

Weather Visualizing Cloud Lamp

Elizabeth Poss and Cordelia Stiff

E155 Final Project Report

December 8, 2017

Abstract: String lights of various shapes and sizes have become a staple of

whimsical interior decorating. Our product aims to incorporate the functionality and

excitement of home internet of things devices while still channeling that sense of

whimsy. We have designed a cloud-shaped lamp which emulates current weather

activity. Users control the lamp’s power and brightness through a web server hosted by a

Raspberry Pi, which also gets weather data from an API. This is communicated to an

FPGA which decodes the weather data and uses SPI to control six LED strands. The

cloud can display sunrise, sunset, and varying intensities of rain, snow, and lightning.

A. Introduction:

We created a lamp, shaped like a cloud, which displays real-time weather. Our

finished prototype can both access current weather data, and display LEDs in patterns

and colors which visualizes sunrise, sunset, and varying intensities of rain, snow, cloud

cover, and lightning. The cloud is controlled via a web server, which allows the user to

control the brightness of the lamp, and turn it on and off. A Raspberry Pi hosts the web

server, and makes an API call to OpenWeatherMap’s current weather API. Once the

relevant weather data has been obtained and processed, it is transmitted to the FPGA

via SPI. The FPGA uses a decoder to select the associated weather actions, and generates

the data sent to the six LED strands, which are also controlled via SPI.

Figure One: Block Diagram of our system.

B. New Hardware:

Our new hardware element is the LED strands which we used to simulate

weather. Our primary design choice concerned the choice of LEDs. For ease of

comparison and ordering, we focused on LED options carried by Adafruit. LED strands

were necessary for the rain/snow strands, so we chose to use strands in all parts of the

lamp. We chose 30 LEDs per meter, the lowest LED density, since the size of the lamp

and necessary length of the rain strands prioritized length over light density. This also

allowed us to buy a greater length of LED strands. Finally, we chose DotStar LEDs over

NeoPixels. The DotStar’s strength in update speed, and use of SPI instead of PWM

made us more comfortable using it, and made it preferable for things like our rain or

lightning animations.

The DotStar LED strands we chose were composed of connected APA102C LEDs.

These LEDs take a 5V and GND connection, as well as CI (clock in) and DI (data in). The

datasheet gives no specific constraints for the speed of the SPI transmission, and none

were observed during testing beyond a rough max of ~1MHz, likely due to breadboard

capacitance. The data sent was arranged in the following form: 4 bytes of 0, 4 bytes of

information per LED, and an ending sequence of 4 bytes of 1.[1] Each LED took the

format shown in Figure 2. The 5 bit global brightness value remains constant within a

strand, but the RGB values are LED specific. An off LED pattern was designated with 0

values for brightness and RGB (32’hE0000000). This allows us to set specific LEDs on

or off, to create patterns for our rain.

Figure 2: Data format for the APA102C.

These 4 bytes would be necessary for each

LED in the strand being controlled.[1]

In testing, it was observed that a data sequence with data for more LEDs than

were present in the strand could be sent without error. However, if the information to

control N LEDs was sent to a strand of length greater than N, then the N+1 LED in the

strand would glow white, while the remaining LEDs would be dark as expected.

Preliminary attempts showed no errors when the starting and ending sequences were

omitted, but we chose to stick to the format recommended by the datasheet, and thus

cannot guarantee that their omission would not lead to some bugs.

Ultimately, our SPI transmission was controlled by a second ‘load’ clock. This

clock was timed to have a high period just longer than our longest necessary

transmission time - in this case the time necessary to send 512 bits - and the data was

retransmitted every clock cycle of load. This allowed us to generate rain by changing

which bits were set on and off without having to call our SPI module multiple times.

The resources we consulted cautioned about power and current considerations.

Fortunately, all of our strands at full brightness and white light never went above 2

Amps. However, for visualizations like lightning and rain, the current would swing

dramatically as strands were turned on and off. While this was not a problem for a

power supply, current and power considerations would be necessary for a project with

more LEDs.

C. Schematics

See schematic below.

Figure 3: All elements were connected to the same ground. Everything but the Pi was

connected to the same 5V power. Pins connected to the FPGA were multiples of the same

Vcc/GNC/DI/CI format for the LED strands, and an Enable, MOSI, and SCLK for

communication with the Pi.

D. Microcontroller Design:

The overall function of the Raspberry Pi was to control the settings for the lamp

by retrieving the weather data from an API and hosting a web server to allow users to

change basic settings of the lamp. There are three main modules on the Raspberry Pi,

which I will now discuss in detail.

Section One - Web Server Code:

This section of code was used to host a web server, which allowed users to pick

basic settings for the lamp. The webserver had two buttons, which turn the lamp on or

off, and a text field, which lets user set a brightness for the cloud. We used Apache2 to

host our web server, so most of the code for this was done in that format.

 The web server relies on three main C functions. Two of the functions simply

write a pin HIGH or LOW, respectively. These are used to turn the cloud on or off, as we

will later check that pin in the main function. The other C file takes a brightness value

from the text field using the GET HTTP protocol. It then processes the output of that

field to get the integer brightness value. Finally, it writes that value out to a text file. This

text file can later be accessed by our main function.

Section Two - API Call and Processing:

This section of the code does the processing to determine what series of bits

should be sent to the FPGA. It is written in Python, and takes two inputs - a zip code,

which determines the location that the API should check, and a user brightness. We will

describe where these inputs come from in Section 3.

The first section of this code makes a request to the OpenWeatherMap API, with

the chosen zip code. This will return a dictionary, which contains the weather conditions

in that location.

We now need to process the bits. In the second part of this function, we check for

several weather conditions: rain, snow, or lightning. This is done by checking the

appropriate part of the dictionary for various weather conditions.[2] If we find any of

these conditions, we then set the appropriate bits of our output. We then use the Python

datetime library to get the current time. As the API uses Unix format for sunrise and

sunset time, we also use the datetime library to convert to the format used in the rest

of the datetime library. Using these times, we can check if we’re within 30 minutes of

either sunrise or sunset, and set the sunrise and sunset bits of our output.

Finally, we need to handle brightness. If the user has set the brightness to 0, then

we use weather data to set brightness. The API call contains a section for cloudiness, so

we can simply set the brightness bits to correspond to cloudiness. If the user picks a

different brightness value, we first take the value modulo 31, so we don’t overflow our

five bit brightness value, and then set the brightness bits to this value.

Once we have the series of bits that we want to send, we simply convert them into

an integer, and return the value.

Section Three - Main Function:

This is the function that does the main control for the cloud. We first initialize the

various libraries we need, as well as the pins we will need to read to see if the cloud

should be on or off. We then loop forever, so that the cloud is always on.

The first step we take is to get the brightness that the user has set. As we stated

above in the description of the web server code, this is saved to a text file. Therefore, we

simply need to open the file and read out the brightness.

We now need to check if the cloud should be on. In order to do this, we read the

pin mentioned above in the web server section. If this pin is 0, we simply set the weather

bits to 0 and do nothing else. Otherwise, we run a C function that gets the output of our

Python function. We pass in a hard-coded zip code, as well as the user set brightness.

We then check to make sure that the returned integer from our Python code is not equal

to 0, which ensures that an error in the API call will not turn the cloud off. If we get a 0,

we use the old bits - otherwise, we use the new bits calculated by the API call.

Finally, we need to send this data to the FPGA. We first write our SPI enable pin

to 1. We then use the EasyPIO.h function spiSendReceive16 to send the relevant

bits to the FPGA, and then set the enable pin back to 0. We then delay for a brief period

of time, as making successive API calls can cause the system to break. The loop then

repeats forever, thus ensuring the cloud updates when the weather changes.

E. FPGA Design:

The FPGA served to accept weather data from the Pi, and control the LEDs. One

SPI connection was made to the Pi, and six were made to the LED strands. Controlling

the LEDs on the FPGA was necessary, as the rain strands had to be connected at only

one end- this meant we would have needed an absolute minimum of three SPI

connections, which would be too many for the Pi. In addition, the rain and lightning

visualizations required multiple clocks, which makes this better suited to the FPGA.

Section One- LED Control (SPI)

Six APA102C LED strands of various lengths were controlled by the FPGA. The

data sent to each strand was determined by the format discussed in Section B. A data

generation module took in a parameter length of the led strand, and a desired

brightness and color, and output the full data string that would be sent to the strand.

Rain was created using an ledpattern variable which marked the LED that would be

on at a given instance. A series of ternary operators based on ledpattern created the

SPI data string, which was sent to the SPI module. ledpattern was updated at the

desired speed of the rain, and right shifted a single on LED in a loop through the bits of

the variable. This simulated a raindrop falling down the strand. The color and speed of

the rain could be modified with module inputs.

Section Two- Weather Decoder

A decoder converted weather signals like rain or sunset into LED control actions.

The Pi communicates 16 bits, which include a five bit brightness value, single bits for

sunrise, sunset, and rain/snow, and two bit precipitation and lightning values. The

brightness value goes straight to the brightness input for the SPI generation modules,

unless the precipitation value is zero, in which case brightness for the rain strands is

zero, or if the lightning value is nonzero, in which case brightness for the lightning

creating lantern changes in order to simulate lightning. This lightning creation logic

uses a series of ANDed and XNOR’ed clock bits to create a flashing pattern, with varying

intensities based on the two lightning bits. The precipitation bits control speed, an input

to the rain generation which controls the clock speed at which ledpattern updates.

Finally, the rain/snow bit controls the color of the rain (blue for rain and white for

snow), and sunrise and sunset change the colors of the lanterns from their default white

to purples and oranges.

Section Three- Pi Communication (SPI)

The SPI connection with the Pi used a basic shift register. The Pi controlled an

enable pin, and shifting only occurred while the enable pin was high. At the falling edge

of the enable, the communicated value was shifted to the output of the function,

ensuring that the decoder and LED control modules were controlled by a constant value.

F. Results:

We were able to complete our project successfully. Our lamp is covered in

stuffing to make it appear like a cloud, and both the lantern strands and rain strands

work correctly. We are able to generate all of the patterns we promised (rain, snow, and

lightning), as well as various color patterns for sunrise and sunset. Finally, as promised,

we created a web server that allows users to adjust brightness and turn the cloud on and

off.

Figure 4: Completed Prototype. The cloud is displaying a sunset. The rain strands are not

active. Hardware is visible in the upper right, protected from electrical shorts in a cardboard

box.

The most difficult parts of our design were the two SPI connections. On the

FPGA, we needed to both receive bits from the Raspberry Pi, and then turn these bits

into the appropriate bits to send to the LED strips over SPI. While the basic SPI

connection was simple to design, each side of this had particular needs that made the

process more difficult. For the Raspberry Pi SPI, we needed to ensure that we were

getting the entire series of bits from the Pi before sending them on to our LED SPI

module, so we didn’t send bad patterns to the LED strips. This was achieved by

attaching an “enable” pin from the Raspberry Pi, so we know exactly when the bits have

begun to send, and when they’ve stopped sending. Ultimately the primary difficulty in

testing this came from physical problems- our wires were too long, and created

interference which caused the data read by the FPGA to be incorrect. Replacing the

connections fixed this problem.

For the LED strands, we needed to create an SPI module that could take in basic

inputs such as RGB color, brightness, and the length of the LED strand we were trying

to use, and convert this into the proper series of bits. This was mainly done using block

assignments and ternary operators, to assign the proper series of bits.

Our final prototype was consistent with our project proposal.

G. References

[1] Shiji Lighting. APA102C Datasheet. Adafruit.

https://cdn-shop.adafruit.com/datasheets/APA102.pdf

[2] OpenWeatherMap. Current Weather Data (API Documentation).

https://openweathermap.org/current

[3] S. Harris and D. Harris, Digital Design and Computer Architecture: Arm edition,
Elsevier Science, 2015.

H. Parts List

Part Name Link Price per
Unit

Units
Needed

Total Cost

Paper Lanterns ASIN:B01M63OEBF $10.99 1 $10.99

Pillow Batting Found in Makerspace N/A N/A N/A

https://cdn-shop.adafruit.com/datasheets/APA102.pdf
https://openweathermap.org/current

Dotstar 30 LED/m
LED Strip

Adafruit: 2238 $19.95 2

$39.99

I. Code

spimoduletest.sv:

module paramcounter #(parameter N)
(input logic clk,
input logic reset,
output logic [N-1:0]q);

// basic parameterized counter
always_ff @(posedge clk, posedge reset)

if (reset) q<= 0;
else q<=q+1;

endmodule

module paramspi #(parameter N)(input logic clk,

input logic sck,
output logic mosi,
input logic [N-1:0]datain);

logic[N-1:0]p=0;//=160'b0;
logic[25:0]counter;
paramcounter #(26) loadclk(clk,1'b0,counter);
logic load;
// load clock calculated to take slightly longer than SPI for 512 bits
assign load = counter[16];
assign mosi = p[N-1];
always_ff @(posedge sck)

if(load)
p<=datain;

else p<= {p[N-2:0],1'b0};
// p is filled with zeros as they don’t change the LED actions
endmodule

// makes an led strand simulate rain
// rain strands are either 10 or 12
// commanding a strand of 10 leds with the information for 12 doesn’t cause errors, so assume a
length of 12 leds for all rain commands
// rain will probably always be white, but it can take any color input
module rain (input logic clk,

input logic sck,
input logic [4:0]globalbrightness,
input logic [7:0]blue,
input logic [7:0]green,
input logic [7:0]red,
input logic [1:0]speed,
output logic mosi);

// create slow clock- constrained by time to control entire strand via spi (load clock)
logic [29:0]slockcount;
paramcounter #(30) slockmake(clk, 1'b0, slockcount);
logic slock;

assign slock = slockcount[22-speed];

// raininstance is the dataout sent to the led strand, ledpattern is the on/off pattern (12 bits, 1 on,
0 off)
logic [0:11]ledpattern;

logic[14*32-1:0]raininstance;
generateRainInstance eachrain(ledpattern, globalbrightness, blue, green, red, raininstance);

paramspi #(14*32) testled(clk,sck,mosi,raininstance);

// rotates led pattern- the two modules above will be called again every time ledpattern changes
always_ff @(posedge slock)

begin
if(ledpattern == 12'b000000000000)

ledpattern <= 12'b100000000000;
else

ledpattern <= ledpattern >> 1;
end

endmodule

// uses ledpattern to create the spi output for an individual moment of rain
module generateRainInstance(

input logic [0:11]ledpattern,
input logic [4:0]globalbrightness,
input logic [7:0]blue,
input logic [7:0]green,
input logic [7:0]red,
output logic[0:14*32-1]ledstring);

// constants based on datasheet
logic[31:0]startbits;

logic[31:0]endbits;
logic[31:0]ledbits;
logic[31:0]offled;
assign offled = 32'hE0000000;
assign startbits = 32'b0;
assign endbits = 32'hFFFFFFFF;
assign ledbits = {3'b111,globalbrightness,blue,green,red};

// assigns each part of ledstring bitwise (this is why the length is constant)
assign ledstring[0:31] = startbits;
assign ledstring[32*1:32*2-1] = (ledpattern[0] == 1)? ledbits : offled;
assign ledstring[32*2:32*3-1] = (ledpattern[1] == 1)? ledbits : offled;
assign ledstring[32*3:32*4-1] = (ledpattern[2] == 1)? ledbits : offled;
assign ledstring[32*4:32*5-1] = (ledpattern[3] == 1)? ledbits : offled;
assign ledstring[32*5:32*6-1] = (ledpattern[4] == 1)? ledbits : offled;
assign ledstring[32*6:32*7-1] = (ledpattern[5] == 1)? ledbits : offled;
assign ledstring[32*7:32*8-1] = (ledpattern[6] == 1)? ledbits : offled;
assign ledstring[32*8:32*9-1] = (ledpattern[7] == 1)? ledbits : offled;
assign ledstring[32*9:32*10-1] = (ledpattern[8] == 1)? ledbits : offled;
assign ledstring[32*10:32*11-1] = (ledpattern[9] == 1)? ledbits : offled;
assign ledstring[32*11:32*12-1] = (ledpattern[10] == 1)? ledbits : offled;
assign ledstring[32*12:32*13-1] = (ledpattern[11] == 1)? ledbits : offled;
assign ledstring[32*13:32*14-1] = endbits;

endmodule

// for communication between pi and fpga
module spi_slave_receive_only(input logic pien,

input logic pisck,
//From master

input logic
pimosi,//From master

output logic [15:0]
data); // Data received
logic [15:0] q;
always_ff @(posedge pisck)
begin

q<={q[14:0],pimosi};
end
// pien is an enable pin connected to the pi, it stays high for the duration of sending
always_ff @(negedge pien)

data <= q;
endmodule

// create the SPI output to turn a led with numleds a singled color as input
module valueGenOneColor#(parameter numleds)(

input logic [4:0]globalbrightness,
input logic [7:0]blue,
input logic [7:0]green,
input logic [7:0]red,
output logic[0:((numleds+2)*32)-1]ledstring);

logic[31:0]startbits;
logic[31:0]endbits;
logic[31:0]ledbits;
assign startbits = 32'b0;
assign endbits = 32'hFFFFFFFF;
assign ledbits = {3'b111,globalbrightness,blue,green,red};

// {m{n}} replicates n m times
assign ledstring = {startbits, {numleds{ledbits}}, endbits};
endmodule

module spimoduletest(input logic clk,
input logic pimosi,
input logic pisck,
input logic pien,
output logic sckout,
output logic sckout2,
output logic sckout3,
output logic mosilarg,
output logic mosimed,
output logic mosismal,
output logic mosirain1,
output logic mosirain2,
output logic mosirain3);

// reset, enable, and slow clock for led SPIs
logic reset, sck;
assign reset = 1'b0;

// bit size of sck clock counter
parameter sckN = 30;
logic [sckN-1:0]counter;
paramcounter #(sckN) sckmake(clk, reset, counter);
assign sck = counter[6];

// sets clock output pins
assign sckout = sck;
assign sckout2 = sck;
assign sckout3 = sck;

// we have the following LED strands (followed by length)
// largest(14), medium(6), smalls(6), rain1(10), rain2(12), rain3(12)
// parameter constants of number of leds, followed by bit length
parameter larglen = 14;
parameter largb = ((larglen+2)*32);
parameter medlen = 6;
parameter medb = ((medlen+2)*32);
parameter smallen = 6;
parameter smalb = ((smallen+2)*32);
parameter rain1len = 10;
parameter rain1b = ((rain1len+2)*32);
parameter rain2len = 12;
parameter rain2b = ((rain2len+2)*32);
parameter rain3len = 12;
parameter rain3b = ((rain3len+2)*32);

logic [15:0] spiout;
//assign spiout = 16'b00_11111_1__0_11_1_11_11;
spi_slave_receive_only inittest(pien,pisck, pimosi,spiout);

// overall colors for rain and lantern, colors for each latern used for sunrise/set
logic [7:0]lred;
logic [7:0]lblue;
logic [7:0]lgreen;
logic [7:0]lred1;
logic [7:0]lblue1;
logic [7:0]lgreen1;
logic [7:0]lred2;
logic [7:0]lblue2;
logic [7:0]lgreen2;
logic [7:0]lred3;
logic [7:0]lblue3;
logic [7:0]lgreen3;
logic [7:0]rred;
logic [7:0]rblue;
logic [7:0]rgreen;

// rain/lanternbrightness used for cases where there's a difference between them
logic [4:0]globalbrightness,rainbrightness,lanternbrightness;
assign globalbrightness = spiout[13:9];

// speed controls rate of rain or snow
// lightning designates rate/existance of lightning
logic [1:0]speed, lightning;
assign speed = spiout[6:5];
assign lightning = spiout[3:2];

logic sunrise,sunset, rainsnow;
assign sunrise = spiout[15];
assign sunset = spiout[14];
//rain if 1, snow if 0
assign rainsnow = spiout[4];

always_ff @(posedge sck)
begin

// we use logic for a series of counter bits to create a periodic section of lightning with
semi-random flashes within it

// 01 is least, 10 is more lightning, 11 is more lightning, occuring twice as fast
if(lightning == 2'b01)

begin
if((counter[29:26] == 4'b1111)&(counter[23]^counter[24]^counter[22]))
begin

lanternbrightness = 5'b00000;
end
else

lanternbrightness = globalbrightness;
end

else if (lightning == 2'b10)
begin

if((counter[29:27] == 3'b111)&(counter[23]^counter[24]^counter[22]))
begin

lanternbrightness = 5'b00000;
end
else

lanternbrightness = globalbrightness;
end

else if (lightning == 2'b11)
begin

if((counter[29:27] == 3'b111 | counter[29:27] ==
3'b011)&(counter[23]^counter[24]^counter[22]))

begin
lanternbrightness = 5'b00000;

end
else

lanternbrightness = globalbrightness;
end

// brightness is unaffected if there is no lightning
else lanternbrightness = globalbrightness;

// color cases for lanterns- sunrise is orange, orange, pink, sunset is pink pink orange, all

white otherwise
if(sunrise)

begin
 lred1 = 8'hFF;
 lblue1 = 8'h00;
 lgreen1 = 8'h32;
 lred2 = 8'hFF;
 lblue2 = 8'hAA;
 lgreen2 = 8'h00;
 lred3 = 8'hFF;
 lblue3 = 8'h00;
 lgreen3 = 8'h52;

end
else if(sunset)

begin
 lred1 = 8'hFF;
 lblue1 = 8'hAA;
 lgreen1 = 8'h00;
 lred2 = 8'hFF;
 lblue2 = 8'h00;
 lgreen2 = 8'h32;
 lred3 = 8'hFF;
 lblue3 = 8'h99;
 lgreen3 = 8'h00;

end
else if(!sunrise && !sunset)

begin
lred1 = 8'hFF;
 lblue1 = 8'hFF;
 lgreen1 = 8'hFF;
 lred2 = lred1;

 lblue2 = lblue1;
 lgreen2 = lgreen1;
 lred3 = lred1;
 lblue3 = lblue1;
 lgreen3 = lgreen1;

end

// rain is blue because it's water, snow is white
if(!rainsnow)

begin
rred = 8'hFF;
rblue = 8'hFF;
rgreen = 8'hFF;

end
else if(rainsnow)

begin
rred = 8'h00;
rblue = 8'hFF;
rgreen = 8'h00;

end

// if there is no rain, the brightness is set to zero which effectively turns them off
if(speed==0)

rainbrightness = 5'b00000;
else if(speed != 0)

rainbrightness = globalbrightness;
end

// assigns lanterns different dawn colors
// generate outputs
logic [largb-1:0]datainlarg;
valueGenOneColor #(larglen) orangetest(globalbrightness,lblue1,lgreen1,lred1,datainlarg);
logic [medb-1:0]datainmed;
valueGenOneColor #(medlen) bluetest(lanternbrightness,lblue2,lgreen2,lred2,datainmed);
logic [smalb-1:0]datainsmal;
valueGenOneColor #(smallen) pinktest(globalbrightness,lblue3,lgreen3,lred3,datainsmal);

// do the spi
paramspi #(largb) bigstrand(clk,sck,mosilarg,datainlarg);
paramspi #(medb) medstrand(clk,sck,mosimed,datainmed);
paramspi #(smalb) smalstrand(clk,sck,mosismal,datainsmal);

// controls three rain strands
rain createrain(clk,sck, rainbrightness,rblue,rgreen,rred,speed,mosirain1);
rain rain2constructor(clk,sck, rainbrightness,rblue,rgreen,rred,speed,mosirain2);
rain rain3constructor(clk,sck, rainbrightness,rblue,rgreen,rred,speed,mosirain3);

endmodule

apiCallSpi.c:

#include <Python.h>
#include "EasyPIO.h"

// Code from Python documentation with slight modifications
// Gets integer output from Python code

int getWeatherInt(char* zipCode, int brightness)
{

// Make c actually import the pythonpath
setenv("PYTHONPATH", ".", 1);
 // Create the arguments
 int argc = 5;
 char** argv = (char**)malloc(sizeof(char*)*argc);
 argv[0] = "./apiCall";
 argv[1] = "apiCall";
 argv[2] = "mainFunc";
 argv[3] = zipCode;

char str[10];
 sprintf(str, "%d", brightness);
 argv[4] = str;

 PyObject *pName, *pModule, *pDict, *pFunc;
 PyObject *pArgs, *pValue;
 int i;

 // Create a variable to store our output
 int outputVal = 0;

 if (argc < 3) {
 fprintf(stderr,"Usage: call pythonfile funcname [args]\n");
 return 1;
 }

 Py_Initialize();
 pName = PyUnicode_FromString(argv[1]);
 /* Error checking of pName left out */
 pModule = PyImport_Import(pName);
 Py_DECREF(pName);

 if (pModule != NULL) {
 pFunc = PyObject_GetAttrString(pModule, argv[2]);

 /* pFunc is a new reference */

 if (pFunc && PyCallable_Check(pFunc)) {
 pArgs = PyTuple_New(argc - 3);
 for (i = 0; i < argc - 3; ++i) {
 pValue = PyLong_FromLong(atoi(argv[i + 3]));
 if (!pValue) {
 Py_DECREF(pArgs);
 Py_DECREF(pModule);
 fprintf(stderr, "Cannot convert argument\n");
 return 1;
 }
 /* pValue reference stolen here: */
 PyTuple_SetItem(pArgs, i, pValue);
 }
 pValue = PyObject_CallObject(pFunc, pArgs);
 Py_DECREF(pArgs);
 if (pValue != NULL) {
 outputVal = PyLong_AsLong(pValue);
 Py_DECREF(pValue);
 }
 else {
 Py_DECREF(pFunc);
 Py_DECREF(pModule);
 PyErr_Print();
 fprintf(stderr,"Call failed\n");
 return 1;
 }
 }
 else {
 if (PyErr_Occurred())
 PyErr_Print();
 fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
 }
 Py_XDECREF(pFunc);
 Py_DECREF(pModule);
 }
 else {
 PyErr_Print();
 fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
 return 1;
 }
 return outputVal;

}

void delayMinutes(int numMinutes){
 /*
 Takes in a number of minutes, and delays for that long
 Relies on underlying code in EasyPIO
 */

 // delay in milliseconds
 int delayInMillis = 6000 * numMinutes;

 delayMillis(delayInMillis);
}

int getUserBrightness(void){

/*
Opens a txt file to see what the user has set the brightness to
Returns this as an integer
*/
FILE* brightnessFile;
char buff[255];

brightnessFile = fopen("brightness/brightness.txt", "r");
if (brightnessFile != NULL)
fscanf(brightnessFile, "%s", buff);
else

{
printf("file not opening");
return 0; }
return atoi(buff);

}

int main(){
 /*

 Runs a timer. Every so often, checks the weather, and then sends the bits over SPI

 */
 // We only need to initialize EasyPIO and SPI once
 pioInit();

 spiInit(250, 0);
 printf("Starting program \n");

 // Set up pins we need for SPI
 pinMode(19, INPUT);
 pinMode(21, OUTPUT);
int i = 0;
 // While loop forever, because we want to constantly be checking
 // Shorter loop interval for demo
 while(i < 10){
 // Get the weather bits

printf("loop ran\n");
int userBrightness = getUserBrightness();
printf("User brightness is %d\n", userBrightness);
int weatherBitVal;
// If the light is off, don't get the weather
if (digitalRead(19) == 0)

weatherBitVal = 0;
else{

// Get the weather bits
int weatherBits = getWeatherInt("91711", userBrightness);
// If the weather bits are 0, don't change them
// Don't want to turn it off because of API errors
if (weatherBits != 0)
weatherBitVal = weatherBits;

/*

DEMO MODE GOES HERE

loop 0 = sunrise
loop 1 = sunset
loop 2 = low speed lightning and low speed rain
loop 3 = high speed lightning and high speed snow
AFTER LOOP 3 USE LIVE WEATHER DATA
loop 4 = user defined brightness
loop 5 = automatic brightness
loop 6 = normal weather (turn the cloud off)
loop 7 = normal weather (turn the cloud back on)

*/
if (i == 0){

weatherBitVal = 48899;

}
else if (i == 1)

weatherBitVal = 32515;
else if (i == 2)

weatherBitVal = 16167;
else if (i == 3)

weatherBitVal = 16255;

}
 printf("Bits have integer value of %d \n", weatherBitVal);

printf("%d \n", weatherBitVal);
i++;

//Write our SPI enable pin high
digitalWrite(21, 1);
// Send the relevant data
spiSendReceive16(weatherBitVal);
// Write the SPI enable pin low
digitalWrite(21, 0);
// Wait for some time before checking again
printf("Delaying");
delayMinutes(3);
printf("%d \n", i);

}
// Stop the python interpreter
Py_Finalize();
printf("for loop done \n");
}

cloudBrightness.c:

#include <stdio.h>

int main(void){

// Print the HTML header
printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",13,10);

// Get our brightness value from the QUERY_STRING value
const char* brightnessValue = getenv("QUERY_STRING");
// Get a pointer to the equal sign
char* arg = strchr(brightnessValue, '=');

// Check if the value is null
if (brightnessValue == NULL){

printf("Sorry, brightness value cannot be read");
}

// If not, write the brightness value out to a text file
else{

FILE* brightnessFile;
const char* filename =

"/home/pi/Desktop/FinalProject/microPsFinalProject/brightness/brightness.txt";
const char* mode = "w";
brightnessFile = fopen(filename, mode);

// Write out the brightness
if (brightnessFile != NULL){

// Only write characters after the equal sign
arg++;
printf("%c\n", *arg);
while (*arg)
{

printf("%c\n", *arg);
fputc(*arg, brightnessFile);
++arg;

}
// Close the file
fclose(brightnessFile);
// Redirect back to the homepage
printf("<META HTTP-EQUIV=\"Refresh\"

CONTENT=\"0;url=/cloud.html\">");
}
// If we can't open the file, display an error
else{

printf("error saving to file");
}}

return 0;

}

cloudOff.c:

#include "EasyPIO.h"

int main(void){

// Initialize EasyPIO
pioInit();

// Set up pin 21 to write
pinMode(13, OUTPUT);

// Write low to the pin
digitalWrite(13, 0);

// Print the HTML header
printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",13,10);

// Redirect back to main page
printf("<META HHTP-EQUIV=\"Refresh\" CONTENT=\"0;url=/cloud.html\">");

return 0;

}

cloudOn.c:

#include "EasyPIO.h"

int main(void){

// Initialize EasyPIO
pioInit();

// Set up pin 21 to write
pinMode(13, OUTPUT);

// Write high to the pin
digitalWrite(13, 1);

// Print the HTML header
printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",13,10);

// Redirect back to main page
printf("<META HHTP-EQUIV=\"Refresh\" CONTENT=\"0;url=/cloud.html\">");

return 0;

}

apiCall.py:

import requests
from tzwhere import tzwhere
from datetime import datetime, timedelta
from pytz import timezone
import pytz

API_KEY = '4f6f8f30f593ed64cec14b81dd480eb2'

def mainFunc(zipCode, userBrightness):

'''
Takes in a zipcode, and returns the correct sequence of bits

'''

get the weather dictionary
weatherDict = getWeather(zipCode)

Run the final
return setWeatherBits(weatherDict, userBrightness)

def getWeather(zipCode):

zipCode = int(zipCode)

Create the parameters
payload = {'zip': zipCode, 'APPID': API_KEY, 'units': "Imperial"}

Do the get request
r = requests.get('http://api.openweathermap.org/data/2.5/weather', params=payload)

Conver the string version of dictionary to an actual dictionary
dictionary = eval(r.text)

print(dictionary)
return the weather text
return dictionary

def getCurrentTime(coordinates):

First, get the timezone in a location

set up tzwhere to get timezones
tz = tzwhere.tzwhere()

Get the latitude and longitude out of the dictionary
latitude = coordinates["lat"]
longitude = coordinates["lon"]

Calculate the time zone
tzResult = tz.tzNameAt(latitude, longitude)

Get the current UTC time
currentTime = datetime.now(timezone(tzResult))

currentTime = currentTime.replace(tzinfo = None)

return currentTime

def setWeatherBits(weatherDictionary, userBrightness):

'''
Takes in the weather information and sets the bits correctly

'''
Set everything to 0 except our padding bits

First two bits = sunrise or sunset
Next 5 = brightness
Last = padding
brightnessBits = [0, 0, 0, 0, 0, 0, 0, 1]

First bit is 0 cause we don't have anything to put here
Second and third are precipitation (none/some/more/hella)
1 bit if precipitation is rain or snow (rain = 0)
2 bits for lightning (none/some/more/hella)
2 bits of padding
weatherBits = [0, 0, 0, 0, 0, 0, 1, 1]

Entirely padding
paddingBits = [0, 0, 0, 0, 0, 0, 0, 0]

Check to make sure we actually have data. If we don't, just return 0
try:

weatherDictionary["coord"]

except KeyError:
return 0

Get the time

currentTime = getCurrentTime(weatherDictionary["coord"])
currentTime = datetime.now()

#########################
SUNSET/SUNRISE/TIME #
#########################

Get the time for sunrise and sunset
sunrise = datetime.fromtimestamp(

 weatherDictionary['sys']['sunrise'])
sunset = datetime.fromtimestamp(

 weatherDictionary['sys']['sunset'])

Calculate the amount of time until sunrise and sunset
timeToSunrise = abs(currentTime - sunrise)
timeToSunset = abs(currentTime - sunset)

Create a time delta of 30 minutes
previousTimeDelta = timedelta(minutes = 30)

Check if we are within 30 minutes of the sunrise
if currentTime >= sunrise - previousTimeDelta and currentTime <= sunrise +

previousTimeDelta:
If we are, set sunrise bits to 1
brightnessBits[0] = 1

elif currentTime >= sunset - previousTimeDelta and currentTime <= sunset +

previousTimeDelta:
brightnessBits[1] = 1

#####################################
RAIN/LIGHTNING/CLOUDS #
#####################################

Check weather conditions
for weatherCond in weatherDictionary['weather']:

description = weatherCond['description']

RAIN
if 'Rain' in weatherCond['main']:

set weather bit to 0
weatherBits[3] = 0
Check how much rain there is
if description == "light rain" or description == "light intensity shower rain":

weatherBits[1:3] = [0, 1]
elif description == "moderate rain" or description == "shower rain":

weatherBits[1:3] = [1, 0]
else:

weatherBits[1:3] = [1, 1]
SNOW
if 'Snow' in weatherCond['main']:

set weather bits to 1
weatherBits[3] = 1
if description == "light snow" or description == "light rain and snow" or

description == "light shower snow":
weatherBits[1:3] = [0, 1]

elif description == "snow" or description == "rain and snow" or description
== "shower snow":

weatherBits[1:3] = [1, 0]
else:

weatherBits[1:3] = [1, 1]
LIGHTNING
if 'Thunderstorm' in weatherCond['main']:

if description == "light thunderstorm" or description == "thunderstorm with
light rain" or description == "thunderstorm with light drizzle":

weatherBits[1:3] = [0, 1]
elif description == "thunderstorm with rain" or description ==

"thunderstorm" or description == "thunderstorm with drizzle":
weatherBits[1:3] = [1, 0]

else:
weatherBits[1:3] = [1, 1]

###########################
BRIGHTNESS #
###########################

Get the cloud percentage
1 = no clouds (i think)

cloudiness = weatherDictionary['clouds']['all']
Check if the user input a brightness. Only get cloud info if user brightness is 0
if userBrightness == 0:

if cloudiness < 25:
brightnessBits[2:-1] = [1, 1, 1, 1, 1]

elif cloudiness < 50:
brightnessBits[2:-1] = [1, 1, 0, 0 ,0]

elif cloudiness < 75:
brightnessBits[2:-1] = [1, 0, 0, 0, 0]

else:
brightnessBits[2:-1] = [0, 1, 0, 0, 0]

Otherwise, convert to binary
else:

Take user input mod 32 (since we don't want input > 32)
userBrightness = userBrightness % 31

Convert to binary
userBrightnessBinary = "{0:05b}".format(userBrightness)

Make binary string into list
userBrightnessList = list(map(int, userBrightnessBinary))

Add user brightness into array
brightnessBits[2:-1] = userBrightnessList

print(userBrightnessList)

finalArray = brightnessBits + weatherBits

print(finalArray)

Convert the bits to an integer, and send that
intToReturn = convertBitsToInt(finalArray)

return intToReturn

def convertBitsToInt(bitArray):

'''
Takes in a array of bits and converts it to a int

'''
finalResult = 0

Flip the list because it's in MSB order
bitArray.reverse()

Loop through the array
for i in range(len(bitArray)):

Add the bit * 2^i to our final result
finalResult += ((2**i) * bitArray[i])

return finalResult

