Gesture-Controlled LED Orb

Final Project Report
December 5, 2017
E155

Christopher Kotcherha and Nicholas Sakowski

- > 0= IS A
e S Jap

HAND DRAWINGS s e v, / / -

!
% = -
L_Jt—"‘ JASON WALMSLEY N \

Abstract

There are endless possibilities of the complex systems we can make with readily existing gadgets such as
LED strips, accelerometers, and EKG sensors. We live in an opportune time where we possess a bounty
of such easy-to-use digital technology alongside a lack of fun, inventive devices compared to all those that
could be. This project attempts to strike a new vein in that underexploited world of fun devices and
presents users the opportunity to play with light and color in new, creative ways. The “Magic Orb”
prototypes an LED globe controlled by a wrist-worn device with the assistance of a microcontroller and
FPGA. Motion data captured by the wristband, such as acceleration, rotation, and hand gestures, are
interpreted by the microcontroller and sent off to the FPGA. This device uses a hardware-generated
PWM signal to control the color of each LED in the globe, resulting in a real-time user experience

consisting of multiple pre-programed animations and games.

Introduction

Our final project is an LED orb (322 individually RGB programmable LEDs) which
displays motion-controlled animations based on IMU data. The user experience consists of
wearing a Myo™ armband and signaling new animation states on the orb via specific hand
gestures, recognizable by the Myo’s 8 EKG sensors. At a high level, the user experience with the
orb was organized into a top menu, navigable via gestures, and selectable mini-games, which are
controllable via user motions.

The top menu functioned by having the orb emit a single color to indicate the currently
selected mini-game. The user can ‘swipe’ through the list of games by making a ‘wave-out’
gesture with the hand equipped with a Myo. When the user decides on a game choice (unique by
color), they can make a ‘fist” gesture to begin the mini-game. However, at any time during the
games, the user can make a ‘wave-in’ gesture to exit the game back to the original menu.

For this project, the user experience consisted of two playable mini-games. The color
‘indigo’ indicated the ‘color spectrum’ game. Once entered, the orb will display a single color at
any given time, but with its various colors mapped to correspond to the user’s arm orientation
(pitch). Through this experience, the user can smoothly and quickly transition between the colors
of our spectrum by motioning their arm up and down.

The second available game, indicated by the menu color of ‘green’, is the ‘ring-game.’
Once this game is begun, the orb would only display colors on a single axis, effectively
displaying a series of concentric rings. However, each of the red rings would have a subset of 4
green LEDs indicating a subsection of the ring. These subsections would be scattered about, with
the goal of this game to align the subsections together at the top of the orb. The currently
‘selected’ ring would display blue and green (subsection) instead of red and green. The user can
change their selected ring by jerking their arm forward (shift up) or backward (shift down). They
must shift the orientation of the subsection along its host ring by rolling their arm
counterclockwise (left shift) or clockwise (right shift). Once the rings are all aligned, a victory
animation plays and the user is returned to the menu.

New Hardware

The LED orb was constructed from a WS2812b strip arranged into 14 rings (two
orthogonal groups/axis of seven arranged concentrically) inside a translucent, white acrylic
lighting fixture. These LEDs were chosen as they are capable of producing a large range of
colors and, despite being so popular, few people have managed to control them with FPGAs. A
range of colors (red, orange, yellow, green, blue, teal, violet, magenta) can be displayed and
individual LEDs can be controlled via C scripts on the Raspberry Pi (which send data to the
FPGA via SPI). Any combination or pattern of these colors is possible, since each LED is
individually programmable. Also various custom animations (multiple display frames in
sequence) are implemented, but any scripted sequence of patterns is possible with this
architecture.

Figure 1: LED orb - 2 axis structure

The most important concern during design and development is the timing specifications
presented by the LEDs. According to their datasheet, they operate as a serial register with PWM
logic. The specifics of these specifications can be seen below as well as a graphic that
demonstrates the three possible signals.

Data transfer time(TH+TL=1.25us+150ns)

TOH 0 code ,high voltage time 0.35us =150ns
TIH 1 code high voltage time 0.9us =150ns
TOL 0 code , low voltage time 0.9us =150ns
TIL 1 code ,low voltage time 0.35us +=150ns
RES low voltage time Above 50us

Table 1: LED encoding - timing specifications

Sequence chart:

TOL
0 code |« < >
TOH
| code |« ><T1L>
TI1H
RET coide le— 2ot >

Figure 2: LED encoding - logic

Tolerances this fine cannot be achieved on a Raspberry Pi given the fact that the SOM
runs a distribution of Linux that is not real-time. Thus, these signals must be produced by an
FPGA’s GPIO output pin.

The Myo Armband is a 3rd party product that uses a bluetooth protocol to transmit
packets of its sensor data to a USB Bluetooth dongle plugged into to Raspberry Pi. Instead of
using the maker company’s (Thalmic Labs) official communication and scripting environment
(MyoConnect), a custom python environment was created to increase creative freedom with the
project. The exact myo-specific communication protocol customized for Linux (PyoConnect)
was taken from the open source software community for Myo development, in order to
communicate with the 3rd party device. Custom data handlers and scripting were added to
process the incoming IMU and gesture data and to trigger the animations written in C that
determined LED color values by communicating with the FPGA.

Schematics

The overall system can be divided into three relationships: the Myo™ armband’s data
processing and overall game logic done on the Raspberry Pi in Python, the determination of
animation state done on the Raspberry Pi in C and communicated to the FPGA over SPI, and the
control of the LED orb done by the FPGA. We will discuss each subsystem and their
capabilities. Below is a high level overview of our system. Physical connections are broken
down to signals behaving and inputs and outputs to each subsystem.

Power _SV
Supply
Vin
Bluetooth
Myo™ P19 mosi P65
e A | Raspberry Pi FPGA
Armband pherry P23 sk P67
raw_acc pulse
raw_gyro P114
raw_pose GND GND
Altera Cyclone llI

Raspberry Pi 3B

5V. —

o

LED Strip %r;lh?

WS2812B

Figure 3: Full Schematic and Breadboard Diagram

Software Design

The python scripting environment on the Pi included 3 major components. The first of
which is the Myo-specific bluetooth protocol. As mentioned previously, this protocol was
documented in the open source development community for the Myo-armband, and was
implemented in python exactly as documented. Other than these existing files, there is no official
datasheet or documentation by which the bluetooth communication and package parsing can be
inferred.

The second part of the python environment involves a data handler for the incoming
stream of gesture-recognition data. This gesture handler takes in the already-recognized gestures,
since the Myo’s firmware has built in data interpretation for the EKG sensors specifically. The
data comes in as strings such as “WAVEIN’, “‘WAVEOUT”’, ‘FIST’, and other presets, but only
when a gesture is recognized, otherwise no data enters the handler. This handler is specialized to
manipulate the main menu and the current ‘highlighted mode’. “‘WAVEOUT’ swipes through the
menu options (sets the highlighted mode), and calls a C executable that corresponds to the
desired highlighted mode color. ‘FIST’ launches the currently selected game option (indigo =
color spectrum, green = ring-game) by setting the global ‘mode’ variable to that game’s value
(menu is default mode 0). “WAVEIN’ exits any game back to the main menu by setting the mode
back to 0.

The third aspect of the python code is the IMU data handler. It streams in all the
gyroscope and accelerometer data at S0Hz. This incoming motion data is then processed and
interpreted by the mini-game scripts within the handler. Each game has an associated ‘mode’ so
that only one game is running at any time. This variable is set by the menu interaction, as
mentioned before. Once in one of the two game modes (mode 1 = color spectrum, mode 2 = ring
game), the motion data is used to trigger certain events, and these events correspond to calling a
C executable associated with an LED color or animation. For example, a roll-rate threshold
(followed by a temporary halt on data processing to prevent multiple triggers in quick
succession) causes the ring orientation in the ring-game to shift by updating a single argument in
the ring_game executable call.

The link between the Raspberry Pi and the FPGA are a set of C executables which
transmit the appropriate, encoded RGB data to be interpreted (the handling of this data will be
discussed further in the ‘FPGA’ section). These files correspond to different LED animations and
take in different arguments from a Python script depending on user motion data. The function of
currently implemented executables include setting the orb one of eight solid colors and the 'ring
game' mentioned in the Introduction. Motion data captured using the Python script is handled
and a system call is made to the C file with data encoding the currently selected ring, the position
of all 7 rings, and the win condition. These applications can be accessed from the orb’s 'main
menu', a state in which the user swipes through solid colors on the orb which correspond to
different games.

Each executable file sends an array of 162 chars (322 nibbles + 1 byte) to the FPGA over
SPI. To save registers on the FPGA, this array is encoded such that each nibble corresponds to

the color of one LED in the strip, with the last byte acting as a ‘stop-byte’ signal ('~'). The

encoding is as follows:

0x0010
0x0011
0x0100
0x0101
0x0110
0x1000
0x1001
0x1010

Red
Orange
Yellow
Green
Blue
Teal
Violet
Magenta

0x0111 1110 Stop

Note that it is impossible to send a combination of encoded colors that could be confused

for the stop bit. The encodings shown were chosen as such for exactly that reason.

FPGA Design

The LED strip used in this system (WS2812b) operates in series via PWM logic and has
very strict timing constraints discussed previously. To properly control the LED strip, we require
the use of a real-time system such as an FPGA. With a 40 MHz clock and the ability to run
complex operations in hardware, the Altera Cyclone IV is fully capable of creating pulse width
modulated signals within the given 150 ns tolerances.

The purpose of the FPGA in this system is to interpret 161 bytes of encoded RGB data
via SPI from the Raspberry Pi, decode said bytes to 322 24-bit RGB codes, and send those codes
in sequence to the LED strip using PWM logic. We will now discuss the logic behind this
operation in detail.

The hardware description can be divided into two major components: the SPI data
handling, and the LED controller. Beginning with the SPI handler, we have two modules that
work together to interpret 161 +1 bytes from the Raspberry Pi. The first, spi_slave receive only,
contains a 1296 bit buffer that holds the last 162 bytes sent from the Pi. This module works on
the Pi’s serial clock, sck. Another faster module, spi data grab, running on the FPGA clock
checks to see if the 8 least significant bits of the first module’s buffer are equal to the ‘stop-byte’
('~"). When this byte is encountered, the first 161 bytes are shifted to a signal named pi_data and
the led controller is given a signal indicating that the data is ready to interpret.

A 161-byte bus was chosen over storing this data in RAM for convenience. At the time of
design, this implementation made sense and made the datapath easier to visualize. This would
become a hindrance, however, if data sent from the Pi was in the form of 1 byte per LED, as it
would require more registers than the FPGA contains. It would be a great advantage in the future
if the design was modified such that data from the Pi was stored into RAM sequentially and read
out sequentially in the LED controller modules. This would allow the Pi to send more detailed
information to the FPGA and could make writing the Pi-end software more easy for developers.
This would not cost any additional lag to the design, but would make the SPI process twice as
long (which would be a negligible difference to the user).

The second major component, the LED controller, does not operate until it sees the
dat ready signal go high. Comprised of two modules, stripcontrol and pwm, this major
component translates each 4-bit ‘nibble’ from pi data to a 24-bit RGB value by shifting the
signal through a decoder. For each 3-byte ‘chunk’, stripcontrol indicates to pwm whether to send
a 0 or a 1, starting with the most significant bit. The pwm module is the last step in the chain and
acts as an FSM which alternates between sending long high signals with short low signals, and
short high signals with low long signals. When a bit is sent via PWM, the pwm module sends a
done signal to stripcontrol, and the process is repeated until 322*24 = 7728 bits have been
processed over PWM. When all 322 nibbles have been processed, the pwm module is forced to
wait for 50 ps, which indicates a ‘latch’ signal to the LED strip.The length of this part of the
process takes 9.71 ms and is perceived as instantaneous by the user. A block diagram of the logic
described is shown below.

LED Control

SPl Interpreter (interpreter) | EDControl
pi_data_chunk
. ¢ kick ! dat_ready] 4]
spLda b Step_to_PlllSe i E m tr I brg_data_chunk o e
P i stripcontro. o
pi_data '
1289
5 J 1296
3 < \ £ s 16
g gl 8| 3
I:: mosi
G>—*—— spi_slave_receive_only | |
! H pulse G

Figure 4: FPGA Logic Block Diagram

It is important to note that the data signal (called pulse on the FPGA) is output from a
header pin on the FPGA board and not a GPIO connected to the breadboard. Due to the parasitic
nature of breadboards, the levels of capacitance could cut off high frequency signals such as

those being sent to the LED strip, so this is not an option.

Results

The performance of our final system is very close to the intended goals. Myo
communication with the Raspberry Pi was flawless and low-latency. The python scripting
executed exactly as designed, interfacing well with both incoming data and C executables. The C
executables also executed flawlessly with SPI communication to the FPGA. The PWM from the
FPGA is also highly reliable. Constructed hardware, including the LED display and orb also
performed well with no maintenance required.

The only difference between the proposed design and the final product is the “focal
point” game. This game would have allowed the user to control the position of a point of light on
the orb with pitch and yaw hand motions. This design would have required the ability to easily
map and translate arbitrary designs to the orb, which no previous animations had utilized. This
was very close to becoming a reality with a vectorial approach on the Pi, but was not completely
realized due to the lack of spatial resolution imposed by having to send 2 LEDs worth of
information at a time over SPI. It was at this point that the consequences of not storing LED data
in RAM on the FPGA came to fruition.

This method precalculates 322, 3-coordinate representations of vectors that point to each
of the orb’s LEDs. To create designs, a ‘master vector’ is chosen and the dot product of the
master and each of the other 322 vectors is taken. The value of this dot product is then
sigmoid-ed to a scale of 1-7 and rounded to the nearest integer. This value then corresponds to a
color in a specified color spectrum, leading to a rainbow gradient design growing in the direction
of the master vector, or a single point/group of points that only exist at the tip of the master
vector. This method, as mentioned previously, is only held back by the fact that 2 LEDs worth of
information must be sent to the FPGA at a time, making the final resolution of the orb’s designs
choppy and not pleasing to look at.

Parts List

Part Name Purpose Qty Unit Cost Cost
Raspberry Pi 3B Master/Wifi/Motion Estimator 1 - -
MicroMudd Slave/LED Driver 1 - -
FPGA board
12” Acrylic Globe | Outside Cover 1 $16.97 $16.97
16.4° RGB LED LEDs 2 $19.69 $39.38
strip
Power Wall Main Power 1 $11.99 $11.99
Adapter (9 V)

MYO wristband Gesture/Position Tracking 2 - -
Purchasing
Out of Pocket $28.96
To be reimbursed $51.36

Total: e

Appendix

// Nicholas Sakowski and Chris Kotcherha
// Microprocessors Final Project

// This file describes the logic required to
// manipulate WS2812B LED strip , 822 elements

// long.

module final_nsck (input logic clk,
input logic reset ,
input logic sck,
input logic mosi,
output logic pulse); // Output to LED strip

logic dat_ready; // Data is ready to be sent to LED strip
logic [1287:0] pi-data; // Last 322 nibbles + 1 byte from pi

// Hanldes data from Pi
interpreter intl(clk, sck, mosi, pi-data, dat_ready);

// Interprets data and controls LED strip
leds ledl(clk, reset, dat_-ready, pi-data, pulse);

endmodule

// SPI interpretation modules

module interpreter (input logic clk,
input logic sck,
input logic mosi,
output logic [1287:0] pi_data,
output logic dat_ready);

logic kick; // Triggers led controller
logic [1295:0] dat_in; // All data from pi

// Handle SPI data
spi_slave_receive_only spi(sck, mosi, dat_in);

// Tell us when we’re good to read SPI data and pass it on
spi_data_grab sdg(clk, dat_in, pi_-data, kick);

// Tell LED controller when to start
pulser p(clk, kick, dat_ready);

endmodule

// LED control modules
module leds (input logic clk,
input logic reset ,
input logic dat.ready,
input logic [1287:0] pi-data,
output logic pulse);

logic start, code, done;
logic [11:0] bits;

// Translate SPI data to 24 bit BRG data

stripcontrol stripl (clk, reset, dat.ready, pi-data, done, code, start,

// LED strip driver
pwm pwml(clk, reset, code, bits, start, done, pulse);

endmodule

bits);

// SPI slave module to receive data from Pi

// Keeps track of last 1296 bits 322 nibbles + 1 byte

module spi_slave_receive_only (input logic sck, //From master
input logic mosi,
output logic [1295:0] dat_in);

always_ff @Q(posedge sck)
dat_.in <= {dat_in[1294:0], mosi}; // shift register
endmodule

// A faster helper module that checks for
// the stop byte and alerts the leds module
// when it is time to read data
module spi_data_grab (input logic clk,
input logic [1295:0] dat_-in,
output logic [1287:0] pi-data,
output logic kick);

always_ff @Q(posedge clk)

begin
if (dat_.in[7:0] = 8’h7e) // ’77’, the stop byte
begin
pi_data <= dat_in[1295:8]; // Grab the last 322
kick <= 1; // Alert the led module
end
else kick <= 0;
end
endmodule
// Step to pulse converter
module pulser (input logic clk,
input logic q,
output logic d);
logic was;
always_ff @Q(posedge clk)
begin
was <= (q;
d = q & “was;
end
endmodule
// Nibble to 8byte BRG data decoder
module decoder (input logic [3:0] pi-data_chunk,
output logic [23:0] brg._data_chunk);
// brg_data_chunk is in G — R — B order!
always_comb
case(pi-data_chunk)
4’b0010: brg_-data_chunk = 24°h004400; // Red
4’b0011: brg_data_chunk = 24’hla2c00; // Orange
4’b0100: brg_data_chunk = 24°h222c¢00; // Yellow
4’b0101: brg_data_chunk = 24’h440000; // Green
4°b0110: brg_data_chunk = 24°h000044; // Blue
4’b1000: brg_data_chunk = 24’h220022; // Indigo
4°b1001: brg_data_chunk = 24°h00242e¢; // Violet
4°b1010: brg_data_chunk = 24°h002420; // Magenta
default: brg_data_chunk = 24°h000000; // Off
endcase
endmodule

nibbles

// This module decodes nibbles from the Pi
// and tells the PWM circuit which bits to send
module stripcontrol (input logic clk,

input logic reset ,

input logic dat_ready , // Data is ready to be read

input logic [1287:0] pi-data, // Full data from rpi

input logic done, // From timer

output logic code, // 0 or 17

output logic start, // Kick timer

output logic [15:0] bits); // Number of bits to send to strip

logic [1287:0] pi-data_temp;
logic [23:0] brg-3bytes, data;
logic [7:0] counter;

decoder decl(pi-data_temp[1287:1284], brg_3bytes);

// State Register
always_ff @Q(posedge clk)
begin
if (reset) start = 0;

else if(dat_ready) // Fresh data is ready to be displayed
begin
pi_data_temp = pi.data; // This needs to happen first
data = brg_3bytes; // This meeds to happen second
code = data[23]; // Read data msb to lsb
bits = 16’hle30; // # bits to send (322x24)
counter = 8’h00; // # bits sent
start = 1; // Kick pum circuit
end
else if (done && bits) // If the pwm is ready and we still have data to send
begin
if (counter =— 8’h18) // if 24 bits already sent to pwm
begin
counter = 8’h0; // reset bit—sent counter

// after every 8 bytes, shift pi_data by I nibble

pi-data_temp = pi_data_temp << 3’b100;

data = brg_3bytes; // Read mew 24 byte chunk from decoder
end

else data = data << 1’bl;

code = data[23];

bits = bits — 1’bl; // Bits left to send owerall
counter = counter + 1’bl; // # bits from current chunk already sent to timer
start = 1; // Kick timer
end
else start = O0;
end

endmodule

// This module is repsonsible for
// interpreting a 1 or a 0 as a pwm
// signal
module pwm(input logic clk,

input logic reset ,

input logic code, // 0 or 17

input logic [15:0] bits, // # of bits to send overall

input logic start , // start pum

output logic done, // Tell stripcontrol we’re ready for mnexzt bit
output logic pulse); // LED strip ’s input

typedef enum logic [3:0] {S0,S1,S2,S3,S4,S5,S6,S7} statetype;
statetype state, nextstate;

logic [11:0] counter;
logic [11:0] lastcounter; // previous wvalue of counter

logic [7:0] first , second;
logic [7:0] first0 , secondO, firstl , secondl;
logic [11:0] res;

assign res = 12’ hfff; // 102.375 microseconds (RES)
assign firstl = 8’h24; // 0.9 microseconds

assign secondl = 8’hOe; // 0.35 microseconds

assign first0 = secondl;

assign second0 = firstl;

// State Register
always_ff @Q(posedge clk)

if(reset)
begin
state = S0;
done = 0;
pulse =0;
end

else if(start) // If we’re ready to send pwm to LED strip

begin
state = S1;
pulse = 1; // PWM always starts on a high
if (code) // Bit to send == 1
begin
first = firstl; // High duty cycle
second = secondl;
end
else // Bit to send == 0
begin
first = first0; // Low duty cycle
second = secondO;
end
end
else
begin
state = nextstate;
if (state = S5) done = 1; // Send done signal
else done = 0;
if (state = S3) lastcounter = second;
else if (state =— S6) lastcounter = res;
else lastcounter = counter;
if (counter = 1) pulse = 0; // Set pulse low before waiting
end

extra clock

cycle

// Nextstate Logic

always_comb
case(state)
SO
S1:
S2:

S3:
S4:

S5
S6:
S7:

endcase

// Output Logic

always_comb
case(state)

endcase

endmodule

nextstate = SO;
nextstate = S2;

// Do nothing
// Start counting

if (counter = 1) nextstate = S3; // Go to low pulse

else nextstate = S2; // Stay

nextstate = S4; // Start 2nd cycle
if (counter = 1 && bits) nextstate = S5; // Go to DONE
else if(counter = 1 && “bits) nextstate S6; // Send RES signal

else nextstate = S4; // Stay

nextstate = S0; // DONE

nextstate = S7; // Set RES timer

if (counter = 1) nextstate = S5;

else nextstate = S7; // Stay
counter <= 0;
counter <= first; // Start counting down from first
counter <= lastcounter — 1’bl;
counter <= second; // Start counting down from second
counter <= lastcounter — 1’bl;
counter <= 0;
counter <= res; // Start counting down for reset signal
counter <= lastcounter — 1’bl;

// ring_-game.c

// An interactive game in which the wuser rotates red and green rings to
// line up the green bands. The selected ring is shown as blue (exzcept
// for the green band)

#include ”easypio.h”

#include <stdio.h>

#include <stdlib .h>

int main(int argc, char xxargv){
char received;

char red[1] = ”\x22”;

char green[1] 7\ x55” ;

char halfg[1] = ”?\x527;

char halfr [1] 7\x257;

char blank[1] = "p”;

char stop[l] =777

int start [7] = {75,85,95,106,117,128,138}; // LED ring start positions
int end[7] = {84,94,105,116,127,137,161}; // LED ring end positions

// Input arguements from interactive script

int ringl = (int)(argv[1][0]—="0") + start[0];

int ring2 = (int)(argv[2][0]—'0") + start[1];

int ring3 = (int)(argv[3][0] —’0) + start [2];

int ring4 = (int)(argv[4][0] —'0") + start [3];

int ringds = (int)(argv[5][0]—"0") + start[4] + 1;
int ring6 = (int)(argv[6][0] —'0") + start[5] + 1;
int ring7 = (int)(argv[7][0] —'0") + start[6];

int selected = (int)(argv[8][0] —’'0");

piolnit ();
spilnit (244000,0);

for (int j=0;j <161;j++)

{

if(j < 75)

{ received = spiSendReceive (blank [0]);
]t;lse if(j > ringl -2 && j < ringl+1)

{ received = spiSendReceive(green[0]);
}t;lse if(j > ring2—-2 && j < ring2+1)

¢ received = spiSendReceive(green [0]);
}

else if(j > ring3—-2 && j < ring3+1)

received = spiSendReceive(green [0]);
ilse if (j = ring4—1)
{ received = spiSendReceive (halfr [0]);
}(;lse if(j > ring4—-2 && j < ringd+1)
{ received = spiSendReceive(green[0]);
]t;lse if(j = ringd+1)
{ received = spiSendReceive(halfg[0]);
}

else if(j > ringb—2 && j < ringb+1)
received = spiSendReceive(green [0]);

else if(j > ring6—2 && j < ring6+1)

{
}

else if (j = ring7-1)

{

}
else if(j > ring7—2 && j < ring7+1)

{

received = spiSendReceive(green [0]);

received = spiSendReceive (halfr [0]);

received = spiSendReceive(green [0]);
if(j = ringT)

received = spiSendReceive (halfg [0]);
}
}
else if(j > 75)
{

if(j > start[selected] && j < start[selected]){
received = spiSendReceive (blue[0])

else{

}

received = spiSendReceive (red [0]);

}

received = spiSendReceive(stop [0]);

return 0;

// menu.c

// A swirly, colorful display to represent the orb’s menu.

// This program wutilizes a 3D representation of wvectors

// to map out the position of each LED on the orb, and calculates
// a master vector about which symmetrical displays can be made.
// Idea credits to Alex Goldstein.

#include <stdio.h>

#include <math.h>

#include <time.h>

#include ”easypio.h”

#define SPHERERADIUS 6.0 // inches
#define LEDINTERVAL 1.28 // inches
#define PI 3.14159265359

#define X_DIR 0
#define Y_DIR 1

#define XNUM 7 // # rings

const float X_OFFSETS[XNUM] = {0,0, 0, 0, 0, 0, 0};
const float X ERRORS[XNUM] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0}; // Compensate for hardware issues
const int XLENGTHS[XNUM]| = {18, 22, 22 ,24 ,24, 20, 18}; // # LEDs in each ring

#define YNUM 7 // # rings

const float Y.OFFSETS[YNUM] = {0,0, 0, 0, 0, 0, 0};

const float YERRORS[YNUM] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0}; // Compensate for hardware issues
const int Y.LENGTHS[YNUM]| = {20, 20, 22 ,20 ,24, 20, 48}; // # LEDs in ring

char xLeds[74];
char yLeds[87];

float xVectors[148][3];
float yVectors[174][3];

float thetaR;
int numColors;

// Used to precalculate LED wvectors
void setLedVec(float offset , float distance, int dir, floatx retVec) {

float x, y, z;
float smallRadius = sqrtf (SPHERE_RADIUS*SPHERE RADIUS — offsetxoffset);
float theta;

if (dir = X.DIR) {
theta = PI + (distance) / (1.0xsmallRadius);

}
else {
theta = PI — (distance) / (1.0xsmallRadius);
}
z = —smallRadius*cos (theta);

if (dir = X.DIR) {
x = offset;
y = smallRadius*sin (theta);

else {
y = offset;
x = smallRadius*sin (theta);
}
float mag = sqrt(xxx + y*y + z*z);
retVec [0] = x / mag;
retVec[1l] =y / mag;
retVec [2] = z / mag;

void delay (int milis){
float start = clock ();
while (clock () < start 4+ milis % 1000);

// Dot Product of two wvectors
float dotProduct(floatx vecl, float* vec2) {

float dotProd = 0;

int i;

for (i = 0; 1 < 3; i++) {
dotProd += vecl[i]xvec2[i];

}

return dotProd;

}

// Use normal vector to assign designs to orb

void setLedRings(float* normalVec, char colorSpectrum [], int spectrumLength) {
char stop = %777
float avg;

int j = 0;
for (int i = 0; i < XNUM; i++) {
for (int led = 0; led < XLENGTHS[i]; led++) {

if(j = 0){

avg = dotProduct (xVectors[0], normalVec);
}
else{

float distancel = dotProduct(xVectors[j—1], normalVec);
float distance2 = dotProduct(xVectors[j], normalVec);
avg = (distancel + distance2)/2;

int segment = 0.5x(avg + 1.0)*xspectrumLength;
char color = colorSpectrum [segment |;

if (1(j%2)4
xLeds[j /2] = color;

i+t

}

}

i=0;

for (int i = 0; i < YNUM; i++) {

for (int led = 0; led < YLENGTHS[i]; led++) {
() — 0)

avg = dotProduct(yVectors[0], normalVec);

else{

float distancel = dotProduct(yVectors[j—1], normalVec);
float distance2 = dotProduct(yVectors[j], normalVec);
avg = (distancel + distance2)/2;

int segment = 0.5x(avg + 1.0)*spectrumLength;

char color = colorSpectrum [segment |;
if (1(j%2)4
yLeds[] /2] color;
J++;
}
}
for (int i = 0; i < 74; i++) {
char received = spiSendReceive(xLeds[i]);

for (int i = 0; 1 < 87; i++) {

char received = spiSendReceive (yLeds[i]);

}

char received = spiSendReceive (stop);

void main(void) {

piolnit ();
spilnit (244000,0);
int j = 0;

// Precompute vectors
for (int i = 0; 1 < XNUM;i++) {
for (int led = 0; led < XLENGTHS[i]; led++4) {
setLedVec (X_OFFSETS[i], XERRORS[i] + (led — X_LENGTHS[i]/2) * LEDINTERVAL, X.DIR,
xVectors[j]);
i+t
}
}
i = 0;
for (int i = 0; i < YNUM; i++) {
for (int led = 0; led < YLENGTHS[i]; led++) {
setLedVec (Y.OFFSETS[i], Y.ERRORS[i] + (led — Y.LENGTHS[i]/2) * LEDINTERVAL, Y.DIR,
yVectors[j]);

J++
}
}
float normalVec[3] = {0,0,1};

while(1==1){
thetaR += 5;
normalVec[0] = sin(thetaR/100.0);
normalVec[1] = cos(thetaR/100.0);
normalVec [2] = 0;
char colorSpectrum [7] = 7\x66\x66\x66\x88\x88\x99\x99” ;
setLedRings (normalVec, colorSpectrum, 7);
delay (10);

10

final_project.py
E155 — FInal Project — 2017
ckotcherha@hmec . edu

import
import
import
import
import
import

enum

re
struct
Sys
time
myo_raw

from subprocess import call

global
global
global
global
global
global cycles_to_ignore
global ring_index
LEDupdateCounter = 0

LEDupdateCounter
mode
highlighted_mode
num_modes

rings

mode = 0

highlighted_mode =1
num_modes = 2

rings = [1,2,3,4,5,6,7,7]
cycles_to_ignore = 0
ring_index = 0

if __name_._. — ’__main__":

#handles motion data and games
def data_ IMU(quat, acc, gyro,
global LEDupdateCounter
global mode
global rings
global cycles_to_ignore
global ring_index
global highlighted_-mode
frame_delay = 5
acc_x acc [0]
acc_y acc [1]
acc._z acc [2]
gyro.x = gyro [0]
gyro.y = gyro|[1]
gyro.z = gyro[2]

times=[]):

#LED update delay (all game modes)

LEDupdateCounter += 1

if LEDupdateCounter > frame_delay: #reset count

LEDupdateCounter 0

if mode = 1: #spectrum height mode

if (acc_x<—1500):
if LEDupdateCounter
print ('magenta’
call ([7sudo”, ”
elif (acc_x <—1000):
if LEDupdateCounter
print(’violet ”)
call ([”sudo”, ”
elif (acc_x <—500):
if LEDupdateCounter
print (’blue’)
call (["sudo”, ”
elif (acc_x <0):
if LEDupdateCounter
print (’indigo’)
call (["sudo”, ”

)

../ project /magenta” |)

frame_delay :

frame_delay:

../ project/violet”])

frame_delay:
../ project/blue”])
= frame_delay:

../ project/indigo”])

11

elif (acc_x <500):

if LEDupdateCounter
print (’green’)

call ([”sudo”

elif (acc_x <1000):

if LEDupdateCounter —

”
)

print (’yellow)

call ([”sudo”

elif (acc_x <1500):

”»

if LEDupdateCounter
print (’orange’)

call ([”sudo”

elif (acc_x <2054):

9

if LEDupdateCounter

print(’red’)
call ([”sudo”

else:

if LEDupdateCounter =

”»
)

print(’clear’)

call ([”sudo”

if mode =— 2: #ring game
#check for wictory condition,
[5,5,5,5,5,5,5]):

if (rings[0:7]

”
)

../ project/clear”

frame_delay:

../ project/green”])

frame_delay:

../ project/yellow”])

frame_delay:

../ project/orange”|)

= frame_delay:
./ project/red”])

frame_delay :

1)

#otherwise ,

call ([?sudo”, ”../ prOJect/magenta 1)
call ([”sudo”, ”../prOJect/Vlolet 1
call ([”sudo”, ”../project/blue”])
call ([”sudo”, ”../project/indigo”])
call ([”sudo”, ”../project/green”])
call ([”sudo”, 7 ../ project/yellow”])
call ([”sudo”, ” ../ project/orange”])
call ([”sudo”, ”../project/red”])
call ([?sudo”, ” ../ project/clear”])
mode = 0 #exzit to menu

#first menu option
highlighted_mode =1
print (’returning.to.men
call ([”sudo”, ”../proje

u’)
ct/indigo’

1)

print (’Spectum._Height _Mode)

manipulate ring

else:

if LEDupdateCounter =—

orientations

frame_delay :

#initial delta values
orientation_change = 0

ring_change

=0

#cycle counter for

ignoring data

print (’+1_up’)
elif acc.x > 1700:

ring_change

orientation_

change = 0

cycles_to_ignore = 3
print (’—1_down’)

else:
ring_change

=0

#check for roll—twitch to

12

cycles_to_ignore —= 1
if cycles_to_ignore < 0: #reset count
cycles_to_ignore = 0
if cycles_to_ignore =— 0: #don’t check
#check for pitch—twitch to shift
if acc_x < —2000:
ring_change = 1 #shift up
orientation_change = 0
cycles_to_ignore = 3

—1 #shift down

shift

prevent movement (base case)

if recent detection

selected ring

subring value

if gyro.x < —5400: #neg

orientation_change = —1

cycles_to_ignore =
print(’—1_right’)
elif gyro_x > 3300:
orientation_change
cycles_to_ignore =
print ('+1_left ”)
else:
orientation_change

3

w ||

is right

1 #shift left

#Update selected ring wvalues:
ring_index 4= ring_change #update selected ring

#limit ring indexing range

for i in range(0,len(rings)):

if ring_index < 0:

ring_index = 0
if ring_index > 6:
ring_index = 6

#finally , give selected ring updated wvalue
rings [ring_index] 4= orientation_change
#limit subring led value range

if rings|[ring_index] < 1:

rings [ring_index] =1
elif rings[ring_index] > 8:
rings [ring_index] = 8

print(rings)
#update LED rings

#shift right

call ([”"sudo”, ”../project/ring_game”, str(rings[0]), str(rings[1l]),
str(rings [2]), str(rings[3]),
str(rings [6]), str(ring_index)])

def data_Pose(p):
global mode
global highlighted_mode
global num_modes
global rings

H#MENU mode (0)
if mode = 0:
#determine highlighting

str(rings [4]),

if highlighted_-mode = 1: #spectrum hight mode

call ([”?sudo”, ”../project/indigo”])
print (’Spectum._Height _Mode ")

elif highlighted_mode = 2: #ring game mode

call ([”"sudo”, ” ../ project/green”])
print (’Ring_Game_Mode)

else: #shouldn 't happen,
call ([”sudo”, ”../project/indigo”])
highlighted_mode =— 1

#check for highlighting switch

if p = Pose WAVEOUT: #highlight next mode

highlighted_mode +=1

if highlighted-mode > num_modes: #wrap around

highlighted_mode =1

if p =— Pose.WAVELIN: #highlight previous mode

highlighted_mode —=

if highlighted_-mode < 1: #wrap around

highlighted_mode = num_modes

if p = Pose.FIST: #NTER highlighted mode
print (’ENTER.-mode: ’ ,highlighted_mode)
mode = highlighted_mode #leave menu, ENTER highlighted mode

13

str(rings [5]),

if mode = 2: #starting ring oreintations

rings = [1,3,6,2,4,8,6,7]
#when not in menu (in a game mode), check for EXIT to menu
elif p = Pose.WAVE.IN:
print (’EXIT_to._menu’)
mode = 0

= MyoRaw(sys.argv[1l] if len(sys.argv) >= 2 else None) #nitialize Myo object
.connect () #connect to Myo

g B

m. add-imu_handler (data_.IMU) #initialize IMU handler, motion processing
m. add_pose_handler (data_Pose) #menu and game state control

try:
while True:
m.run (1)

except KeyboardInterrupt:
pass

finally:
m. disconnect ()
print (’disconnected ’)

14

