Painting Monitoring System

Final Project Report
December 8, 2017
E155

Richard Liu and Kimberly Joly

Abstract

This system monitors temperature, light, and human proximity to the painting, responds
accordingly to preserve the painting, and was implemented using an FPGA and Raspberry Pi. If
the temperature, light, or proximity go over a certain threshold, an LED turns on to warn the user
of possible environmental stresses. When the amount of light is above a certain threshold or the
user manually controls the curtain, the system triggers a stepper motor via the FPGA to lower
the curtain. The Raspberry Pi hosts the web server, reads sensor inputs, and sends to
appropriate curtain control signal to the FPGA.



1. Introduction

Paintings may be subjected to different environmental stresses, such as being exposed to too
much light, fluctuations in temperature, and human pollution through touch. A growing IoT field,
cheap yet powerful computers, and an abundance of available sensors may help solve this
problem. This project creates a system to monitor temperature, light, and human proximity to a
painting. The system then responds accordingly based on the light sensor input or human input
to “protect” the painting by notifying the user or lowering the curtain. For example, lowering the
curtain due to high luminosity levels will protect the painting because prolonged exposure to
light can lead to colors fading. It also alerts the user if a sensor value goes above a certain
threshold via alert LEDs.

The Raspberry Pi reads data from sensors, notifies the user when a sensor value is above a
certain threshold by lighting LEDs on the uMudd, hosts the Apache web server to interface with
the system, and sends appropriate signals to the FPGA to control the percentage to which the
curtain should close. The FPGA then controls the stepper motor based on the signal received.
Figure 1 below details the relationship between each component of the system.

LED alert

*

Distance sensor L

motor

Temperature sensor —# ADC —# RaspberryPi —» FPGA 4{ Stepper

Phototransistor —#= ADC —=

Y

‘ Apache web server ‘

Figure 1: High-level structure of the system

2. New Hardware

This project uses a stepper motor found in the MicroPs lab. The motor is a Jameco 171601
unipolar stepper motor [1] controlled by the FPGA, and driven by a L293DNE H-bridge [2].

The stepper motor uses four wires to power the electromagnet. The wires are powered using an
external voltage source due to the high current draw. To drive the motor clockwise using wave
modulation, the team powered the motor with the four steps shown in Table 1. To make the
motor rotate counterclockwise, the same steps are followed in reverse order.



Wire color

Yellow Red Black Gray
Step A oV ov ov 5V
Step B oV ov 5V ov
Step C ov 5V ov ov
Step D 5V oV ov ov

Table 1: The four steps used to power the motor in the clockwise direction

Wave modulation requires the least current, since only one coil of the electromagnet is powered
at a time. An H-bridge was used so that the FPGA can drive the stepper motor while using an

external voltage supply. The wiring of the stepper motor can be seen below in Figure 2.

3. Schematics

The schematic of the system is found in Figure 2 below.

50

P

T2023
~ ;_\ phototransistor

=
=

ovol

External Power Supply

CP3002

GND 5V
Raspberry Pi udd
pberry
33V GND GND
—{ 5V MOSI BMOS | pag p5q fmoel]
S8 (#18) sigvessiest | oo p5g |momil]
SCLK 20k | pgo psg | Tt
#16 #26 distancs LED § p701 ED2 p5g |l
MISO #9 £20 40 | po41LEDS
CEO #4 2 | pr2nEDa
GP2Y0DB10Z0F
distance sensor 1293
[out vw GnD | H-bridge
\ L H1 @@EN Vee, 16
10 pF| L2 1A @A 15—
]2 @Dy @y 14
— I 4 GND GND 13 H—
| temperatire sensor — 5 GMND GND 12
I Ve GND Vburi 6 @Y 3“{ M T
L 7 @A @A 10
- 8 Ve, @EEN 9

HoEIQ

mojek

gray

%

O

Jameco 171601
unipolar stepper motor

Figure 2: Schematic of the circuit design

3




4. Microcontroller (Raspberry Pi) Design

The Raspberry Pi completes a few tasks as a microcontroller. First, it reads the data from three
sensors, directly as a digital signal for the distance sensor, or via SPI for the phototransistor and
temperature sensor from an ADC. It then controls three LEDs on the uMudd based on the
sensor input. Second, it sends a control signal to the FPGA via SPI, indicating to what
percentage the curtain should be closed. Third, it hosts the web server used by the user to
interact with the system. Figure 3 shows a high-level block diagram of this system.

uMudd LED ‘

?

SPI (for light and SPI

Sensors - Raspberry Pi = FPGA
temperature sensors)

Apache web server

Figure 3: Microcontroller block diagram logic
4.1. Read sensor data

The Raspberry Pi reads data from the distance, temperature, and light sensors. The distance
sensor (GP2Y0D810Z0F) is a digital sensor, so the Raspberry Pi reads in the signal of the pin
connected to sensor “OUT” pin. The phototransistor (LPT2023) and temperature sensor
(LM35DT) output an analog signal, which must be passed into channels 1 and 2 of the ADC,
respectively. The sensor outputs are then sent to the Raspberry Pi pins via SPI. The code used
for the phototransistor and temperature build of the SPI communication code written for Lab 6.

Three .cfiles, found in Appendix A, read data from each of the sensors, and display them on the
webpage. If the sensors read data that is above a specified threshold, the Raspberry Pi lights up

a uMudd LED as an “alert” to the user.

4.2. Send control signal to the FPGA



Whenever the user presses a button which controls the curtain, or the curtain is lowered due to
high light levels, the Raspberry Pi sends a control signal to the FPGA via SPI, indicating to what
percentage the curtain should be lowered.

The SPI clock sends packages of 16 bits at a time with the spiSendReceivel6 () function,
after initializing SPI with the spiTnit () function. The first 3 bits define to which percentage the
curtain will close. The last 13 bits are ignored and have a value of Os because 3 bits are
sufficient to express the different percentages to which the curtain will close. Table 2 below
details the 7 possible percentages to which the curtain can close and the corresponding
configurations sent from the Raspberry Pi to the FPGA to control the motor.

Percentage Configuration
(%)
First bit Second bit Third bit
0 0 0 0
17 0 0 1
34 0 1 0
50 1 0 0
67 1 0 1
84 1 1 0
100 1 1 1

Table 2: Curtain percentage closed and corresponding configuration

The first bit corresponds to 50, the second bit corresponds to 34, and the third bit corresponds
to 17. Each state is made up of a combination of the values when added. For example, 67 =
50+17, so the encoding for the state corresponding to 67% is 101.

For the FPGA to know when to read the SPI clock data being sent from the Raspberry Pi, the
Raspberry Pi sets the slave select pin to low (0V) when the 16-bit serial data is being sent. The
slave select pin will be set to high (3.3V) as soon as the packet has been sent. An example of
this control signal is shown in Figure 4 below.



/ A A0S - ] TF]
I / : r I}
e Uy & P RN R

T} SPI clock

slave select

Figure 4: Example of the 17% (001) curtain control signal

The functions curtain0, curtainl7, curtai34, curtain50, curtainé67, curtain8i4,
and curtainl100 sends the control signal, and takes in the percentage to which the curtain
should be closed as an input. They are written in C and can be found in Appendix A.

4.3. Host the web server

The Raspberry Pi also hosts an Apache Web Server, so the user can interact with the system
by viewing sensor data and controlling the curtain. The main page, mainPage.html, is found
in Appendix A, and is store in the /var/www/html directory in the Raspberry Pi. The other
files mentioned in this section, used to read sensor data and send curtain control signals, are
stored as executables in the /usr/lib/cgi-bin, and their permissions modified with the
chown and chmod commands.

5. FPGA Design

The main tasks for the FPGA include: reading the new curtain configuration sent from the
Raspberry Pi, reading the current configuration from memory, writing the new configuration into
memory, comparing the current and new configurations, calculating the number of rotations
needed to modify the current to new configuration, and outputting pulses using wave modulation
to control the stepper motor. A high-level block diagram is shown in Figure 5 below.



spiSlave RAM
ek P donePulse doneRAM
P39 slaveScelect Heads and a pulse that indicatles that WE Stores current a pulse that indicates that
. interprets SPldata | 51 is complete curtain position, I’:H;‘"'q andwitting In RAM
P42 spiClk from the Pi addr = SH00000000 ——— retrieves previous hplets
- curtain position
spiBits[2: reviousData[2:
three bits that indicate the ihree bits that represent the
next curain position 11 previous curtain position,
read from memory
1 slowClk
—] slowClock rpr—
calculateRotations shifter
Compares the doneCalculations Uses a counter to count | motorf0] P54
current and previous | a pulse that indicates that to timeRAotating, uses |
configurations, decodes | calculations for the time needed for anFSM o allowthe  [MOIOM]  ep
the difference intoa | otaling are complete stepper to rotate using | motor(2)
direction and time to | yocwise one-hot e i
rotate ; - - maotor]3]
1 i the maotor should rotate clockwise, [ PR
0 otherwise
timeHotating[19:0]
a 20-bit number that indicates the
rumiber of clock ticks the motor
neads o rotate 10 reach the new
curtain configuration

Figure 5: A block diagram of the FPGA modules
5.1. SPI Slave

The SPI slave is represented by the spislave module. The module utilizes a slave select pin,
as the FPGA is not the only SPI slave. Until the slave select pin goes low, the FPGA waits for
instructions from the Raspberry Pi. Since only three bits are relevant, only those bits are saved
in memory. A finite state machine, shown in Figure 6, is used to record these bits.

oo ~g5ifick ~gsftick ~gsftick —fdone

Q\/’“\/“\/”\ﬁ”ss
y

&
() () (=) ()

reset M//
ss

55

Figure 6: The FSM used in the spiSlave module (ss represents slaveSelect, tick enables a
flip flop to store the value outputted by the Raspberry Pi, and done outputs donePulse)

Once the bits are successfully recorded, the module outputs a pulse (represented by
donePulse) that acts as the write enable pin for memory.

7



5.2. Slow Clock

The faster a stepper motor rotates, the less torque it supplies. Since the stepper motor does not
supply much torque in the first place, the team had to keep the rotation speed low. To do so, a
40 Hz clock is created mainly for motor controls. The slow clock module is represented by
slowClock. It uses a counter and ticks at a threshold.

5.3. Memory

Since the Raspberry Pi outputs the desired curtain configuration, the FPGA stores the current
curtain configuration to be compared. Since the RAM only reads and writes into one address, it
performs the tasks of a 3-bit register. After saving new data into memory, a pulse (doneRAM) is
outputted to start the next block to calculate the time needed to raise or lower the curtain. This
modified version of RAM is represented by the memory KJRL module.

5.4. Calculating Rotations

The calculateRotations module takes care of determining the direction the motor needs to
rotate and for how much time. Depending on the difference between the current and new
configurations, the motor will rotate clockwise or counterclockwise. The difference between the
two 3-bit numbers is decoded into the amount of time needed for rotations. Once calculations
are done, a pulse (doneCalculations) is sent to the next module to reset the rotation
counter, signaling that the motor should start rotating.

5.5. Controlling the Stepper Motor

Wave modulation is used to control the stepper motor, which allows rotation in either direction.
To implement wave modulation, the team used one-hot. An FSM, represented by the shifter
module, is used to power the motor. Depending on the direction the motor needs to rotate, the
module shifts the single high bit left or right. By encoding the state in one-hot, the output of the
FSM is the state. The FSM is represented by Figure 7.



clnck;wise (l:w]

reset \
/’ \\L_CW__./ .

('] :-U CW
e j
‘\‘\__ output = state
CW

Figure 7: The FSM used in the shifter module. If cw reads 1, then the motor is rotating
clockwise. The output is equivalent to the state.

6. Results

6.1. Curtain Controls

The stepper motor is successful in controlling the curtain. The user is able to click on the
percentages on the website and the motor will rotate the dowel, causing the curtain to move up
or down. If the user shines a light on the phototransistor, such as an cell phone LED flashlight,
the Raspberry Pi will force the curtains to lower. A photo of the functioning project can be seen
in Figure 8.



Figure 8: The curtain at the 50% configuration

However, after many iterations of controlling the curtain, the curtain will become uncalibrated
from its reference point of 0%, by not being fully opened when the 0% button is pressed.
Professor Spencer suggested that the stepper motor could be skipping due to its small torque.
The team believes that curtain is lightweight and does not roll onto the dowel properly, causing
folds in the material. To combat this problem, a weight is added to the bottom of the curtain,
which forced the curtain to roll more smoothly when raised. These factors contributed to the
imperfect motor controls and suggest that a better mechanical design may be more desirable.

References

[1] https://www.jameco.com/jameco/products/prodds/171601.pdf
[2] http://www.ti.com/lit/ds/symlink/I293.pdf

Parts List

The following table lists the components used for this project, other than standard resistors,
capacitors, and parts available in the MicroP’s lab:

Part Source Vendor Part # Price

LM35DT temperature | Mouser Electronics 926-LM35DT/NOPB 2.90

10



https://www.jameco.com/jameco/products/prodds/171601.pdf
http://www.ti.com/lit/ds/symlink/l293.pdf

sensor

Sharp

digital

distance

sensor with Pololu carrier

Adafruit

GP2Y0OD810Z0F

6.95

11




Appendix A: Raspberry Pi Code

Code for the phototransistor:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int sample;

float voltage;

Float scaledvoltage;
int threshold = 96;

int turnOn (void) {
setPinType (19,1);
digitalWrite(19,1);
return 0;

}

int turnOff (void) {
setPinType (19,1);
digitalWrite (19,0);
return 0;

}

int main (void) {
char received;
pioInit();
SetUpPerif ();
spiInit (244000,0);
sample = spiSendReceivel6 (0x6000) ;
voltage = (sample * 3.3) / 1024;
scaledvoltage = voltage*100/3.3;

if (scaledvoltage >= threshold) {
turnOn () ;
curtainl0O0() ;

}

else if (scaledvoltage < threshold) {
turnOff () ;
}

printf (“Content-type: text/html\n\n”);
printf (“<html>\n") ;

printf (“<head>\n") ;

printf (“<meta http-equiv=’refresh’ content ='5">");
printf (“</head>\n") ;

printf (“<body>\n") ;

printf (“*<hl> The temperature is: “);
printf (“*%.3f</h1>\n"”, temperature);
printf (“</body>\n") ;

printf (“</html>\n");

return 0;

12



Code for the distance sensor:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int turnOn (void) {
SetUpPerif ();
setPinType (26,1) ;
digitalWrite (26,1);
return 0O;

int turnOff (void) {
SetUpPerif () ;
setPinType (26,1);
digitalWrite (26,0);
return 0;

char* status;
int 1i;

int main(void) {
pioInit () ;
pinMode (16,0) ;
int dist = digitalRead(16);

if (dist == 0) {
status = “There is something there!”;
turnOn () ;

else if (dist == 1) {
status = “There isn’t anything there!”;
turnOff () ;

}

printf (“Content-type: text/html\n\n”);

(

printf (“<html>\n") ;
printf (“<head>\n") ;
printf (“<meta http-equiv=’refresh’ content ='5">");
printf (“</head>\n") ;

printf (“<body>\n") ;

printf (“%.3f</h1>\n”, status);

printf (“</body>\n") ;

printf (“</html>\n") ;

return 0;

Code for the temperature sensor:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int sample;
float temperature;
int threshold = 75;

13



int turnOn (void) {
setPinType (4,1) ;
digitalWrite(4,1);
return 0;

int turnOff (void) {
setPinType (4,1);
digitalWrite (4,0);
return 0;

}

int main (void) {
char received;
pioInit();
SetUpPerif ();
spiInit (244000,0);
sample = spiSendReceivel6 (0x7000) ;
temperature = (sample * 3.3) / 1024;

if (temperature >= threshold) {
turnOn () ;

}

else if (temperature < threshold) {
turnOff () ;
}

“Content-type: text/html\n\n”);
“<html>\n") ;

“<head>\n") ;

“<meta http-equiv='refresh’ content =’'5'>");
“</head>\n") ;

“<body>\n") ;

“<hl> The temperature is: “);
“$.3f</h1l>\n”, temperature);
printf (“</body>\n") ;

printf (“</html>\n") ;

return 0O;

printf
printf
printf
printf
printf
printf
printf
printf

Code for curtain control to 0%:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int percentage;

int main(void) {
char received;
pioInit () ;
SetUpPerif () ;
setPinType (18,1);
digitalWrite (18,0);
spilInit (244000,0);
percentage = spiSendReceivel6 (0b000) ;
digitalWrite (18,1)
printf (“%s%c%c\n”, “Content-Type:text/html;charset=1s0-8859-1",13,10);

14



printf (“<META HTTP-EQUIV=\"Refresh\” CONTENT=\"”0;url=/mainPage.html
\//>//) ;
return 0;

}

Code for curtain control to 17%:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int percentage;

int main (void) {
char received;
pioInit();
SetUpPerif ();
setPinType (18,1);
digitalWrite (18,0);
spiInit (244000,0);
percentage = spiSendReceivel6 (0b001) ;
digitalWrite (18,1)
printf (“%s%c%c\n”, “Content-Type:text/html;charset=1is0-8859-1",13,10);
printf (“<META HTTP-EQUIV=\"Refresh\” CONTENT=\"”0;url=/mainPage.html\”>");
return 0;

}

Code for curtain control to 34%:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int percentage;

int main(void) {
char received;
pioInit () ;
SetUpPerif () ;
setPinType (18,1);
digitalWrite (18,0);
spiInit (244000,0);
percentage = spiSendReceivel6 (0b010) ;
digitalWrite(18,1)
printf (“$s%c%c\n”, “Content-Type:text/html;charset=iso-8859-1",13,10);
printf (“<META HTTP-EQUIV=\"”Refresh\” CONTENT=\"0;url=/mainPage.html\”>");
return 0;

}

Code for curtain control to 50%:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int percentage;
int main (void) {

char received;
pioInit();

15



SetUpPerif ();

setPinType (18,1);

digitalWrite (18,0);

spiInit (244000,0);

percentage = spiSendReceivel6 (0b100) ;

digitalWrite (18,1)

printf (“%s%c%c\n”, “Content-Type:text/html;charset=1is0-8859-1",13,10);
printf (“<META HTTP-EQUIV=\"Refresh\” CONTENT=\"”0;url=/mainPage.html\”>");
return 0;

}

Code for curtain control to 67%:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int percentage;

int main(void) {
char received;
pioInit () ;
SetUpPerif () ;
setPinType (18,1);
digitalWrite (18,0);
spiInit (244000,0);
percentage = spiSendReceivel6 (0b101);
digitalWrite(18,1)
printf (“$s%c%c\n”, “Content-Type:text/html;charset=iso-8859-1",13,10);
printf (“<META HTTP-EQUIV=\"”Refresh\” CONTENT=\"0;url=/mainPage.html\”>");
return 0;

}

Code for curtain control to 84%:

#include “stdio.h”
#include “EasyPIO.h”
#include “GPIO.h”

int percentage;

int main (void) {
char received;
pioInit();
SetUpPerif () ;
setPinType (18,1);
digitalWrite (18,0);
spiInit (244000,0);
percentage = spiSendReceivel6 (0bl110);
digitalWrite (18,1)
printf (“%s%c%c\n”, “Content-Type:text/html;charset=1is0-8859-1",13,10);
printf (“<META HTTP-EQUIV=\"Refresh\” CONTENT=\"”0;url=/mainPage.html
\7>") ;
return 0;

}

Code for curtain control to 100%:

#include “stdio.h”
#include “EasyPIO.h”

16



#include “GPIO.h”

int percentage;

int main(void) {

}

char received;

pioInit () ;

SetUpPerif () ;

setPinType (18,1);

digitalWrite (18,0);

spilInit (244000,0);

percentage = spiSendReceivel6 (0bl1l1);

digitalWrite(18,1)

printf (“%$s%c%c\n”, “Content-Type:text/html;charset=1s0-8859-1",13,10);

printf (“<META HTTP-EQUIV=\"Refresh\” CONTENT=\"0;url=/mainPage.html
\">") ;

return 0;

Code for the main page:

<!DOCTYPE html>

<html>
<head>

<title> Environment data page </title>
<hl> <center> Monitor the environment </center> </hl>
<meta http-equiv="content-type” content="text-html;charset=utf-8">

</head>

<body>

<form action="cgi-bin/phototransistor” method="POST”>
<input type="submit” value="What’s the luminosity?”>
</form>
<br>
<form action="cgi-bin/temp” method="POST”>
<input type="submit” value="What’s the temperature?”>
</form>
<br>
<form action="cgi-bin/distance” method="POST”>
<input type="submit” value="Is there something close by?”>
</form>
<br> By how much do you want to close the curtain? <br>
<form action="cgi-bin/curtain0” method="POST”>
<input type="submit” value="0%">
</form>
<form action="cgi-bin/curtainl7” method="POST"”>
<input type="submit” value="17%">
</form>
<form action="cgi-bin/curtain34” method="POST”>
<input type="submit” value="34%">
</form>
<form action="cgi-bin/curtain50” method="POST”>
<input type="submit” value="50%">
</form>
<form action="cgi-bin/curtain67” method="POST”>
<input type="submit” value="67%">
</form>
<form action="cgi-bin/curtain84” method="POST"”>
<input type="submit” value="84%">
</form>
<form action="cgi-bin/curtainl00” method="POST”>
<input type="submit” value="”100%">

17



</form>
</body>
</html>

18



Appendix B: FPGA Code

Kimberly Joly and Richard Liu

kjoly@hmc.edu and rliu@hmc.edu

November 28, 2017

This is the top level module that interfaces from a Raspberry Pi
and controls a stepper motor using wave modulation. SPI is used
to read bits from the Raspberry Pi to determine the number of
rotations needed and the direction the rotations should be in.

module finalproject (input 1logic clk, spiClock, slaveSelect, piMOSI,

output logic [3:0] motor);

// create a slow clock
logic slowClk;
slowClock slowDownClock(clk, slowClk);

// use SPI to get settings

logic [2:0] currentSetting;

logic doneSPIpulse;

spiSlave readInfo(clk, spiClock, slaveSelect, piMOSI,
doneSPIpulse, currentSetting);

// read previous configuration and store new configuration

logic doneRAM;

logic [2:0] previousSetting;

logic [7:0] changingData;

memory KJRL ram(slowClk, doneSPIpulse, 6'b000000,
{5'b00000, currentSetting}, changingData,
{5'b00000, previousSetting}, doneRAM);

// calculate the number of rotations needed to achieve desired state

logic doneCalculations;

logic clockwise;

logic [2:0] modification;

logic [19:0] timeRotating;

calculateRotations getTimes (slowClk, doneRAM, previousSetting,
currentSetting, clockwise, doneCalculations,
modification, timeRotating);

// control the motor using wave modulation
shifter outputPulses(slowClk, doneCalculations, clockwise,
timeRotating, motor);

endmodule

Kimberly Joly and Richard Liu

kjoly@hmc.edu and rliu@hmc.edu

November 28, 2017

This module slows down the FPGA clock to a much slower clock. This is
the main clock of interest because the motor is the slowest. The slow
speed is used to provide enough torque.

module slowClock (input logic fastClock,

output logic slowedClock);

// counter for the slowed down clock
logic [23:0] counter;

always ff @(posedge fastClock)
if (counter > 20'b11111000110101000000) begin // 40 Hz
counter <= 24'b0;
// reset counter
slowedClock <= ~slowedClock; // flip value
end

19



else counter <= counter + 1'bl; // increment counter
endmodule

// Kimberly Joly and Richard Liu

// kjoly@hmc.edu and rliu@hmc.edu

// November 28, 2017

// The shifter module is an FSM that uses one hot encoding to

// use wave modulation on the stepper motor. Since the stepper

// motor consists of a magnet, the module steps through the four

// basic configurations.

module shifter (input logic sck, startShifting, clockwise,
input logic [19:0] timeToRotate,
output logic [3:0] shifted);

// counter to see if the motor has rotated enough

logic [19:0] counter;

always ff @ (posedge sck) begin
// since the enable is a pulse, we reset if enabled
if (startShifting) counter <= 20'b0;

// if we haven't exceeded rotations
if (counter < timeToRotate) counter <= counter + 1'bl;

end
// four states, using one hot encoding
logic [3:0] state, nextState;
always ff @ (posedge sck)
// only rotate when under timeToRotate
if (counter < timeToRotate) state <= nextState;
// rotating clockwise and counterclockwise uses
// different iterations of the four settings
always_comb
case (state)
4'pb0001: if (clockwise) nextState = 4'b0010;
else nextState = 4'b1000;
4'p0010: if (clockwise) nextState = 4'b0100;
else nextState = 4'b0001;
4'p0100: if (clockwise) nextState = 4'b1000;
else nextState = 4'b0010;
4'p1000: if (clockwise) nextState = 4'b0001;
else nextState = 4'b0100;
default: nextState = 4'b0001;
endcase
// output the current wave pulse
assign shifted = state;
endmodule

// Kimberly Joly and Richard Liu
// kjoly@hmc.edu and rliu@hmc.edu
// November 28, 2017
// The calculateRotations module takes in the previous setting and current
// setting to calculate the amount of time needed to rotate the motor.
module calculateRotations (input logic sck, startCalculating,
input logic [2:0] previousData, currentData,
output logic clockwise, doneCalcuating,
output logic [2:0] modification,
output logic [19:0] timeToRotate) ;

// direction can be determined by the current and previous configs
assign clockwise = (previousData > currentData);

20



always ff @ (posedge sck) begin
if (startCalculating) begin

// the modification should be kept positive
if (previousData > currentData)

modification = previousData - currentData;
else

modification = currentData - previousData;

// arithmetic to determine how much the motor needs to rotate
timeToRotate = 20'bO0O;

if (modification[2]) timeToRotate = timeToRotate + 20'b100001100;
if (modification[l]) timeToRotate = timeToRotate + 20'b10000110;

if (modification[0]) timeToRotate = timeToRotate + 20'b1000011;

// short pulse when done
doneCalcuating = 1'bl;
end

// otherwise, set it to zero
else doneCalcuating = 1'b0;
end

endmodule

// Kimberly Joly and Richard Liu
// kjoly@hmc.edu and rliu@hmc.edu
// November 28, 2017
// The SPI slave module makes the FPGA a slave and the Raspberry
// Pi the master. When the slave select (ss) bit is low, it
// listens for the master's instructions. The bits that are needed
// are stored and then passed on to other modules.
module spiSlave (input logic clk, spiclk, ss, mosi,
output logic donePulse,
output logic [2:0] spiBits);

// an equivalent of an enable pin
logic tick;
logic doneReadingSpi;

// save the three bits of data that are relevant
ff with en dataO(spiclk, tick, mosi, spiBits[0]);
ff with en datal(spiclk, tick, spiBits[0], spiBits[1]);
ff with en data2(spiclk, tick, spiBits[1l], spiBits[2]);

// we have two asynchronous clocks with known frequencies.
// to interface the data and switch from a faster clock to
// a slower clock, we use the FPGA clock to count and
// create a pulse that the slow clock can understand.
logic [23:0] counter;
always ff @ (posedge clk) begin

if (doneReadingSpi) counter <= 24'b0;

// the counter counts to half the frequency of the slow clock
else if (counter < 21'b111110000000000000000) begin
donePulse <= 1'bl; // creates the pulse in the meantime
counter <= counter + 1'bl;
end

else donePulse <= 1'b0; // no pulse once done
end

// finite state machine to read bits
logic [2:0] state, nextState;

21



always ff @ (posedge spiclk) begin
state <= nextState;
end

always_comb

// the slave only listens when the slave select pin is low

// when ss is high, then the results are forgotten
case (state)

3'p000: if (~ss) nextState = 3'b001;
else nextState = 3'b000;
3'b001:1if (~ss) nextState = 3'b010;
else nextState = 3'b000;
3'b010:1if (~ss) nextState = 3'b011;
else nextState = 3'b000;
3'b011: if (~ss) nextState = 3'b100;
else nextState = 3'b000;
3'b100: if (~ss) nextState = 3'b100;
else nextState = 3'b000;
default: nextState = 3'b000;
endcase
// Mealy FSM
assign doneReadingSpi = ((state == 3'b011) & (~ss)) | ((state == 3'b011l) & (ss));
assign tick = (state == 3'b000 | state == 3'b001 | state == 3'b010) & (~ss);

endmodule

// Kimberly Joly and Richard Liu
// kjoly@hmc.edu and rliu@hmc.edu
// November 28, 2017
// The flip flop with enable pin has d, g = 1 bit.
module ff with en(input logic clk, en, d
output logic q);

always_ff @(posedge clk) begin
if (en) q <= d;
end

endmodule

// Kimberly Joly and Richard Liu
// kjoly@hmc.edu and rliu@hmc.edu
// November 28, 2017
// The flip flop with enable pin has d, g = 8 bits.
module ff with en8(input logic clk, en,
input logic [7:0] d,
output logic [7:0] q);

always ff @ (posedge clk) begin
if (en) q <= d;
end

endmodule

// Kimberly Joly and Richard Liu
// kjoly@hmc.edu and rliu@hmc.edu
// November 17, 2017
// This module is RAM, but it also outputs previous data using
// two enabled flip flops. The two flip flops store the previous
// value even after new data has been written. A finite state
// machine is also used to pulse a done signal, meaning that the
// module has written new data successfully.
module memory KJRL (input logic clk, we,

input logic [5:0] addr,

input logic [7:0] wd,

output logic [7:0] rd,

22



output logic [7:0]

output logic doneStoring) ;

// 64, 8-bit memory

logic [7:0] memory [63:0];

// states for FSM

logic [1:0] state, nextState;

always ff @ (posedge clk) begin
rd <= memoryl[addr];
if (we) memory[addr]
state <= nextState;

<= wd;
end
intermediate;

logic [7:0]

// if not write-enabled,
// if write-enabled,
// advance to next state

previousData,

read data
store data

// intermediate value (rd)

// the two enabled flip flops store the previous value even

// after new data has been written,
ff with en8 getPreviousl (clk, we, wd,
ff with_en8 getPrevious2(clk, we,

// FSM to pulse a done signal
always comb
case (state)

2'p00: 1if (we) nextState =
else nextState
2'b01: nextState
2'p10: 1if (we) nextState
else nextState
default: nextState =
endcase
// pulse at the second state
assign doneStoring = (state == 2'b01);

endmodule

23

regardless of address
intermediate) ;
intermediate,

previousData) ;

2'b01;
2'b00;
2'b10;
2'b10;
2'b00;
2'b00;



