Electronic Guitar Tuner (Or Guitar String Triggered
Random Number Generator [with light show])

Final Project Report
December 8, 2017
E155

Sean Mahre and Owen Morrison

Abstract:

A key step before playing a musical instrument is ensuring that the instrument is in tune, and
electric guitars are no exception. There are several ways to do this, including tuning by ear and
tuning using a guitar tuner. We set out to design and build an electronic guitar tuner using a
microcontroller, Analog-to-Digital Converter, FPGA, LCD character display, and row of 5
LEDs. The guitar signal is routed to the ADC through an amplifier and lowpass filter circuit,
where it is sampled by the FPGA. The FPGA then computes an FFT on the sampled data, and
sends the fundamental frequency of the sampled data to the microcontroller via SPI. The
microcontroller then processes this frequency and makes an in-tune/out-of-tune designation,
displaying the results on the LCD display and LED row. We were unsuccessful in implementing
the FFT, and thus were not able to build a functional guitar tuner.

Introduction

For the final project, we set out to design and build an electronic guitar tuner. The goal for this
project was to take the output signal of an electric guitar as input, and output the note being played on an
LCD display and an indication on LEDs if the note was sharp, flat, or in tune. It was designed to work
with notes spanning from B, (61.74 Hz) to B, (493.88 Hz). This range contains standard guitar tunings as
well as most popular alternate guitar tunings. Several subsystems are required for the tuner, which can be
divided into three parts: pre-processing via an amplifier and low-pass filter on the breadboard, obtaining
the frequency content of the signal via an FFT on an FPGA, and post-processing/displaying information
via a Raspberry Pi and LCD Character Display. We were not successful in creating the FFT, and thus
were not able to complete our goals for this project.

—1—» e —
Guitar Amp Circuit ADC
A
SPI Master Pl Slave
SPI Slave
Pi FPGA
- SPI Master

LCD

LU

Figure 1: System Block Diagram

Breadboard Schematic

A schematic of the circuitry on our breadboard for this project is as follows:

Figure 2: Breadboard Schematic

Amplifier and Lowpass Filter

Beginning with pre-processing, we first connected an electric guitar to an oscilloscope to
investigate the waveform of the output signal. We noticed that when a note is played, a sinusoid at the
frequency of the string is the dominant part of the signal, in that it has the highest amplitude. There is also
additional content to the signal, which are harmonics of the frequency of the string, which are lesser in
amplitude than the main frequency. The amplitudes of the harmonics seem to always be lower in
magnitude than the main frequency of the string. The relative magnitudes are dependent on a variety of
factors, including how hard the string was plucked, and what the “Tone” settings on the guitar is set to - if
“Tone” is rolled to 10, there is more harmonic content of the signal than if it is rolled to 0. We also noted
that the signal measured about 200 mV peak-to-peak - however, this value will vary depending on the
type of pickups in the guitar.

With this analysis, we decided what pre-processing would need to be carried out. First, we
wanted to try and filter out as much harmonic content as possible. This is done by implementing a
low-pass filter. A challenge was that we could not filter out all harmonics - for example, the low E-string
of a guitar is tuned to E2, or 82.41 Hz. A harmonic of this note would be E4, or 329.63 Hz, which
happens to correspond to the high e-string of a guitar. So, to not filter out the highest frequency, we
needed to set our corner at a frequency greater than 329.63 Hz, with room to accommodate the high
e-string being too high when checking for tuning. We implemented a first order filter with a cutoff
frequency at 400 Hz. This filters out higher harmonics and allowed us to set our sampling frequency at
1024 Hz. This decision was made with Nyquist analysis in mind - to avoid aliasing, we must sample at a
frequency at least twice our bandwidth.

The second pre-processing step we investigated was amplifying the input signal. As we noted
with the oscilloscope, the amplitude of the output signal is around 200 mV peak-to-peak. This was for a
particularly hard pluck, and we wanted to be able to get an accurate reading for a full range of pluck
strengths. For this reason, we decided to implement an amplifier with a gain of 10. This would amplify
the signal to a higher voltage range, while not distorting the signal. We used a two-stage BJT amplifier
with high input impedance so as to protect against varying output impedances of the guitar. The output is
DC biased at 2.5 V, right in the middle of our supply provided to the amplifier and our ADC.

The output of this amplifier was routed to an ADC, which was directly connected to I/O pins on
the FPGA.

FPGA Design

The FPGA design includes SPI communication modules with the Raspberry Pi and ADC, as well
as a hardware implementation of an FFT.

The FPGA receives data from the ADC. This is done using an SPI master module on the FPGA.
This data is sampled at a frequency of 1024 Hz.

The data received from the ADC is then passed through an FFT module implemented on the
FPGA. The FFT design used in this design is that described in “The Fast Fourier Transform in Hardware:
A Tutorial Based on an FPGA Implementation” by G. William Slade. The sampling rate used in this was
1024 hz and the number of samples was 1024,

The FFT contains four modules, the butterfly unit, the address generation unit, the two port ram
modules, and the memory data blocks module. The butterfly unit takes in two 16 bit data samples. It then
multiplies one of these data samples by a predetermined twiddle factor, then performs an addition and
subtraction operation as indicated in Figure 3.The Address generation unit iterates through the 9 levels
necessary for the FFT and the 1024 samples in order to generate the addresses needed for storing and
retrieving data from the data memory blocks. The Data memory blocks creates 4 two port ram modules to
store the current data used in the FFT. At each step in the FFT data in the memory blocks at the address
specified by the AGU was passed into the butterfly unit. The processed data was then stored in the next
generated address. The overall process is shown in Figure 4.

A

Figure 3: ButterFly Operation [1]

Read Mem Select
Address 1A -]
Address 1B -
3 BFU->Mem Data A .
_ BFU->MemDatad |
e BFU—>MemDaaB | 1
Unit =
Mem 1 WR 5
0
Mem 2 WR
Twiddle factor L {
ROM 4
Twiddle l Address 2A :
factors d Address 2B
BFU->Mem Data A
BFU->Mem Data B

Mem—>BFU Data B

Mem—>BFU Data A

Figure 4: Full FFT block diagram [1]

During the 9th iteration of the FFT, after each sample was processed for the final time, the data
was passed into the findMaxPeaks module. This module iterated through the data and determined the
maximum frequency of the signal. This signal was the frequency signal passed into the raspberry Pi.

The overall guitarTuner module had a state machine that cycled through several states. Each state
produced the necessary signals to operate each module. Upon completion of the FFT, the system outputs
an fftDone signal. This signal indicates that it is time to run the SPI slave module to communicate with
the raspberryPi.

The SPI slave module sends the max frequency signal to the raspberry Pi.

Raspberry Pi

The Pi is responsible for obtaining the frequency information from the FPGA, processing it into a
note, and displaying the in-tune/out-of-tune designation on a row of LEDs. When the FPGA evoked the
fftDone signal, the Pi initialized SPI communication to receive the maximum frequency from the FPGA.
Because we used a 1024 point FFT and sampled at 1024 Hz, we expected 512 bins at a resolution of 1 Hz.
Thus, no further processing of bin-to-frequency would need to be carried out by the Pi.

After receiving the frequency from the FPGA, the Pi checked the frequency against standard
frequency values for defined notes to predict which note was being played by the guitar. Once this was
determined, the note name and frequency were displayed on an LCD character display. In addition, the Pi
checked the frequency against different ranges within the predicted note’s frequency range. From this
comparison, the Pi determined if the note was in tune, sharp, or flat, and displayed the results on a row of
LEDs attached to GPIO pins. A green LED in the middle represented in tune, and two red LEDs on either
side represented sharp and flat, with two different levels of out-of-tune.

LCD Character Display

The LCD Character Display was our new piece of hardware. We used a 20x2 Parallel Character
Display (Crystalfontz part number CFAH2002A-TMI-JT) to display information from the Pi. The display
was wired to GPIO pins on the Pi as explained in the display’s datasheet [2], and a header file was created
on the Pi to initialize the display as well as communicate information to it, again as explained in the
datasheet.

Results

The design did not accomplish all of our goals. The current design was able to read in a signal
from a guitar, pass the signal through the amp circuit and ADC, handle communications between the
FPGA and the ADC, run the FFT, pass data into the raspberry PI, and display information on the LCD
and LEDs. However, the frequency displayed on the LCDs was inaccurate and wildly variable, even with
a constant sine wave input. This indicated that there was some error with the FFT. The FFT was not able
to generate the correct amplitudes and frequencies.

The FFT was without a doubt the most difficult portion of this design. We severely
underestimated how long the FFT would take to design, and did not allocate the appropriate amount of
time to get it to a fully functional state. Were we to do this project again, we would start with this portion
and ensure that it was correctly working earlier in the project. We would also have designed a more
contained FFT module so that we could more easily pass correct inputs into a simulation of the FFT. This
would have allowed us to more clearly see where we were encountering issues in the FFT process.

As it sits, our project is essentially a guitar string triggered random number generator. When no
signals are being driven into the input of the system, the display reads a frequency of 0 Hz. As soon as a
signal is driven into the input, the display begins cycling through numbers, in what appears to be a
random fashion. These are still processed by the Pi, and the row of LEDs flashes according to the number
generated, thus making a guitar string triggered random number generator with light show.

Parts List
Part Source Vendor Part # Price
20x2 Parallel Character | Crystalfontz Retrieved from
Display CFAH2002A-TMIIT | MicroPs lab
6.35 mm Phone Jack Digikey SC1089-ND $2.26
16x2 Breakout Board Proto Advantage DR254D254P16F $7.89

References

[1] “The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation,” G.
William Slade, March 21, 2013, [Online]. Available:
pages.hmc.edu/harris/class/e155/FFTtutorial121102.pdf. [Accessed December 8, 2017].

[2] “CFAH2002A-TMI-JP,” Crystallfontz America, Inc., [Datasheet, Online]. Available:
https://www.crystalfontz.com/product/cfah2002atmijt-20x2-character-display-module. [Accessed
December 8, 2017].

https://www.crystalfontz.com/product/cfah2002atmijt-20x2-character-display-module

Appendix A: FPGA Code

// Owen Morrison and Sean Mahre
// December 8, 2017
// omorrison@g.hmc.edu and smahre@g.hmc.edu

// Main module for Guitar Tuner
module GuitarTuner2 #(parameter logN = 10)
(input logic clk,
input logic adcmiso,
// MISO for ADC SPI
input logic Pice, Pisck,Pimosi,
CLK and MOSI for PI SPI
output logic Pimiso,
// MISO for PI SPI
output logic adcmosi, adcClk, adcCe,
CLK, and CE for ADC SPI
output logic fftDone);
// fft Done signal

// Main FSM logic

logic ADCreset,FSMreset,cntreset;
logic sampleClk;

logic ADCdone;

logic [15:0]sendData,receivedData;
logic [15:0] bottomTenFromADC;
logic [logN-1:0] sampleCnt;

logic [14:0] cnt;

// Data mem block logic

logic loadDataWrite,Bank@WrEN,Bank1WrEN,BankReadSelect;

logic [15:0]Datar,Datai,Xr,Xi,Yr,Yi;

logic [logN-1:0]loadDataAddr,readAddrG,writeAddrG, readAddrH,writeAddrH;
logic [15:0]Gr,Gi,Hr,Hi;

// FFT logic
logic fftStart;

// AGU logic
logic [logN-2:0]tw;
logic memWrite;

// Peak find logic

logic peakEN,peakReset, peakFound;
logic [3:0]i; // assume logN < 15
logic [logN-1:0]maxFregAddr;

// SPI slave logic
logic [15:0]Pid,Piq;

// CE,

// MOSI,

assign sendData = 16'h6800; // Send to ADC for 10-bit data, MSB first
assign bottomTenFromADC = receivedData & 16'h@3FF; // Get bottom 10 bits from ADC

typedef enum logic [2:0] {START,SPIMASTER,DELAY,SPIDONE,FFT,FINDPEAK,SPISLAVE} statetype;
statetype state,nextstate;

always_ff@(posedge clk or posedge FSMreset or posedge cntreset)
if(cntreset | FSMreset) cnt <= 0;
else cnt <= cnt + 15'bl;

always_ff@(posedge clk)
state <= nextstate;

// Generate sampling clk, currently ~ 1024 Hz
always_ff@(posedge clk)
if(cnt < 9750) // change depending on logN

begin
cntreset <= 0;
sampleClk <= 1;
end
else if(cnt < 19500) // change depending on logN
begin
cntreset <= 0;
sampleClk <= 0;
end
else
begin

cntreset <= 1;
sampleClk <= 1;
end

// Counter for number of samples
always_ff@(posedge sampleClk or posedge FSMreset)
if(FSMreset) sampleCnt <= 0;
else sampleCnt <= sampleCnt + 10'b1l;

// Nextstate logic
always_comb

case(state)

START: nextstate <= SPIMASTER;

SPIMASTER: if(ADCdone) nextstate <= DELAY;
else nextstate <= SPIMASTER;

DELAY: if(cntreset) nextstate <= SPIMASTER;
else if(sampleCnt == 1023) nextstate <= SPIDONE;
else nextstate <= DELAY;

SPIDONE : nextstate <= FFT;

FFT: if(fftDone) nextstate <= FINDPEAK;

else nextstate <= FFT;
FINDPEAK: if(peakFound) nextstate <= SPISLAVE;

else nextstate <= FINDPEAK;
SPISLAVE: nextstate <= START;
default: nextstate <= START;
endcase

// Output logic

assign ADCreset = (state == START | state == DELAY);
assign FSMreset (state == START);

assign fftStart (state == FFT);

assign peakEN = (state == FINDPEAK);

assign peakReset = (state == SPIMASTER);

assign loadDataWrite = (state == SPIMASTER);
assign Datar = bottomTenFromADC;
assign Datai = bottomTenFromADC & 16'h0000;

logic reseti;
assign reseti = (state == SPIDONE);

// Load data into RAM in bit reversed order
genvar k;
generate
for(k = 0; k < logN; k = k+1)
begin: bitreverse
assign loadDataAddr[k] = sampleCnt[logN-1-k]; // Bit reverse
end
endgenerate

spi_master ADC(clk,sendData,adcmiso,ADCreset,adcCe,adcmosi,receivedData,adcClk,ADCdone);
dataMemory #(logN)
mem(clk,loadDataWrite,Bank@WrEN,BanklWreEN,Datar,Datai,BankReadSelect,loadDataAddr,
readAddrG,writeAddrG, readAddrH, writeAddrH,
Xr,Xi,Yr,Yi,Gr,Gi,Hr,Hi);
AGU #(logN) agu(clk,fftStart,reseti,fftDone,readAddrG, readAddrH,tw,memWrite, i,
BankReadSelect);

always_ff @(posedge clk)
begin
writeAddrG <= readAddrG;
writeAddrH <= readAddrH;
end

assign BankOWrEN = memWrite & BankReadSelect;
assign Bank1WrEN = memWrite & ~BankReadSelect;

butterfly #(logN) bfy(clk,Gr,Gi,Hr,Hi,tw,Xr,Yr,Xi,Yi);
findMaxPeak #(logN) maxPeak(clk,peakEN, peakReset, Gr, Gi, readAddrG, i, maxFregAddr,
peakFound);

assign Pid = maxFregAddr;
spi_slave pi(Pisck,Pimosi,Pimiso,Pice,Pid,Piq);
endmodule

// SPI Master module
module spi_master(input logic clk,
input logic [15:0]d, //data to send
input logic miso,
input logic reset,
output logic ce,
output logic mosi,
output logic [15:0]q, // Data received
output logic adcClk,
output logic done);

logic [4:0]cnt;
logic [15:0]data,qtemp;
logic [3:0] clkCnt;

typedef enum logic [2:0] {IDLE,DATA,COMPLETE}
statetype;

statetype state,nextstate;

always_ff@(posedge clk or posedge reset)
if(reset) clkCnt <= 0;
else clkCnt <= clkCnt + 4'b1;

assign adcClk = clkCnt[3]; // 2.5 MHz clk

always_ff@(posedge adcClk or posedge reset)
if(reset) begin
state <= IDLE;
cnt <= 0;
end
else begin
state <= nextstate;
cnt <= cnt + 5'b1;
end

always_comb

case(state)
IDLE: nextstate <= DATA;
DATA: if(cnt == 16) nextstate <= COMPLETE;

else nextstate <= DATA;

COMPLETE: nextstate <= COMPLETE;
default: nextstate <= COMPLETE;

endcase

assign ce =
assign done =
assign mosi = data[15];

always_ff@(posedge adcClk)
IDLE) data <= d;

if(state

(state == IDLE | state
(state == COMPLETE);

COMPLETE);

else if(state == DATA) data <= {data[14:0],miso};

else data <= data;

always_comb

case(state)
IDLE:
begin
end
DATA:
begin
end
COMPLETE:
begin
end
default:
begin
end
endcase
endmodule

// Datamemory block
module dataMemory #(parameter

q <= qtemp;
qtemp <= 0;

q <= 0;
qtemp <= 0;

q <= data;
qtemp <= data;

q <= 0;
qtemp <= 0;

logN = 5)
(input

input

logic
logic

clk,
loadDataWrite,
Bank@WrEN,
Bank1WrEN,
[15:0]Datar,
[15:0]Datai,
BankReadSelect,
[logN-1:0]1loadDataAddr,
[logN-1:0]readAddrG,
[logN-1:0]writeAddrG,
]
]

input
input
input
input
input
input

logic
logic
logic
logic
logic
logic
logic
logic

input
input
input
input
input

logic
logic
logic

[logN-1:0]readAddrH,
[logN-1:0]writeAddrH,
[15:0]Xr,

logic
logic
logic
logic
logic
logic

assign
assign
assign
assign
assign
assign
assign

always

// Ins
twopor

input logic [15:0]Xi,

input logic [15:0]Yr,

input logic [15:0]Yi,

output logic [15:0]Gr, Gi, Hr, Hi);
[logN-1:0] addrA®@, addrAl, addrBe, addrB1l;
[15:0] DataA@_r, Datahe_i;

[15:0] preGor, preGOi, preHOr, preHOi, preGlr, preGli, preHlr, preH1li;

Bank®_A_WR, Bank®_B_WR;
[15:0] DataB_r, DataB_i, DataAl_r, DataAl_i;
BanklWrEnDelay;

Bank@ A WR = Bank@WrEN | loadDataWrite;
DataA@_r = loadDataWrite ? Datar : Xr;

addrA@ = loadDataWrite ? loadDataAddr : (Bank@WrEN ? writeAddrG :

addrBO = Bank@WrEN ? writeAddrH : readAddrH;
DataA@_i = loadDataWrite ? Datai : Xi;

addrAl = loadDataWrite ? loadDataAddr : (BanklWrEN ? writeAddrG :
addrBl = Bank1WrEN ? writeAddrH : readAddrH;
_ff@(posedge clk) // For delays
begin
Bank@_B_WR <= Bank©OWrEN;
DataB_r <= Yr;
DataB_i <= Yi;
DataAl_r <= Xr;
DataAl_i <= Xi;
Bank1lWrEnDelay <= Bank1WrEN;
end

tantiate RAM
tram #(logN)

real@(clk,DataA@_r,Yr,addrA0,addrBo,Bankod_A_WR,BankOWrEN, preGor,preHor);

twopor

tram #(logN)

im@(clk,DataAe_i,Yi,addrA@,addrBe,Bankd_A WR,Bank@WrEN, preGei,preHoi);
twoportram #(logN) reall(clk,Xr,Yr,addrAl,addrBl,BanklWrEN,BanklWrEN,preGlr,preHir);
twoportram #(logN) iml(clk,Xi,Yi,addrAl,addrB1,Bank1lWrEN,BanklWrEN,preGli,preH1i);

assign
assign
assign
assign

endmodule

Gr = BankReadSelect ? preGlr : preGor;
Gi = BankReadSelect ? preGli : preGei;
Hr = BankReadSelect ? preHlr : preHer;
Hi = BankReadSelect ? preHli : preHoi;

// Two port RAM module
module twoportram #(parameter logN = 5)

(input logic clk,
input logic [15:0] dataA, dataB,
input logic [logN-1:0] addrA, addrB,
input logic writeEnA, writeEnB,

readAddrG);

readAddrG);

output logic [15:0]gA, gB);
logic [15:0] mem[1023:0];

always_ff @(posedge clk)

begin
if (writeEnA)
begin
mem[addrA] <= dataA;
gA <= dataA;
end
else
gA <= mem[addrA];
end

always_ff @(posedge clk)

begin
if (writeEnB)
begin
mem[addrB] <= dataB;
gB <= dataB;
end
else
gB <= mem[addrB];
end
endmodule

// Address Generation Unit
module AGU #(parameter logN = 5)
(input logic clk,
input logic start,
input logic reseti,
output logic done,
output logic [logN-1:0] addrA,
output logic [logN-1:0] addrB,
output logic [logN-2:0] tw, //twiddle factor
output logic memWrite,
output logic [3:0]1i,
output logic BankReadSelect);

logic prevStart;

logic reset;

logic [logN-2:0]7;
logic [logN-2:0]twAddr;
logic [logN-1:0]ja, jb;

always_ff @(posedge clk)
prevStart <= start;

assign reset = ~prevStart & start; // fft was not running, but now has to run again
always_ff @(posedge clk, posedge reset)

begin

if (reset)
begin
j<=0;
end
else if (j < 511) // assume butterfly index of 16
j<=3+1;
else
j<=0;

end

always_ff @(posedge clk, posedge reset, posedge reseti)

begin
if (reseti | reset)
begin
i<= 0;
done <= 0;
end
else if (j==511) //2"1logN
begin
if (1 < 9)
begin
i<=1+ 4'b1;
end
else
begin
i<= 0;
done <= 1;
end
end
end
assign ja = j << 1;
assign jb = ja + 1;

assign addrA = ((ja << i) | (ja >> (logN - i)));
assign addrB = ((jb << i) | (jb >> (logN - i)));

assign twAddr = (((32'hFFFFFFF@ >> i) & 4'hF) & j); //twiddle addresses

always_ff @(posedge clk)
tw <= twAddr;

assign memWrite = ~done & ~(j==0);
assign BankReadSelect = i[0];
endmodule

// Butterfly unit
module butterfly #(parameter logN = 5)
(input logic clk,
input logic [15:0]Gr, Gi, Hr, Hi,

input logic [logN-2:0] twAddr,
output logic [15:0]Xr,
output logic [15:0]Yr,
output logic [15:0]Xi,
output logic [15:0]Yi);

logic [15:0]delayedGr;
logic [15:0]holdGr;
logic signed [31:0]twiddledHr;

logic [15:0]delayedGi;

logic [15:0]holdGi;

logic [31:0]twiddledHi;

logic [15:0]tw_r[511:0];

logic [15:0]tw_i[511:0];

logic [15:0] tempTwr, tempTwi;

logic signed [15:0]signedGr, signedGi, signedHr, signedHi;

// Twiddle factors
initial
begin
// Twiddle factors would go here. Removed for clarity of code
end

assign signedGr = Gr;
assign signedGi = Gi;
assign signedHr = Hr;
assign signedHi = Hi;

assign twiddledHr = signedHr*tw_r[twAddr];
assign twiddledHi = signedHi*tw_i[twAddr];

assign Xr = signedGr + twiddledHr[30:15];
assign Yr = signedGr - twiddledHr[30:15];
assign Xi = signedGi + twiddledHi[30:15];
assign Yi = signedGi - twiddledHi[30:15];

endmodule

// Find max bin in RAM

module findMaxPeak #(parameter logN = 5)
(input logic clk,
input logic en,
input logic reset,
input logic [15:0]Gr, Gi,
input logic [logN-1:0] addrA,
input logic [3:0]i,
output logic [logN-1:0] maxFreqgAddr,
output logic peakFound);

logic [15:0] maxAmp;

logic [logN-1:0] maxBin, tempBin;
logic [15:0] magG, tempMax;

logic signed[15:0]signedGr,signedGi;
logic signed[31:0]signedMagG;

assign signedGr = Gr;
assign signedGi = Gi;

assign signedMagG = signedGr*signedGr + signedGi*signedGi;
//Gr*Gr + Gi*Gi;
assign magG = signedMagG[30:15];

always_ff@(posedge clk)
if(i==1ogN-1)

begin
if (magG > tempMax)
begin
tempMax <= magG;
tempBin <= addrA;
end
else
begin
tempBin <= tempBin;
tempMax <= tempMax;
end
end
else
begin
tempMax <= 9;
tempBin <= 9;
end

always_ff@(posedge clk)

if (reset)
begin
maxAmp <= 0;
maxBin <= 0;
end
else
begin
if (tempMax > maxAmp)
begin
maxAmp <= tempMax;
maxBin <= tempBin;
end
else
begin
maxAmp <= maxAmp;
maxBin <= maxBin;
end

end

always_ff@(posedge clk)

if(en)
begin
maxFregAddr <= maxBin;
peakFound <= 1;
end
else
begin
maxFregAddr <= maxFregAddr;
peakFound <= 0;
end
endmodule

// SPI slave module
module spi_slave(input logic clk,

input logic mosi, //to slave
output logic miso, //to master

input logic reset,

input logic [15:0]d, //data to send
output logic [15:0]q); //data to recieve

logic [3:0] cnt;
logic qdelayed;
always_ff@(negedge clk)
if(reset)cnt = 0;
else cnt = cnt + 4'b1;

always_ff@(posedge clk)
q <= (cnt == 0) ? {d[14:0], mosi} : {q[14:0], mosi};
always_ff@(negedge clk)
gqdelayed = q[15];
assign miso = (cnt == 0)? d[15]: qdelayed;
endmodule

Appendix B: C code on Pi

//
//
//
//
//
//
//

Owen Morrison and Sean Mahre

December 8, 2017

omorrison@g.hmc.edu and smahre@g.hmc.edu

This .c file reads the frequency from an FPGA using SPI and
determines the note being played, compares it to standard
frequencies, and displays the information on an LCD character
display and row of 5 LEDs

#tinclude "lcdControl.h"
#include <string.h>
#include <math.h>

//

no_of _digits and i_to_a retreived from

//https://www.careercup.com/question?id=2794
int no_of_digits(int num)

{

int digit_count = 0;
while(num >)

{
digit_count++;
num /= 10;

}

return digit_count;

char * i_to_a(int num)

{

char *str;

int digit_count = 0;

if(num < @)

{

num = -1%*num;

digit_count++;

}

digit_count += no_of_digits(num);
str = (char *)malloc(sizeof(char)*(digit_count+1));
str[digit_count] = "\@';

while(num > ©)

{

str[digit_count-1] = num%10 + '@"';
num = num/10;

digit_count--;

}
if(digit_count == 1)
str[0] = '-';

return str;

// createFreqMessage creates the frequency string to be displayed by an LCD character display
char* createFregMessage(int freq){

char *freqString = i_to_a(freq); // Convert int frequency to string

char *text = "Frequency: ";

char *freqDisplay = malloc(strlen(freqString)+strlen(text)+1); // Allocate enough memory
to store new string

// Only update if frequency is within range

if(freg>61.74 && freq<508.56){
strcpy(freqDisplay, text);
strcat(freqDisplay, freqString);

¥
else{
freqDisplay = text;
}
return(freqDisplay);

// Display tune, sharp, or flat distinction on LEDs connected to GPIO pins
void displayLED(int freq, float inTuneFreq, float hiLimit, float lowLimit){

// Clear LEDs

digitalWrite(26,0);

digitalWrite(19,0);

digitalWrite(13,0);

digitalWrite(6,0);

digitalWrite(5,0);

float intuneMD = 1.00289; // Based of */ 5 cents

float totalRange = hiLimit - lowlLimit;

if(inTuneFreq == 0){}

else if(freg>inTuneFreq/intuneMD && freqg<inTuneFreq*intuneMD){

digitalWrite(13,1);
}
else if(freq<inTuneFreq && freq>inTuneFreq-totalRange/4.0){
digitalWrite(19,1);
}
else if(freqg<inTuneFreq){
digitalWrite(26,1);
}
else if(freqg>inTuneFreq && freq<inTuneFreq+totalRange/4.0){
digitalWrite(6,1);
}
else{
digitalWrite(5,1);
}

/* determineNote does several key things for the guitar tuner. Based off of an
input frequency, it predicts what note was being played to the nearest half
step. It then compares the frequency to a range of acceptable frequencies
for each note, and writes the corresponding pin high to indicate the tune

status.
*/
char* determineNote(int freq){
// Frequencies of notes spanning Bl -> B4

float Bl = 61.74;
float C2 = 65.41;
float Db2 = 69.30;
float D2 = 73.42;
float Eb2 = 77.78;
float E2 = 82.41;

float F2 = 87.31;

float Gb2 = 92.50;
float G2 98.00;

float Ab2 = 103.83;
float A2 110.00;
float Bb2 = 116.54;
float B2 = 123.47;
float C3 = 130.81;
float Db3 = 138.59;

float D3 = 146.83;
float Eb3 = 155.56;
float E3 = 164.81;
float F3 = 174.61;
float Gb3 = 185.00;
float G3 = 196.00;
float Ab3 = 207.65;
float A3 = 220.00;
float Bb3 = 233.08;
float B3 = 246.94;
float C4 = 261.63;
float Db4 = 277.18;
float D4 = 293.66;
float Eb4 = 311.13;
float E4 = 329.63;

float F4 = 349.23;
float Gb4 = 369.99;
float G4 = 392.00;
float Ab4 = 415.30;
float A4 = 440.00;
float Bb4 = 466.16;
float B4 = 493.88;

// Cutoff frequencies, where each is an upper limit
float C2cutoff = (Db2+C2)/2.0;

float Db2cutoff = (D2+Db2)/2.9;

float D2cutoff = (Eb2+D2)/2.0;

float Eb2cutoff = (E2+Eb2)/2.0;

float E2cutoff = (F2+E2)/2.0;

float F2cutoff = (Gb2+F2)/2.0;

float Gb2cutoff = (G2+Gb2)/2.0;

float G2cutoff = (Ab2+G2)/2.0;
float Ab2cutoff = (A2+Ab2)/2.0;
float A2cutoff = (Bb2+A2)/2.0;
float Bb2cutoff = (B2+Bb2)/2.9;
float B2cutoff (C3+B2)/2.0;
float C3cutoff 2.0*C2cutoff;
float C4cutoff = 2.0*C3cutoff;
float Db3cutoff = 2.0*Db2cutoff;
float Db4cutoff = 2.0*Db3cutoff;
float D3cutoff = 2.0*D2cutoff;
float D4cutoff = 2.0*D3cutoff;
float Eb3cutoff 2.0*Eb2cutoff;
float Eb4cutoff 2.0*Eb3cutoff;
float E3cutoff = 2.0*E2cutoff;
float E4cutoff = 2.0*E3cutoff;
float F3cutoff = 2.0*F2cutoff;
float F4cutoff = 2.0*F3cutoff;
float Gb3cutoff = 2.0*Gb2cutoff;
float Gb4cutoff 2.0*Gb3cutoff;
float G3cutoff 2.0*G2cutoff;
float G4cutoff = 2.0*G3cutoff;
float Ab3cutoff 2.0*Ab2cutoff;
float Ab4cutoff = 2.0*Ab3cutoff;
float A3cutoff = 2.0*A2cutoff;
float Adcutoff = 2.0*A3cutoff;
float Bb3cutoff = 2.0*Bb2cutoff;
float Bb4dcutoff 2.0*Bb3cutoff;
float B3cutoff 2.0*B2cutoff;
float B4cutoff 2.0*B3cutoff;

char* note;

// Predict note based off of frequency
if(fregq>Bl && freq<=C2cutoff){
note = "C2";
displayLED(freq,C2,C2cutoff,Bl);
}
else if(freg>C2cutoff && freq<=Db2cutoff){
note = "C#2/Db2";
displayLED(freq,Db2,Db2cutoff,C2cutoff);

}
else if(freq>Db2cutoff && freq<=D2cutoff){
note = "D2";
displayLED(freq,D2,D2cutoff,Db2cutoff);
}

else if(freg>D2cutoff && freq<=Eb2cutoff){
note="D#2/Eb2";
displayLED(freq,Eb2,Eb2cutoff,D2cutoff);

}
else if(freq>Eb2cutoff && freq<=E2cutoff){

note="E2";
displayLED(freq,E2,E2cutoff,Eb2cutoff);

}

else if(freq>E2cutoff && freq<=F2cutoff){
note = "F2";
displayLED(freq,F2,F2cutoff,E2cutoff);

}

else if(freq>F2cutoff && freq<=Gb2cutoff){
note="F#2/Gb2";
displayLED(freq,Gb2,Gb2cutoff,F2cutoff);

}

else if(freqg>Gb2cutoff && freq<=G2cutoff){
note="G2";
displayLED(freq,G2,G2cutoff,Gb2cutoff);

}

else if(freq>G2cutoff && freq<=Ab2cutoff){
note="G#2/Ab2";
displayLED(freq,Ab2,Ab2cutoff,G2cutoff);

}

else if(freqg>Ab2cutoff && freq<=A2cutoff){
note="A2";
displayLED(freq,A2,A2cutoff,Ab2cutoff);

}

else if(freq>A2cutoff && freq<=Bb2cutoff){
note="A#2/Bb2";
displayLED(freq,Bb2,Bb2cutoff,A2cutoff);

}

else if(freqgq>Bb2cutoff && freq<=B2cutoff){
note="B2";
displayLED(freq,B2,B2cutoff,Bb2cutoff);

}

else if(freq>B2cutoff && freq<=C3cutoff){
note="C3";
displayLED(freq,C3,C3cutoff,B2cutoff);

}

else if(freq>C3cutoff && freq<=Db3cutoff){
note="C#3/Db3";
displayLED(freq,Db3,Db3cutoff,C3cutoff);

}
else if(freq>Db3cutoff && freq<=D3cutoff){
note="D3";
displayLED(freq,D3,D3cutoff,Db3cutoff);
}
else if(freqg>D3cutoff && freq<=Eb3cutoff){
note="D#3/Eb3";
displayLED(freq,Eb3,Eb2cutoff,D3cutoff);
}

else if(freq>Eb3cutoff && freq<=E3cutoff){
note="E3";
displayLED(freq,E3,E3cutoff,Eb3cutoff);

else if(freq>E3cutoff && freq<=F3cutoff){
note="F3";
displayLED(freq,F3,F3cutoff,E3cutoff);

else if(freq>F3cutoff && freq<=Gb3cutoff){
note="F#3/Gb3";
displayLED(freq,Gb3,Gb3cutoff,F3cutoff);

else if(freq>Gb3cutoff && freq<=G3cutoff){
note="G3";
displayLED(freq,G3,G3cutoff,Gb3cutoff);

else if(freq>G3cutoff && freq<=Ab3cutoff){
note="G#3/Ab3";
displayLED(freq,Ab3,Ab3cutoff,G3cutoff);

else if(fregq>Ab3cutoff && freq<=A3cutoff){
note="A3";
displayLED(freq,A3,A3cutoff,Ab3cutoff);

else if(freq>A3cutoff && freq<=Bb3cutoff){
note="A#3/Bb3";
displayLED(freq,Bb3,Bb3cutoff,A3cutoff);

else if(freq>Bb3cutoff && freq<=B3cutoff){
note="B3";
displayLED(freq,B3,B3cutoff,Bb3cutoff);

else if(freg>B3cutoff && freq<=C4cutoff){
note="C4";
displayLED(freq,C4,C4cutoff,B3cutoff);

else if(freq>C4cutoff && freq<=Dbdcutoff){
note="C#4/Db4";
displayLED(freq,Db4,Db4dcutoff,Cdcutoff);

else if(freq>Dbdcutoff && freq<=D4cutoff){
note="D4";
displayLED(freq,D4,D4cutoff,Dbdcutoff);

else if(freqgq>D4cutoff && freq<=Ebdcutoff){
note="D#4/Eb4";
displayLED(freq, Eb4,Eb4dcutoff,Ddcutoff);

else if(freq>Ebdcutoff && freq<=Edcutoff){
note="E4";

displayLED(freq,E4,E4cutoff, Ebdcutoff);

else if(freq>E4cutoff && freq<=F4cutoff){

note="F4";
displayLED(freq, F4,F4cutoff,E4cutoff);

else if(freq>F4cutoff && freq<=Gbdcutoff){
note="F#4/Gb4";
displayLED(freq,Gb4,Gb4cutoff, F4cutoff);

else if(freq>Gbdcutoff && freq<=G4cutoff){
note="G4";
displayLED(freq,G4,G4cutoff,Gbdcutoff);

else if(freq>G4cutoff && freq<=Abdcutoff){
note="G#4/Ab4" ;
displayLED(freq,Ab4,Abdcutoff,Gdcutoff);

else if(fregq>Abdcutoff && freq<=Adcutoff){
note="A4";
displayLED(freq,A4,Adcutoff,Abdcutoff);

else if(freqg>Adcutoff && freq<=Bbdcutoff){
note="A#4/Bb4";
displayLED(freq,Bb4,Bb4cutoff,Adcutoff);

else if(freq>Bbdcutoff && freq<=B4dcutoff){
note="B4";
displayLED(freq,B4,B4cutoff,Bbdcutoff);
}
else{ // Frequency is too high
note="0ut of range";
displayLED(freq,0,0,0);
}

return(note);

// Creates the note message to be deisplayed by an LCD character display
char* createNoteMessage(int freq){
char *note = determineNote(freq);
char *text = "Note: ";
char *noteDisplay = malloc(strlen(note)+strlen(text)+1);
strcpy(noteDisplay, text);
strcat(noteDisplay,note);
return(noteDisplay);

// Display messages on an LCD character display

void displayMessages(char *fregDisplay, char *noteDisplay){
lcdWrite(Ox01,INSTR); // Clear display
delayMicros(1530);
lcdPrintString(freqDisplay);
lcdWrite(0xCO,INSTR);

lcdBusyWait();
lcdPrintString(noteDisplay);

void main(void){
int received; // Int to store data received via SPI
int received01d=0; // Store previous received
pioInit(); // Initialize GPIO
spiInit(2000000,0); // Initialize SPI, 2 MHz clk, default settings
pinMode(22,INPUT); // Used to read when FPGA is ready to send
pinMode(27,0UTPUT); // Used to tell FPGA that SPI read is complete
int LEDPins[] = {26,19,13,6,5};
pinModes (LEDPins,5,0UTPUT);
while(true){
if(digitalRead(22)){ // Only update on SPI read
received0ld = received;
received = spiSendReceivel6(0); // Receive data, send doesn't matter
digitalWrite(27,1); // Data transfer complete
delayMicros(10); // Ensure FPGA receives signal

digitalWrite(27,0);
}
elseq

receivedOld = received;
}

if(received != received0ld){ // Update display only if a new frequency has been
determined
char *freqDisplay = createFreqMessage(received);
char *noteDisplay = createNoteMessage(received);
displayMessages(fregDisplay,noteDisplay);
delayMicros(1000000); // Wait at least one sec for next note

Appendix C: LCD Control Header File

// Owen Morrison and Sean Mahre

// December 8, 2017

// omorrison@g.hmc.edu and smahre@g.hmc.edu

// This header file is used to control an LCD character display using
// Raspberry Pi GPIO pins

#include "EasyPIO.h"

int LCDPins[] = {21,7,14,25,15,24,18,23}; // Pins to send info to LCD character display
int numPins = 8;

typedef enum {INSTR,DATA} mode;

#tdefine RS 16 // Mode pin

#tdefine RW 20 // Read/Write pin

#tdefine E 12 // Enable pin

int init = 9;

// Write to the LCD

void lcdWrite(char val, mode md){
pinModes (LCDPins,numPins,OUTPUT);
digitalWrite(RS, (md==DATA));
digitalWrite(RW,0);
digitalWrites(LCDPins,numPins,val);
digitalWrite(E,1);
delayMicros(100);
digitalWrite(E,0);
delayMicros(100);

// Read from the LCD

char lcdRead(mode md){
pinModes (LCDPins, 8,INPUT);
digitalWrite(RS, (md==DATA));
digitalWrite(RW,1);
digitalWrite(E,1);
delayMicros(10);
char ¢ = digitalReads(LCDPins,numPins);
digitalWrite(E,©);
delayMicros(10);
return c;

// Wait until busy flag has been cleared
void lcdBusyWait(void){
while(lcdRead(INSTR) >> 7);

// Initialize LCD
void lcdInit(void){
pioInit();

pinMode(RS,OUTPUT);

pinMode (RW,OUTPUT);

pinMode (E,OUTPUT);

delayMicros(15000);
lcdWrite(0x30,INSTR);
delayMicros(4100);
lcdwWrite(@x30,INSTR);

delayMicros(100);
lcdWrite(©x30,INSTR);

lcdBusyWait();

lcdWrite(0x3C,INSTR); // 2-line, 5x8 font
lcdBusyWait();

lcdWrite(0x08,INSTR); // Display off
lcdBusyWait();

lcdWrite(Ox01,INSTR); // Clear Display
delayMicros(1530);
lcdWrite(0x06,INSTR); // Advance cursor
lcdBusyWait();

lcdWrite(0x0C,INSTR); // Display on
lcdBusyWait();

init = 1;

// Print a string on the LCD
void lcdPrintString(char *str){
if(!init){ // Initialize LCD if it hasn't already been initialized

lcdInit();

}

while(*str != 0){
lcdWrite(*str,DATA);
str++;

}

