High-Frequency Portable
Digital Storage Oscilloscope

Trevor Fung
E155 Microprocessors 2017

Abstract:

Signal visualization is an important aspect of debugging, testing, and understanding in electronics. One of
the most common tools to achieve such visualization is an oscilloscope. This project’s purpose was to test
various techniques used in high-frequency oscilloscopes and create a low-cost prototype. In this design,
an analog front end feeds the input signal into two time-interleaved ADCs. The Cyclone IV FPGA
controls the ADCs and stores the 16383 8-bit output words into RAM. A Raspberry Pi 3B in headless
mode can then access those values via SPI running at 500 kHz, and print out a plot via gnuplot.

Introduction

Oscilloscopes are incredibly useful tools for debugging, testing, and understanding circuits and electronic
devices. The motivation for this project came from an attempt to buy a small, portable, and cheap
oscilloscope and the resulting dissatisfaction with the speeds (that is, bandwidths) available commercially.
A good example of this problem is the DSO Nano v3: an attractive handheld oscilloscope for under $100,
but with a bandwidth of only 100 kHz.

DSO Nano v3 - Pocket-
size color digital
oscilloscope - v3.0

$99.95

57 IN STOCK

1 ADD TO CART

ADD TO WISHLIST

Figure 1: The DSO Nano v3, as seen on adafruit.com [1]
This is hardly suitable for the probing the digital realm, where clocks are frequently in the the mega- or
gigahertz. Some intuition into how much it costs to probe such a signal can be found by looking at
Keysight Technology’s oscilloscope pricing, as seen below.

Oscilloscope Bandwidth vs Cost
40000 X InfiniiVision 2000 X-Series
InfiniiVision 3000T X-Series
InfiniiVision 4000 X-Series
30000 X InfiniiVision 6000 X-Series
X Infiniium 9000 Series

x

20000

Cost (USD)

10000

/

0 2000 4000 6000

0

Bandwidth, log scale (MHz)

Figure 2: Pricing of 2-channel Keysight Oscilloscopes, retrieved 12/7/17 [2]
The graph looks nearly logarithmic, and it can be seen that in the sub-GHz range the cost to increase
bandwidth is fairly steep. So exploring the process of making an oscilloscope faster and faster without the
steep increase in cost in that range is a worthwhile exercise.

To understand where this cost comes from, an understanding of how the oscilloscope functions is
necessary. There are three kinds of oscilloscope: the analog oscilloscope, digital storage oscilloscope
(DSO), and digital phosphor oscilloscope [3]. The digital storage oscilloscope is the most common of the
three, and the easiest to understand. The block diagram of a DSO is shown below:

Signal Probe #hnalng Stuﬂ# ADC # Storage IJ.F# pP I## Display ‘l

Figure 3: Block diagram of a typical DSO
The signal comes to the oscilloscope through a probe, which ideally acts to get the signal in without
significant loading of the circuit under test. The analog block usually contains an amplifier or attenuator
to get the signal sufficiently within the ADC’s input range, and an anti-aliasing filter to ensure no
unexpected high-frequency signals cause measurement errors. There may also be protective circuitry,
AC-coupling switches, and other useful features. The ADC (Analog-to-Digital Converter) is arguably the
most important part of the oscilloscope, as its specs largely determine the resolution (in number of bits)
and bandwidth (in Hertz) of the entire scope. The ADC’s reading is then placed in some kind of storage,
and a microprocessor takes care of display and other high-level functions like averaging, FFT, and
triggering. This does not cover all oscilloscope features or how they all work, but is sufficient for
understanding how this project works.

Design Process

The goal of this project was to build a portable, cheap oscilloscope capable of, as a minimum, capturing a

5V,,, 100 kHz sine wave with no offset. The goals for this oscilloscope are tabulated below.

Pp>

Specification Test Conditions Spec
Maximum Signal Frequency 50 mV,, sine wave, [100 kHz
0 V. offset
Maximum Input Voltage 1 kHz sine wave,no | 2.5V
DC offset
Minimum Input 1 kHz sine wave, no | -2.5
DC offset
Input Bias Current 25°C <1 pA
Voltage Precision 5V,, 1 kHz sine <100 mV
wave, 0 V.. offset

Table 1: Goals for oscilloscope’s specs
In order to hit all these goals, the components needed to be small, cheap, and have the ability to function
at higher frequencies. The block diagram for this project’s design is shown below:

Active Probe Analog Front End
nal ‘Voltage Buffar Low Pass F{LG Amplifier
Sy (TLOE1 Op Amp) Ladider Fllter ilnuerturwlTLDﬂi]
Valtage Ofsel Slage
ADTEZZ In {Summing TLO&1)
i3]
Q
a
< A
ADTE2Z Out glﬁiz Time-Imereaving
Control Logic i}
-
Gy
=
2-Part RAM
Pam"a, A (16k8) # SPI Slave (500 kHz)

[E,ﬁ:’;?;’.] + C Program *SPI Master (500 kHz)

Raspberry Pi

Figure 4: Block diagram of this oscilloscope

By comparing this to the block diagram for a general DSO, one might note the following devices filling
the following functions:

e A voltage buffer acting as a probe

e Anti-aliasing filter and various amplifiers doing analog stuff

e Two 8-bit, 2 Msps AD7822 doing analog-to-digital conversion

e A Cyclone IV EPACE6E22C8 FPGA storing the incoming data and controlling the ADCs

e A Raspberry Pi 3B communicating with the FPGA and plotting the data
The op amps, ladder filter, FPGA, and Pi were chosen based on availability, and the ADCs were the
fastest through-hole ADC available online at the time. All the components fit nicely onto a portable
breadboard, and collectively cost about $100. The ADCs are 8-bit, which in this case corresponds to 50
mV precision after a signal passes through the analog attenuation and shifting. They also can sample at up
to 2 MHz, which is far more than twice the desired input frequency and therefore satisfactory.

Because loading the circuit under test affects the signal to measure and visualize, it is desirable to
use a probing method that doesn’t cause loading. I started by trying to use resistors and capacitors to
create the equivalent circuit of a 10x passive probe connected to an oscilloscope. This worked fine in
simulation, and failed only at ~300 MHz, so it wouldn’t be a limiting factor in terms of speed. The circuit
diagram is shown below.

c3

2.2p
RS
A%
input: AV 3

VAV output
9Meg
eq ckt of scope probe _>pgg c4

< 1Meg —Pﬂp
-

Figure 5: Equivalent circuit of 10x oscilloscope probe
I found that immediately feeding the output into the anti-aliasing filter was a pain, so I separated the two
stages with a voltage buffer/unity gain buffer made with a TLO81 JFET-input op amp, chosen for the very

low input bias current. | realized soon after that the equivalent circuit of the probe wasn’t actually doing
much, and went back to researching existing probes. During my initial research I had completely
neglected active probes, which unlike passive probes are not limited to only passive elements. I learned
active probes trade off input voltage ranges for higher speed (see below).

Typical Useful Typical
Probe Type Frequency Maximum
Range Input Voltage
Passive, High
Impedance (1 0 to 50 MHz 600 Volts
MOhm)
Passive, Low
Impedance (500 0 to 8 GHz 20 Volts
Ohms)
Active 0to2 GHz 10 Volts

Figure 6: Comparison table of probe types [4]
As my input voltage range is already limited heavily by the ADC, this trade-off is fine. I then scrapped the
passive probe idea, and am just using a voltage buffer as my input stage (see below).

Y2

,k — -.J
\
15
Vin ‘Tm
i l V3
& + \J

T 15

Vbuff

[

Figure 7: Active probe design used
According to the Shannon-Nyquist Theorem, to avoid any aliasing, signals with input frequencies greater
than the ADC’s sampling frequency divided by 2 (f./2) should be attenuated. To that end, I used a
third-order Butterworth RLC ladder filter, chosen for the flat frequency response in the passband, fair
amount of attenuation (~ -18 dB/octave), and ease of design (roughly speaking, two capacitors of a value,
one inductor of twice that value, and two identical resistors). Because the ADC’s £, is 2 MHz, I chose the
corner frequency of the filter to be ~500 kHz in order to have a -21 dB attenuation at 1 MHz. I then chose
the value of R to work with the maximum output current of the TLO81 buffering stage. The topology and
values are shown below. Additionally, this filter contributes a gain of /% in the passband.

Vbuff

R1 L
R} T L \
c1 c2 R4
—Em) PCZ} < (R}

VAilt

R Cl L1 C2

5kQ | 60pF | 3mH | 60 pF
Figure 8: Butterworth RLC ladder filter design

Because the input range of the ADC is only 0 to 2 V when V. = 3.3 V, I need to center the input voltage
at 1 V. I will also further attenuate the signal by 2 to ensure that the input stays away from the ADC’s
limits. The circuit is shown below:

remember this is inverted here

gain at 1/4 by this point

R10
“\J V
R11 1Meg

Viny AN —a _ES:.

Voffset

Tas | T8

Figure 9: Attenuator and shifter circuit
The TLO81 was again chosen, this time for its 3 MHz unity gain bandwidth, which is more than enough
for this application here. Because the summing amplifier stage inverts the output and then adds it to the
offset, an initial inversion (the first stage on the left) is needed to undo the second inversion. The second
stage adds 15/15 =1 V and the doubly-inverted signal multiplied by %2 to produce the final output for the
ADC. Below are example waveforms after every part of the analog front end. The design, once built, was
found to have the characteristics simulated.

V(vin)

S0\ oW pacs D) erwort T ladder =R EeE |

og gain at 1/4 by this point
E R10

1Meg
e

M
- 1
AC1 < J v 1 us
SINE(D 5V 100K) s ! R Vit viny
t

T] - L | 1Meg 3
N c1 c2 R4 PN
< { > > \
L= 60p ‘sﬂp <R -
| il e Ly e

Figure 10: Fully-functioning analog front end
This analog front end then feeds into two AD7822s, which are alternate sampling (a technique known as
time-interleaving) to effectively create a single ADC with twice their individual sampling rates. Because
the clock of the FPGA is only 40 MHz, I was only able to get the effective ADC sampling at 3.3 Msps,
which is still far more efficient than a single ADC. The setup diagram for the ADC is shown below.

- r
| R
TONVST s e e
] LATCH/ASIC . a1 R —
= Eoc A S
AD7822 °° _
£oc | e U S
—_—
4|'\\ 5 "_\—/—
D87 TO DBO
1~ §
08070 087 3
Figure 31. AD7822 Standalone Operation

Figure 10: ADC timing diagram [5]
The minimum possible time between ADC trigger pulses is 540 ns, which corresponds to 23 cycles on the
FPGA. By extending this counter to 24 and sending a pulse to an ADC every 12, we can trigger the ADCs
in an alternating fashion. By muxing between the two ADCs and selecting the currently valid output, we
achieve time-interleaving.

The output of that mux is then placed into a two-port RAM created with the Altera MegaFunction
Wizard. The RAM can hold 16384 8-bit words, and so the write address is controlled by a counter which
resets when the RAM is full or when the Pi calls for a new set of data over SPI. Writing to the RAM is
RAM is disabled when the Pi calls for a read of the RAM. Because I wanted the ADCs to operate at a
fairly fast clock that the Pi’s SPI might not be able to match, the RAM has independent read and write
clocks. The write clock is the FPGA’s 40 MHz clock, and the read clock is the SPI’s 500 kHz sclk.
Reading out of the RAM is controlled by another counter that starts incrementing once the Pi starts
reading over SPIL.

The SPI module takes as input sclk, miso, mosi, and a started signal which tells all the FPGA
logic that a transmission is about to take place. After the started signal goes low, an edge detector clears
the RAM and RAM address counters. The RAM then fills up and sends a signal to say that it’s full to the
sclk domain. The SPI module then starts reading from RAM, shifting out bit by bit on a shift register, and
incrementing the read counter. A block diagram of all the FPGA logic is shown below, and the Verilog
code can be found in the Appendix A.

The Pi’s C program uses the GPIO and SPI functions defined earlier in class, and just writes low
to the started pin and initiates SPI enough times to read the entire RAM, storing it in an array. The
program then writes out the array into a .dat file, which can be plotted on gnuplot. The Pi’s code can be
found in Appendix B. To capture an oscilloscope trace, the user resets the FPGA, runs the compiled C
program, and has gnuplot plot out the output file.

Results

The specs achieved with this design are tabulated below. All desired thresholds were reached.

Spec Test Conditions Spec Theoretical limit and notes
Maximum Signal 50 mV,, sine wave, | 100 kHz ~500 kHz, which is the -3 dB corner
Frequency 0 V. offset of the anti-aliasing filter, and Y4 of

the ADC sampling frequency

Maximum Input 1 kHz sine wave,no | 2.5V 4V, because the front end attenuates
Voltage DC offset by V4 then adds 1 V., and the max

DC>

input to the ADCis2 V

Minimum Input

1 kHz sine wave, no
DC offset

-4 'V, because with % attenuation
and 1 V. offset, it becomes 0V,
which is the min input to the ADC

Input Bias Current

25°C

30 pA typical

Taken from TLO81’s datasheet, as
that’s the very first part of the front
end. Should mean that inadvertent
circuit loading isn’t an issue

Voltage Precision

5 V., 1 kHz sine
wave, 0 V. offset

50 mV

31 mV, as the ADC is 8-bit, so with
a2 V input range that’s a precision
of ~7.8 mV. Divide by the
attenuation of % to get ~31 mV.

Table 2: Specifications of final design

Because this design was created with the idea of speed in mind, it’s important to discuss the limitations of
the current design. While the design did satisfy the goal of a 100 kHz sine wave, it is important to note
that it cannot fully represent a 100 kHz square wave, as seen below:

X Gnuplot

=] X

4 ~r
3 b
2}
1.+ %%

o

o 1:;

data,dat

2k

3.05039e-05, 4,09833

1e-05 2e-05

3e-05 4e-05

5e-05

Zo[—
1k *%
o b

1k

25
b, 87244205, -1,93656

1

-1

-2
6,176382-05, 1,06423

1e-05 'e-05

-
—

&-05 =05

Be-05 &-05

Figure 11: A sine wave, square wave, and sawtooth as seen by the oscilloscope

at2.5V,,,

100 kHz, no offset

This is because visualizing a square wave requires properly capturing the harmonics, and so the
bandwidth of an oscilloscope should be five times the desired digital signal’s frequency [6]. So to go
faster, I note the limitations of the current system below:

&/

‘ <

6

Sampling ‘

- ~— | GPIO: Few
B o insieoins hundred MHz
& Clock: 40 MHz

[N
\
[,

i

speed: 3.3
MHz

GPIO:
25 MHz

Figure 12: Current system speed limits
Getting ADCs with higher sampling frequencies and bandwidths and op amps with larger gain bandwidth
products are clear steps. Also designing a PCB would remove the breadboard’s built-in speed limit.
Because of the current design’s two clock domains, the Pi’s limits can be negated by always running SPI
at some manageable speed. Interleaving more ADCs is another option. Impedance matching in the analog
front end would also start to become appreciable at higher frequencies.

Although this design fulfills all the goals set out in the project proposal, it does have several
flaws. First, it effectively acts as a camera, only displaying data when triggered by the C program running
because I could not figure out how to display a live graph over SSH or on a webpage hosted by the Pi. To
display, the user also has to run gnuplot from the command line, as I didn’t put the command to plot
inside the C program itself. Furthermore, the ADC’s RAM doesn’t clear out after the first run properly,
and so before every scope capture the user must reset the FPGA’s board. Also, the first three data points
captured by the FPGA and every ~2000th point after is the maximum value possible, which seems to
indicate a systemic error. Also, gnuplot would stack points that were “close enough” in time, which
makes the graph look a little weird. None of these issues are deal breakers, but collectively serve to
relegate this project to the “prototype” realm.

If I had more time, in addition to cleaning up the aforementioned bugs, I would’ve added more
features. I would’ve added switches and potentiometers to the breadboard for AC coupling and triggering
functions. I had ordered a digital potentiometer to make the input amplifier adjustable from the Pi, but
unfortunately it did not arrive in time. I also would’ve liked to have the Pi display through a live-updating
webpage. [would’ve also liked to have put the entire front end and FPGA on a PCB, and put the entire
thing in a plastic case or the like.

References

[1] https://www.adafruit.com/product/468

[2] https://www keysight.com/en/pcx-x2015004/oscilloscopes?cc=US&Ic=eng&tab=all&state=3
[3] http://ecee.colorado.edu/~mcclurel/txyzscopes.pdf

[4] http://teledynelecroy.com/doc/probes-probing

[5] http://www.mouser.com/ds/2/609/AD7822 7825 7829-877543.pdf

[6] https://www.mouser.com/pdfdocs/Tektronix12_things to considerl.pdf

Parts List

resistors and capacitors

Part Source Vendor Part # Price

ADC (x2) Mouser.com AD7822 $11.99 each
Op Amp Stock Room TLO81 $0.51 each
Various standard Stock Room n/a <$1 total

Parts listed are all those not provided as part of the class. Full BOM for MuddPi board and Raspberry Pi
can be found at http://pages.hmc.edu/harris/class/e155/MuddPi MarklV-BOM.xls and
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md respectively

module testbench();
logic clk;
logic reset;
logic EOCbar1;
logic EOCbar2;
logic [7:0] dataln1;
logic [7:0] dataln2;
logic sclk;
logic mosi;
logic starterPin;
logic CSbar;
logic miso;
logic CONVSTbarf;
logic CONVSTbar2;
logic [7:0] toLEDs;

buffer

Appendix A

dut(clk,reset,EOCbar1,EOCbar2,dataln1,dataln2,sclk,mosi,starterPin,CSbar,miso, CONVSTbar1,CONVSTbar2,toLEDs);

/lclk wave
initial begin
clk = 1'b0;

forever #1 clk = ~clk;

end

/Isclk wave
initial begin

sclk = 1'b0;

repeat(16) @(posedge clk);

forever #80 sclk = ~sclk;
end

/Ireset wave

initial begin
reset = 1'b1;
repeat(3) @(posedge sclk);
reset = 1'b0;

end

//ICONVSTbar1 wave

initial begin
/linitial values
EOCbar1 = 1'b1;
dataln1 = 8'b00000000;
@(negedge reset); //wait for reset
forever begin
@(negedge CONVSTbar1) begin
repeat(16) @(posedge clk);
EOCbar1 = 1'b0;
repeat(4) @(posedge clk);
EOCbar1 = 1'b1;
dataln1 = 8'b10000001;

end
end
end
/ICONVSTbar2 wave
initial begin
/linitial values
EOCbar2 = 1'b1;
dataln2 = 8'b00000000;
@(negedge reset); //wait for reset
forever begin
@(negedge CONVSTbar2) begin
repeat(16) @(posedge clk);
EOCbar2 = 1'b0;
repeat(4) @(posedge clk);
EOCbar2 = 1'b1;
dataln2 = 8'b10000001;
end
end
end

/IstarterPin wave
initial begin
starterPin = 1'b0;
repeat(8) @(posedge sclk);
starterPin = 1'b1;
forever begin
repeat(2500) @(posedge sclk); //2500 kinda arbitrary, but basically waiting for buffer to fill
starterPin = 1'b0;
repeat(294920) @(posedge sclk); //over how long it should take to pass off entire word
starterPin = 1'b1; //not super sure about these timings, would not trust entirely
end
end

//CSbar and mosi wave

initial begin
CSbar = 1'b1;
mosi = 1'b0;

repeat(8) @(posedge sclk);
forever begin
repeat(2510) @(posedge sclk); //arbitrary, but basically waiting for buffer to fill
repeat(16383) begin
CSbar = 1'b0;
repeat(17) @(posedge sclk);
CSbar = 1'b1;

@(posedge sclk);
end
end
end

endmodule

/* IE155 Final Project: Oscilloscope/

*/

Trevor Fung (tfung@hmc.edu)

11/26/17

Module: buffer

This is the master module that links together
the control logic for the ADC, the buffer,

and the SPI connection to the Pi.

module buffer(input logic clk,

input logic reset,

input logic EOCbar1,

input logic EOCbar2,

input logic [7:0] dataln1,
input logic [7:0] dataln2,
input sclk,

input mosi,

input starterPin,

input CSbar,

output miso,

output logic CONVSTbar1,
output logic CONVSTbar2,

output logic [7:0] toLEDSs); //toLEDs formerly known as dataOut

logic [7:0] tempQ, toMux1, toMux2, ramOut;

logic [14:0] readRamCounter;

logic start, synch, synchdStart, ramFull, ramFullSynchd,wren;
assign toLEDs = tempQ;

/ISynchronizer to FPGA clk domain for start
always_ff @(posedge clk)
begin
synch <= start;
synchdStart <= synch;
end

/lICounter for timing on ADCs
logic [5:0] counter; //to hold 24
/I[simple counter that resets

/I after counting to 23
always_ff @(posedge clk)

begin
counter <= counter + 6'b1;
if((counter > 22) | reset)
begin
counter <= 0;
end
end

/l/Counter for ram writing
logic [14:0] writeRamCounter; //to hold addresses 0-16383
/lonly want to write to RAM if RAM not full

assign wren = lwriteRamCounter[14] & ((counter == 0) | (counter == 12));

11

/Isimple counter that stops
/I after counting to 16383
always_ff @(posedge clk)
begin
if(reset | synchdStart) writeRamCounter <= 0;
else if(wren) writetRamCounter <= writetRamCounter + 15'b1;
end

/ISynchronizer to tell SPI clk domain RAM is full
always_ff @(posedge sclk)
begin
ramFull <= writeRamCounter[14];
ramFullSynchd <= ramFull;
end

ADCcontrol1 parallelinterface1(clk,reset,EOCbar1,dataln1,counter, CONVSTbar1,toMux1);
ADCcontrol2 parallelinterface2(clk,reset,EOCbar2,dataln2,counter, CONVSTbar2,toMux2);
mux2 muxer(clk,toMux1,toMux2,counter,tempQ);
1 FIFO circularBuffer(clk,tempQ);
ram storage(.data(tempQ), //can only store 16384 8-bit words - enough for 500 periods of 100kHz @ 3.3Mhz sampling
.rdaddress(readRamCounter{13:0]),
.rdclock(sclk),
.wraddress(writeRamCounter[13:0]),
.wrclock(clk),
.wren(wren),
.q(ramOut));
spiSlave spi(reset,sclk,starterPin,CSbar,miso,mosi,ramOut,ramFullSynchd,start,readRamCounter);

endmodule

/* IE155 Final Project: Oscilloscope/
Trevor Fung (tfung@hmc.edu)
11/26/17
Module: ADCcontrol1
This is one of the master module that sends out an
appropriate CONVSTbar signal, and buffers the
data seen with registers
*/
module ADCcontrol1(input logic clk,
input logic reset,
input logic EOCbar1,
input logic [7:0] dataln1,
input logic [5:0] counter,
output logic CONVSTbar1,
output logic [7:0] toMux1);

/Imaking CONVSTbar only pulse low once per 24 clock cycles
assign CONVSTbar1 = ~(counter == 0);

logic dataGood1;
assign dataGood1 = (counter == 23) & EOCbar1;

always_ff @(posedge clk)
begin
if(reset) toMux1 <= 0;
else if(dataGood1)

12

begin
toMux1 <= dataln1;
end
end

endmodule

/* IE155 Final Project: Oscilloscope/

*/

Trevor Fung (tfung@hmc.edu)

11/26/17

Module: ADCcontrol2

This is one of the master module that sends out an
appropriate CONVSTbar signal, and buffers the
data seen with registers

module ADCcontrol2(input logic clk,

input logic reset,

input logic EOCbar2,

input logic [7:0] dataln2,
input logic [5:0] counter,
output logic CONVSTbar2,
output logic [7:0] toMux2);

/Imaking CONVSTbar only pulse low once per 24 clock cycles
assign CONVSTbar2 = ~(counter == 12);

logic dataGood2;
assign dataGood2 = (counter == 11) & EOCbar2;

always_ff @(posedge clk)

begin
if(reset) toMux2 <= 0;
else if(dataGood2)
begin

toMux2 <= dataln2;

end

end

endmodule

/* IE155 Final Project: Oscilloscope/

*/

Trevor Fung (tfung@hmc.edu)

11/26/17

Module: mux2

Standard 2-input mux with register attached. The mux

picks between the inputs depending on which one should be
valid, and a register only allows the valid input to go out

to the buffer.

module mux2(input logic clk,

input logic [7:0] input1,
input logic [7:0] input2,
input logic [5:0] counter,
output logic [7:0] out);

always_ff @(posedge clk)
begin
if(counter == 23)
begin

13

out <= input1;
end
else if(counter == 11)
begin
out <= input2;
end
end
endmodule

/* IE155 Final Project: Oscilloscope/

*/

Trevor Fung (tfung@hmc.edu)

12/4/17

Module: spiSlave

Takes care of SPI to the Pi. A rising edge on starterPin indicates the
beginning of a cycle. start is an output signal

that goes high for a few clock cycles upon seeing mosi

go high; it acts as a reset/clear for the ram address counters.

After RAM fills up, starts to shift out on miso

module spiSlave(input logic reset,

I
I
I
I
I
I

input logic sclk,
input logic starterPin,
input logic CSbar,
output logic miso,
input logic mosi, //irrelevant on this end
input logic [7:0] ramOut,
input logic ramFullSynchd,
output logic start,
output logic [14:0] readRamCounter);
logic synchq, starterPinSynchd,edgeDetectorq;
/ISynchronizer on starterPin
always_ff @(posedge sclk)
begin
synchq <= starterPin;
starterPinSynchd <= synchg;
end

/lposedge detector on starterPin
assign start = starterPinSynchd & ~edgeDetectorq;
always_ff @(posedge sclk)
begin

edgeDetectorq <= starterPinSynchd;
end

/l/Counter for ram reading to hold addresses 0-16383
/Isimple counter that keeps track of what address we're outputting
always_ff @(posedge sclk)
begin
if(reset | start) readRamCounter <= 0;
end

/lcount number of bits in current transmission
logic [3:0] bitCount;
always_ff @(posedge sclk)
begin
if(CSbar | reset) bitCount <= 0;
else bitCount <= bitCount + 4'b1;

14

end

logic [7:0] shiftReg;
always_ff @(posedge sclk)

if('readRamCounter[14]) readRamCounter <= readRamCounter + 15'b1;

begin
if(reset | start) readRamCounter <= 0;
else if((bitCount == 8) & ramFullSynchd)
begin
shiftReg <= ramOut;
end
else shiftReg <= {shiftReg[6:0],1'b0};
end
assign miso = shiftReg[7];
endmodule

/I megafunction wizard: %RAM: 2-PORT%
/I GENERATION: STANDARD

/ VERSION: WM1.0

/I MODULE: altsyncram

1
/I File Name: smallerRAM.v

/I Megafunction Name(s):

1 altsyncram
1

/I Simulation Library Files(s):

I altera_mf

I

I
/I THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
I

//13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition

1

//Copyright (C) 1991-2013 Altera Corporation

/IYour use of Altera Corporation's design tools, logic functions
/land other software and tools, and its AMPP partner logic
/[functions, and any output files from any of the foregoing
/[(including device programming or simulation files), and any
/lassociated documentation or information are expressly subject
/Ito the terms and conditions of the Altera Program License
/[Subscription Agreement, Altera MegaCore Function License
/IAgreement, or other applicable license agreement, including,
/Iwithout limitation, that your use is for the sole purpose of
/lprogramming logic devices manufactured by Altera and sold by
/[Altera or its authorized distributors. Please refer to the
/lapplicable agreement for further details.

/I synopsys translate_off
‘timescale 1 ps/ 1 ps

/I synopsys translate_on
module ram (

15

data,

rdaddress,

rdclock,

wraddress,

wrclock,

wren,

a);

input [7:0] data;

input [13:0] rdaddress;
input rdclock;

input [13:0] wraddress;
input wrclock;

input wren;

output [7:0] q;

‘ifndef ALTERA_RESERVED_ QIS
/I synopsys translate_off

“endif
tri1
tri0

wrclock;
wren;

‘ifndef ALTERA_RESERVED_QIS
/I synopsys translate_on

“endif

wire [7:0] sub_wire0;
wire [7:0] g = sub_wireQ[7:0];

altsyncram altsyncram_component (

defparam

.address_a (wraddress),
.clock0 (wrclock),
.data_a (data),
.wren_a (wren),
.address_b (rdaddress),
.clock1 (rdclock),
.q_b (sub_wire0),
.aclr0 (1'b0),

.aclr1 (1'b0),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_a (1'b1),
.byteena_b (1'b1),
.clocken0 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.data_b ({8{1'b1}}),
.eccstatus (),

.q_a (),

.rden_a (1'b1),
.rden_b (1'b1),
.wren_b (1'b0));

altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.address_reg_b = "CLOCK1",
altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_input_b = "BYPASS",
altsyncram_component.clock_enable_output_b = "BYPASS",

16

altsyncram_component.intended_device_family = "Cyclone IV E",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = 16384,
altsyncram_component.numwords_b = 16384,
altsyncram_component.operation_mode = "DUAL_PORT",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.outdata_reg_b = "CLOCK1",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.widthad_a = 14,
altsyncram_component.widthad_b = 14,
altsyncram_component.width_a = 8,
altsyncram_component.width_b = 8,
altsyncram_component.width_byteena_a = 1;

endmodule

1
/I CNX file retrieval info

/| ===

/I Retrieval info: PRIVATE: ADDRESSSTALL_A NUMERIC "0"

/I Retrieval info: PRIVATE: ADDRESSSTALL_B NUMERIC "0"

/I Retrieval info: PRIVATE: BYTEENA_ACLR_A NUMERIC "0"

/I Retrieval info: PRIVATE: BYTEENA_ACLR_B NUMERIC "0"

/I Retrieval info: PRIVATE: BYTE_ENABLE_A NUMERIC "0"

/I Retrieval info: PRIVATE: BYTE_ENABLE_B NUMERIC "0"

/I Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"

/I Retrieval info: PRIVATE: BlankMemory NUMERIC "1"

/I Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_A NUMERIC "0"

/I Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_B NUMERIC "0"

/I Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
/I Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_B NUMERIC "0"
/I Retrieval info: PRIVATE: CLRdata NUMERIC "0"

/I Retrieval info: PRIVATE: CLRq NUMERIC "0"

/I Retrieval info: PRIVATE: CLRrdaddress NUMERIC "0"

/I Retrieval info: PRIVATE: CLRrren NUMERIC "0"

/I Retrieval info: PRIVATE: CLRwraddress NUMERIC "0"

/I Retrieval info: PRIVATE: CLRwren NUMERIC "0"

/I Retrieval info: PRIVATE: Clock NUMERIC "1"

/I Retrieval info: PRIVATE: Clock_A NUMERIC "0"

/I Retrieval info: PRIVATE: Clock_B NUMERIC "0"

/I Retrieval info: PRIVATE: IMPLEMENT_IN_LES NUMERIC "0"

/I Retrieval info: PRIVATE: INDATA_ACLR_B NUMERIC "0"

/I Retrieval info: PRIVATE: INDATA_REG_B NUMERIC "0"

/I Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_B"

/I Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"

/I Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone IV E"
/I Retrieval info: PRIVATE: JTAG_ENABLED NUMERIC "0"

/I Retrieval info: PRIVATE: JTAG_ID STRING "NONE"

/I Retrieval info: PRIVATE: MAXIMUM_DEPTH NUMERIC "0"

/I Retrieval info: PRIVATE: MEMSIZE NUMERIC "131072"

/I Retrieval info: PRIVATE: MEM_IN_BITS NUMERIC "0"

/I Retrieval info: PRIVATE: MIFfilename STRING ™"

/I Retrieval info: PRIVATE: OPERATION_MODE NUMERIC "2"

/I Retrieval info: PRIVATE: OUTDATA_ACLR_B NUMERIC "0"

/I Retrieval info: PRIVATE: OUTDATA_REG_B NUMERIC "1"

/I Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"

/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:

PRIVATE: READ_DURING_WRITE_MODE_MIXED_PORTS NUMERIC "2"
PRIVATE: READ_DURING_WRITE_MODE_PORT_A NUMERIC "3"
PRIVATE: READ_DURING_WRITE_MODE_PORT_B NUMERIC "3"
PRIVATE: REGdata NUMERIC "1"

PRIVATE: REGq NUMERIC "1"

PRIVATE: REGrdaddress NUMERIC "1"

PRIVATE: REGrren NUMERIC "1"

PRIVATE: REGwraddress NUMERIC "1"

PRIVATE: REGwren NUMERIC "1"

PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
PRIVATE: USE_DIFF_CLKEN NUMERIC "0"

PRIVATE: UseDPRAM NUMERIC "1"

PRIVATE: VarWidth NUMERIC "0"

PRIVATE: WIDTH_READ_A NUMERIC "8"

PRIVATE: WIDTH_READ_B NUMERIC "8"

PRIVATE: WIDTH_WRITE_A NUMERIC "8"

PRIVATE: WIDTH_WRITE_B NUMERIC "8"

PRIVATE: WRADDR_ACLR_B NUMERIC "0"

PRIVATE: WRADDR_REG_B NUMERIC "0"

PRIVATE: WRCTRL_ACLR_B NUMERIC "0"

PRIVATE: enable NUMERIC "0"

PRIVATE: rden NUMERIC "0"

LIBRARY: altera_mf altera_mf.altera_mf_components.all
CONSTANT: ADDRESS_ACLR_B STRING "NONE"
CONSTANT: ADDRESS_REG_B STRING "CLOCK1"
CONSTANT: CLOCK_ENABLE_INPUT_A STRING "BYPASS"
CONSTANT: CLOCK_ENABLE_INPUT_B STRING "BYPASS"
CONSTANT: CLOCK_ENABLE_OUTPUT_B STRING "BYPASS"
CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone IV E"
CONSTANT: LPM_TYPE STRING "altsyncram"

CONSTANT: NUMWORDS_A NUMERIC "16384"

CONSTANT: NUMWORDS_B NUMERIC "16384"

CONSTANT: OPERATION_MODE STRING "DUAL_PORT"
CONSTANT: OUTDATA_ACLR_B STRING "NONE"
CONSTANT: OUTDATA_REG_B STRING "CLOCK1"
CONSTANT: POWER_UP_UNINITIALIZED STRING "FALSE"
CONSTANT: WIDTHAD_A NUMERIC "14"

CONSTANT: WIDTHAD_B NUMERIC "14"

CONSTANT: WIDTH_A NUMERIC "8"

CONSTANT: WIDTH_B NUMERIC "8"

CONSTANT: WIDTH_BYTEENA_A NUMERIC "1"

/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:
/I Retrieval info:

USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:

data 0 0 8 0 INPUT NODEFVAL "data[7..0]"

g 0080 OUTPUT NODEFVAL "q[7..0]"

rdaddress 0 0 14 0 INPUT NODEFVAL "rdaddress[13..0]"
rdclock 0 0 0 0 INPUT NODEFVAL "rdclock"

wraddress 0 0 14 0 INPUT NODEFVAL "wraddress[13..0]"
wrclock 0 0 0 0 INPUT VCC "wrclock"

wren 0 0 0 0 INPUT GND "wren"

CONNECT: @address_a 00 14 0 wraddress 00 14 0
CONNECT: @address_b 0 0 14 0 rdaddress 0 0 14 0
CONNECT: @clock0 00 0 0 wrclock 000 0
CONNECT: @clock1 0000 rdclock 0000
CONNECT: @data_a0080data0080
CONNECT: @wren_a0000wren0000
CONNECT:q0080@q_b0080

GEN_FILE: TYPE_NORMAL smallerRAM.v TRUE
GEN_FILE: TYPE_NORMAL smallerRAM.inc FALSE

/I Retrieval info
/I Retrieval info
/I Retrieval info
/I Retrieval info
/I Retrieval info

: GEN_FILE: TYPE_NORMAL smallerRAM.cmp FALSE

: GEN_FILE: TYPE_NORMAL smallerRAM.bsf FALSE

: GEN_FILE: TYPE_NORMAL smallerRAM_inst.v FALSE
: GEN_FILE: TYPE_NORMAL smallerRAM_bb.v TRUE

: LIB_FILE: altera_mf

Appendix B

/IscopeCapture.c
#include "scopeGPIO.h"

#include <time.

h>

/Iruns one full capture on the scope

int main(void){
pioln

it();

spilnit(500000,0); //500kHz SPI
pinMode(STARTERPIN, OUTPUT);

digitalWrite(STARTERPIN, 1); //use this pin to start overall conversation
nanosleep((const struct timespec[]){{0,5000000L}},NULL); //wait 5ms to fill RAM
digitalWrite(STARTERPIN,0); //no longer needed

char

output[16384]; //array to store 8-bit data

short rawQutput; //raw output is 16-bit
inti,j;
for(i = 0; i<16384; ++i){

rawOutput = spiSendReceive16(0xD000); //doesn't matter what we send
rawOutput &= 0x00FF; //masking out non-valid bits, slightly unnecessary
outputfi] = (char)rawOutput;

for(j = 0; j<16384; ++j){

}

printf("Content-type: text/htmi\n\n");
printf("Value: %d\n",output]i]);

return O;

<l-- scope.html

, an attempt at doing scopeCapture on a webpage -->

<IDOCTYPE html>
<IDOCTYPE html>

<html>
<head>

<title>Oscilloscope Control Page</title>
<meta http-equiv="content-type" content="text-html;charset=utf-8">

19

</head>
<body>
<form action="cgi-bin/scopeCapture" method="POST" target="tar1">
<input type="submit" value="Click me">
</form>
<iframe id="tar1" name="tar1">
</body>

20

#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

T T
/I Constants
T T

/I GPIO FSEL Types
#define INPUT 0
#define OUTPUT 1
#define ALTO
#define ALT1
#define ALT2
#define ALT3
#define ALT4
#define ALT5

N W N O h

/I Physical addresses

#define BCM2836_PERI_BASE 0x3F000000

#define GPIO_BASE (BCM2836_PERI_BASE + 0x200000)
#define SPI0_BASE (BCM2836_PERI_BASE + 0x204000)
#define BLOCK_SIZE (4*1024)

#define STARTERPIN 21

volatile unsigned int *gpio; //pointer to base of gpio
volatile unsigned int *spi; //pointer to base of spi registers

i
/I SPI Registers
i

typedef struct

{
unsigned CS
unsigned CPHA
unsigned CPOL
unsigned CLEAR
unsigned CSPOL
unsigned TA
unsigned DMAEN
unsigned INTD
unsigned INTR
unsigned ADCS
unsigned REN
unsigned LEN
unsigned LMONO
unsigned TE_EN
unsigned DONE
unsigned RXD
unsigned TXD
unsigned RXR
unsigned RXF
unsigned CSPOLO :1;

A4 A 4044444444444 4444804AanpaAaan

unsigned CSPOL1 :1;
unsigned CSPOL2 :1;

unsigned DMA_LEN 1

unsigned LEN_LONG 1

unsigned :6;
}spiOcsbits;

#define SPIOCSbits (* (volatile spiOcsbits*) (spi + 0))
#define SPIOCS (* (volatile unsigned int *) (spi + 0))

#define SPIOFIFO (* (volatile unsigned int *) (spi + 1))
#define SPIOCLK (* (volatile unsigned int *) (spi + 2))
#define SPIODLEN (* (volatile unsigned int *) (spi + 3))

void piolnit() {
int mem_fd;
void *reg_map;

/I Idevimem is a psuedo-driver for accessing memory in the Linux filesystem
if ((mem_fd = open("/dev/imem", O_RDWR|O_SYNC)) < 0) {

printf("can't open /dev/mem \n");

exit(-1);
}

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK_SIZE, //Size of mapped memory block
PROT_READ|PROT_WRITE,// Enable both reading and writing to the mapped memory
MAP_SHARED, /I This program does not have exclusive access to this memory
mem_fd, /I Map to /dev/imem
GPIO_BASE); /I Offset to GPIO peripheral

if (reg_map == MAP_FAILED) {
printf("gpio mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);
}

gpio = (volatile unsigned *)reg_map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK_SIZE, //Size of mapped memory block
PROT_READ|PROT_WRITE,// Enable both reading and writing to the mapped memory
MAP_SHARED, /I This program does not have exclusive access to this memory
mem_fd, /I Map to /dev/imem
SPIO_BASE); /I Offset to SPI peripheral

if (reg_map == MAP_FAILED) {
printf("spi mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}

spi = (volatile unsigned *)reg_map;

22

// assign a pin to a mode based on its function
void pinMode(int pin, int function)

{

}

unsigned index, shift;

/I make sure the range of the pin to is [0, 53]
if (pin > 53 || pin < 0) {
printf("Pin out of range, must be 0-53 \n");
exit(-1);

/I find the position of the gpio pin
index = pin / 10;
shift = (pin % 10) * 3;

/I put function to the found positions
gpiofindex] &= ~(((~function) & 7) << shift);
gpio[index] |= function << shift;

/I write HIGH or LOW to the specified pin
void digitalWrite(int pin, int val)

{

unsigned set, clr;

/I make sure range of the pin to is [0, 53]

if (pin > 53 || pin < 0) {
printf("Pin out of range, must be 0-53 \n");
exit(-1);

!

/I find the correct bits to write
set=pin<327?77:8;
clr = pin <32 7?10: 11;

/I set pin based on val
if (val)

gpio[set] = (0x1) << (pin % 32);
else

gpio[clr] = (0x1) << (pin % 32);

o
/I SPI Functions
oo

void spilnit(int freq, int settings) {

/Iset GPIO 8 (CE), 9 (MISO), 10 (MOSI), 11 (SCLK) alt fxn 0 (SPI0)
pinMode(8, ALTO);

pinMode(9, ALTO);

pinMode(10, ALTO);

pinMode(11, ALTO);

/INote: clock divisor will be rounded to the nearest power of 2
SPIOCLK = 250000000/freq; // set SPI clock to 250MHz / freq
SPIOCS = settings;

SPIOCSbits.TA = 1; // turn SPI on with the "transfer active" bit

23

}

char spiSendReceive(char send){
SPIOFIFO = send; /l send data to slave
while(!SPIOCSbits.DONE); // wait until SPI transmission complete
return SPIOFIFO; /I return received data

}

short spiSendReceive16(short send) {
short rec;
SPIOCSbits. TA = 1; /I turn SPI on with the "transfer active" bit

rec = spiSendReceive((send & 0xFF00) >> 8); // send data MSB first
rec = (rec << 8) | spiSendReceive(send & 0xFF);

SPIOCSbits.TA = 0; // turn off SPI

return rec;

24

