/I overall colors for rain and lantern, colors for each latern used for sunrise/set
logic [7:0]Ired;
logic [7:0]Iblue;
logic [7:0]Igreen;
logic [7:0]Ired1;
logic [7:0]Iblue1;
logic [7:0]igreent;
logic [7:0]Ired2;
logic [7:0]Iblue2;
logic [7:0]igreenZ;
logic [7:0]Ired3;
logic [7:0]Iblue3;
logic [7:0]igreen3;
logic [7:0]rred;
logic [7:0]rblue;
logic [7:0]rgreen;



/l rain/lanternbrightness used for cases where there's a difference between them
logic [4:0]globalbrightness,rainbrightness,lanternbrightness;
assign globalbrightness = spiout[13:9];

I/ speed controls rate of rain or snow

I/l lightning designates rate/existance of lightning
logic [1:0]speed, lightning;

assign speed = spiout[6:5];

assign lightning = spiout[3:2];

logic sunrise,sunset, rainsnow;
assign sunrise = spiout[15];
assign sunset = spiout[14];
/lrain if 1, snow if O

assign rainsnow = spiout[4];

always_ff @(posedge sck)
begin
/I we use logic for a series of counter bits to create a periodic section of lightning with
semi-random flashes within it
// 01 is least, 10 is more lightning, 11 is more lightning, occuring twice as fast
if(lightning == 2'b01)

begin
if((counter[29:26] == 4'b1111)&(counter[23]*counter[24]*counter[22]))
begin
lanternbrightness = 5'b00000;
end
else
lanternbrightness = globalbrightness;
end
else if (lightning == 2'b10)
begin
if((counter[29:27] == 3'b111)&(counter[23]*counter[24]*counter[22]))
begin
lanternbrightness = 5'b00000;
end
else
lanternbrightness = globalbrightness;
end

else if (lightning == 2'b11)
begin



if((counter[29:27] == 3'b111 | counter[29:27] ==
3'b011)&(counter[23]*counter[24]*counter[22]))
begin
lanternbrightness = 5'b00000;
end
else
lanternbrightness = globalbrightness;
end
Il brightness is unaffected if there is no lightning
else lanternbrightness = globalbrightness;

Il color cases for lanterns- sunrise is orange, orange, pink, sunset is pink pink orange, all
white otherwise
if(sunrise)
begin
Ired1 = 8'hFF;
Iblue1 = 8'h00;
Igreen1 = 8'h32;
Ired2 = 8'hFF;
Iblue2 = 8'hAA;
Igreen2 = 8'h00;
Ired3 = 8'hFF;
Iblue3 = 8'h00;
Igreen3 = 8'h52;
end
else if(sunset)
begin
Ired1 = 8'hFF;
Iblue1 = 8'hAA,;
Igreen1 = 8'h00;
Ired2 = 8'hFF;
Iblue2 = 8'h00;
Igreen2 = 8'h32;
Ired3 = 8'hFF;
Iblue3 = 8'h99;
Igreen3 = 8'h00;
end
else if(!sunrise && !sunset)
begin
Ired1 = 8'hFF;
Iblue1 = 8'hFF;
Igreen1 = 8'hFF;
Ired2 = Ired1;



Iblue2 = Iblue1;

Igreen2 = Igreen1;

Ired3 = Ired1;

Iblue3 = Iblue1;

Igreen3 = Igreen1;
end

// rain is blue because it's water, snow is white
if(Irainsnow)

begin
rred = 8'hFF;
rblue = 8'hFF;
rgreen = 8'hFF;

end

else if(rainsnow)

begin
rred = 8'h00;
rblue = 8'hFF;
rgreen = 8'h00;

end

/I if there is no rain, the brightness is set to zero which effectively turns them off
if(speed==0)
rainbrightness = 5'b00000;
else if(speed != 0)
rainbrightness = globalbrightness;
end

/I assigns lanterns different dawn colors

/I generate outputs

logic [largb-1:0]datainlarg;

valueGenOneColor #(larglen) orangetest(globalbrightness,lblue1,Igreen1,lred1,datainlarg);
logic [medb-1:0]datainmed;

valueGenOneColor #(medlen) bluetest(lanternbrightness,lblue2,Igreen2,Ired2,datainmed);

logic [smalb-1:0]datainsmal;

valueGenOneColor #(smallen) pinktest(globalbrightness,Iblue3,Igreend,lred3,datainsmal);

I/l do the spi

paramspi #(largb) bigstrand(clk,sck,mosilarg,datainlarg);
paramspi #(medb) medstrand(clk,sck,mosimed,datainmed);
paramspi #(smalb) smalstrand(clk,sck,mosismal,datainsmal);



/I controls three rain strands

rain createrain(clk,sck, rainbrightness,rblue,rgreen,rred,speed,mosirain1);
rain rain2constructor(clk,sck, rainbrightness,rblue,rgreen,rred,speed,mosirain2);
rain rain3constructor(clk,sck, rainbrightness,rblue,rgreen,rred,speed,mosirain3);

endmodule



apiCallSpi.c:

#include <Python.h>
#include "EasyPIO.h"

/I Code from Python documentation with slight modifications
/I Gets integer output from Python code

int getWeatherint(char* zipCode, int brightness)
{
/l Make c actually import the pythonpath
setenv("PYTHONPATH", ".", 1);
I/l Create the arguments
int argc = 5;
char** argv = (char**)malloc(sizeof(char*)*argc);
argv[0] = "./apiCall";
argv[1] = "apiCall";
argv[2] = "mainFunc";
argv[3] = zipCode;
char str[10];
sprintf(str, "%d", brightness);
argv[4] = str;

PyObject *pName, *pModule, *pDict, *pFunc;
PyObject *pArgs, *pValue;
int i;

/I Create a variable to store our output
int outputVal = 0;

if (argc < 3) {
fprintf(stderr,"Usage: call pythonfile funcname [args]\n");
return 1;

Py _Initialize();

pName = PyUnicode_FromString(argv[1]);
/* Error checking of pName left out */
pModule = Pylmport_Import(pName);

Py DECREF(pName);

if (pPModule !'= NULL) {
pFunc = PyObject_GetAttrString(pModule, argv[2));



}

/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
pArgs = PyTuple_New(argc - 3);
for (i=0;i<argc- 3; ++i) {
pValue = PyLong_FromLong(atoi(argv[i + 3]));
if (IpValue) {
Py _DECREF(pArgs);
Py DECREF(pModule);
fprintf(stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_Setltem(pArgs, i, pValue);
}
pValue = PyObject_CallObject(pFunc, pArgs);
Py DECREF(pArgs);
if (pValue '= NULL) {
outputVal = PyLong_AsLong(pValue);
Py_DECREF(pValue);
}
else {
Py DECREF(pFunc);
Py _DECREF(pModule);
PyErr_Print();
fprintf(stderr,"Call failed\n");
return 1;

}
}

else {
if (PyErr_Occurred())
PyErr_Print();
fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py _XDECREF(pFunc);
Py _DECREF(pModule);

else {

}

PyErr_Print();
fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;

return outputVal,



}

void delayMinutes(int numMinutes){
/*
Takes in a number of minutes, and delays for that long
Relies on underlying code in EasyPIO
*/

[/l delay in milliseconds
int delaylnMillis = 6000 * numMinutes;

delayMillis(delaylnMillis);
}

int getUserBrightness(void){

[
Opens a txt file to see what the user has set the brightness to
Returns this as an integer

*/

FILE* brightnessFile;

char buff[255];

brightnessFile = fopen("brightness/brightness.txt", "r");
if (brightnessFile 1= NULL)
fscanf(brightnessFile, "%s", buff);

else

{
printf("file not opening");
return O; }
return atoi(buff);

}

int main(){

g

Runs a timer. Every so often, checks the weather, and then sends the bits over SPI

*/
/' We only need to initialize EasyPIO and SPI once
piolnit();



spilnit(250, 0);
printf("Starting program \n");

/I Set up pins we need for SPI
pinMode(19, INPUT);
pinMode(21, OUTPUT);
inti=0;
/I While loop forever, because we want to constantly be checking
/] Shorter loop interval for demo
while(i < 10){
I/l Get the weather bits
printf("loop ran\n");
int userBrightness = getUserBrightness();
printf("User brightness is %d\n", userBrightness);
int weatherBitVal;
I/ If the light is off, don't get the weather
if (digitalRead(19) == 0)
weatherBitVal = 0;
else{
/I Get the weather bits
int weatherBits = getWeatherInt("91711", userBrightness);
/' If the weather bits are 0, don't change them
// Don't want to turn it off because of API errors
if (weatherBits != 0)
weatherBitVal = weatherBits;
[

DEMO MODE GOES HERE

loop 0 = sunrise

loop 1 = sunset

loop 2 = low speed lightning and low speed rain
loop 3 = high speed lightning and high speed snow
AFTER LOOP 3 USE LIVE WEATHER DATA

loop 4 = user defined brightness

loop 5 = automatic brightness

loop 6 = normal weather (turn the cloud off)

loop 7 = normal weather (turn the cloud back on)

*/

if (i ==0)X
weatherBitVal = 48899;



}

elseif (i==1)

weatherBitVal = 32515;
else if (i == 2)

weatherBitVal = 16167;
else if (i == 3)

weatherBitVal = 16255;

printf("Bits have integer value of %d \n", weatherBitVal);
printf("%d \n", weatherBitVal);
i++;

/[Write our SPI enable pin high
digitalWrite(21, 1);

/I Send the relevant data
spiSendReceive16(weatherBitVal);

/I Write the SPI enable pin low
digitalWrite(21, 0);

/I Wait for some time before checking again
printf("Delaying");

delayMinutes(3);

printf("%d \n", i);

}

I/l Stop the python interpreter
Py_Finalize();

printf("for loop done \n");

}



cloudBrightness.c:
#include <stdio.h>
int main(void){

[/l Print the HTML header
printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",13,10);

/I Get our brightness value from the QUERY_STRING value
const char* brightnessValue = getenv("QUERY_STRING");
/I Get a pointer to the equal sign

char* arg = strchr(brightnessValue, '=");

/I Check if the value is null
if (brightnessValue == NULL){
printf("Sorry, brightness value cannot be read");

}

/' If not, write the brightness value out to a text file
else{
FILE* brightnessFile;
const char* filename =
"/home/pi/Desktop/FinalProject/microPsFinalProject/brightness/brightness.ixt";
const char* mode = "w";
brightnessFile = fopen(filename, mode);

/I Write out the brightness
if (brightnessFile '= NULL)X
/I Only write characters after the equal sign
arg++;
printf("%c\n", *arg);
while (*arg)
{
printf("%c\n", *arg);
fputc(*arg, brightnessFile);
++arg;

/I Close the file

fclose(brightnessFile);

/l Redirect back to the homepage
printf("<META HTTP-EQUIV=\"Refresh\"



CONTENT=\"0;url=/cloud.htm\">");

}
/I If we can't open the file, display an error
else{
printf("error saving to file");
1
return O;



cloudOff.c:
#include "EasyPIO.h"
int main(void){

/I Initialize EasyPIO
piolnit();

/I Set up pin 21 to write
pinMode(13, OUTPUT);

/I Write low to the pin
digitalWrite(13, 0);

/I Print the HTML header
printf("%s%c%c\n", "Content-Type:text/html;charset=is0-8859-1",13,10);

/l Redirect back to main page
printf("<META HHTP-EQUIV=\"Refresh\" CONTENT=\"0;url=/cloud.htm\">");

return O;



cloudOn.c:
#include "EasyPIO.h"
int main(void){

/I Initialize EasyP10
piolnit();

// Set up pin 21 to write
pinMode(13, OUTPUT);

/I Write high to the pin
digitalWrite(13, 1);

// Print the HTML header
printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",13,10);

/I Redirect back to main page
printf("<META HHTP-EQUIV=\"Refresh\" CONTENT=\"0;url=/cloud.htmI\">");

return O;



apiCall.py:

import requests

from tzwhere import tzwhere

from datetime import datetime, timedelta
from pytz import timezone

import pytz

API_KEY = '416f8f30f593ed64cec14b81dd480eb2'

def mainFunc(zipCode, userBrightness):

Takes in a zipcode, and returns the correct sequence of bits

# get the weather dictionary
weatherDict = getWeather(zipCode)

# Run the final

return setWeatherBits(weatherDict, userBrightness)
def getWeather(zipCode):

zipCode = int(zipCode)

# Create the parameters
payload = {'zip": zipCode, 'APPID": API_KEY, 'units": "Imperial"}

# Do the get request
r = requests.get('http://api.openweathermap.org/data/2.5/weather', params=payload)

# Conver the string version of dictionary to an actual dictionary
dictionary = eval(r.text)

print(dictionary)

# return the weather text
return dictionary

def getCurrentTime(coordinates):



# First, get the timezone in a location

# set up tzwhere to get timezones
tz = tzwhere.tzwhere()

# Get the latitude and longitude out of the dictionary
latitude = coordinates["lat"]
longitude = coordinates["lon"]

# Calculate the time zone
tzResult = tz.tzNameAt(latitude, longitude)

# Get the current UTC time
currentTime = datetime.now(timezone(tzResult))

currentTime = currentTime.replace(tzinfo = None)
return currentTime

def setWeatherBits(weatherDictionary, userBrightness):

Takes in the weather information and sets the bits correctly

# Set everything to 0 except our padding bits

# First two bits = sunrise or sunset

# Next 5 = brightness

# Last = padding

brightnessBits = [0, 0, 0, 0, 0, 0, 0, 1]

# First bit is 0 cause we don't have anything to put here

# Second and third are precipitation (none/some/more/hella)
# 1 bit if precipitation is rain or snow (rain = 0)

# 2 bits for lightning (none/some/more/hella)

# 2 bits of padding

weatherBits =[0, 0,0, 0,0, 0, 1, 1]

# Entirely padding
paddingBits = [0, 0, 0, 0, 0, 0, 0, 0]

# Check to make sure we actually have data. If we don't, just return 0

try:
weatherDictionary["coord"]



except KeyError:
return O

# Get the time
# currentTime = getCurrentTime(weatherDictionary["coord"])
currentTime = datetime.now()

R B R
# SUNSET/SUNRISE/TIME #
R B R

# Get the time for sunrise and sunset

sunrise = datetime.fromtimestamp(
weatherDictionary['sys'|['sunrise'])

sunset = datetime.fromtimestamp(
weatherDictionary['sys']['sunset’)

# Calculate the amount of time until sunrise and sunset
timeToSunrise = abs(currentTime - sunrise)
timeToSunset = abs(currentTime - sunset)

# Create a time delta of 30 minutes
previousTimeDelta = timedelta(minutes = 30)

# Check if we are within 30 minutes of the sunrise
if currentTime >= sunrise - previousTimeDelta and currentTime <= sunrise +
previousTimeDelta:
# If we are, set sunrise bits to 1
brightnessBits[0] = 1

elif currentTime >= sunset - previousTimeDelta and currentTime <= sunset +
previousTimeDelta:
brightnessBits[1] = 1

TR R R R
# RAIN/LIGHTNING/CLOUDS #
TR R R R

# Check weather conditions
for weatherCond in weatherDictionary['weather"]:



description = weatherCond['description']

# RAIN

if 'Rain' in weatherCond['main']:
# set weather bitto 0
weatherBits[3] = 0
# Check how much rain there is

if description == "light rain" or description == "light intensity shower rain":
weatherBits[1:3] = [0, 1]
elif description == "moderate rain" or description == "shower rain":
weatherBits[1:3] = [1, 0]
else:
weatherBits[1:3] = [1, 1]
# SNOW

if 'Snow' in weatherCond['main’]:
# set weather bits to 1
weatherBits[3] = 1
if description == "light snow" or description == "light rain and snow" or
description == "light shower snow":
weatherBits[1:3] = [0, 1]
elif description == "snow" or description == "rain and snow" or description
== "shower snow":
weatherBits[1:3] = [1, 0]
else:
weatherBits[1:3] = [1, 1]
# LIGHTNING
if "Thunderstorm' in weatherCond['main']:
if description == "light thunderstorm" or description == "thunderstorm with
light rain" or description == "thunderstorm with light drizzle":
weatherBits[1:3] = [0, 1]
elif description == "thunderstorm with rain" or description ==
"thunderstorm" or description == "thunderstorm with drizzle":
weatherBits[1:3] = [1, 0]
else:
weatherBits[1:3] = [1, 1]

HHHHHHHHH R B R
# BRIGHTNESS #
HHHHHHHHH R B R

# Get the cloud percentage
# 1 = no clouds (i think)



cloudiness = weatherDictionary['clouds']['all']
# Check if the user input a brightness. Only get cloud info if user brightness is 0
if userBrightness == 0:
if cloudiness < 25:
brightnessBits[2:-1] =[1, 1,1, 1, 1]
elif cloudiness < 50:
brightnessBits[2:-1] =[1, 1, 0, 0,0]
elif cloudiness < 75:
brightnessBits[2:-1] = [1, 0, 0, 0, 0]
else:
brightnessBits[2:-1] = [0, 1, 0, 0, 0]
# Otherwise, convert to binary
else:
# Take user input mod 32 (since we don't want input > 32)
userBrightness = userBrightness % 31

# Convert to binary
userBrightnessBinary = "{0:05b}".format(userBrightness)

# Make binary string into list
userBrightnessList = list(map(int, userBrightnessBinary))

# Add user brightness into array
brightnessBits[2:-1] = userBrightnessList

print(userBrightnessList)
finalArray = brightnessBits + weatherBits

print(finalArray)

# Convert the bits to an integer, and send that
intToReturn = convertBitsTolnt(finalArray)

return intToReturn

def convertBitsTolnt(bitArray):

Takes in a array of bits and converts it to a int

finalResult =0



# Flip the list because it's in MSB order
bitArray.reverse()

# Loop through the array
for i in range(len(bitArray)):

# Add the bit * 2%i to our final result
finalResult += ((2**i) * bitArray[i])

return finalResult



