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Abstract 
Oscilloscopes are a popular and useful part of electronics benchtop equipment- but generally far 

too expensive for the average college student to own. With this project, the team sought to design and 
build a simple, low-cost oscilloscope made primarily out of materials used in the E155: Microprocessor 
Systems course, that future students could to use to augment their dorm room electronics bench setups 
(and save them the long, chilly walk to the Parsons Building basement). The project, MicrOscope, takes 
in an analog signal ranging from 0 to 5 V and up to a frequency of 19 kHz, and processes it to be 
displayed on a webpage. The input signal is filtered through a model of a 10x scope probe and a Sallen 
Key filter, then an FPGA collects the data from an ADC. The FPGA checks the data against the user’s 
chosen trigger level, filters it (if the user selects to use the high or low pass filters), and then 
communicates with a Raspberry Pi. The Raspberry Pi plots the signal on a web page according to user’s 
selected inputs regarding time per division, voltage per division, and noise level. 
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Introduction 
The team’s project is an oscilloscope that takes an analog input, passes it through analog filters 

meant to approximate a 10x scope probe and a Sallen-Key filter to prevent aliasing, filters it again using 
high and low pass filters implemented on an FPGA, and finally displays the signal on a web page using a 
Raspberry Pi. There are also a myriad of inputs the user can select using switches to control how they 
want their signal to display: trigger level (a threshold for which they want the signal to be above if it is to 
appear onscreen), volts/division, time/division, noise level. Below, in Figure 1, is a block diagram of how 
the oscilloscope is organized as well as a flowchart showing how a signal will progress through the 
system in Figure 2. 

 
Figure 1: Block diagram of whole system 

 

 
Figure 2: System overview of MicrOscope; how signal progresses from input to output 

New Hardware 
The project uses a ADS7818 analog to digital converter (ADC) that can sample up to 500kb/s and 

measure voltages ranging from 0 to 5 volts [10]. The ADC requires 8 connections, the full schematic is in 
the Schematics section of this report, and can be interfaced using a SPI communication protocol. 
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Schematic 

 
Figure 3: Schematic of overall design 
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FPGA Design 
ADC Communication 

After being passed through the 10x scope probe and the anti-aliasing Sallen Key filter, the analog 
signal needs to be converted to be handled by the FPGA, which is done by one of the ADS7818 ADCs. 
Other than the filtering, the same needs to happen for the user’s selected trigger value, which comes out 
of a voltage divider also as an analog signal. This module allows the Mudd Pi board to communicate with 
the ADS7818 ADCs used. The FPGA communicates to the ADCs using a SPI interface. According to the 
timing diagram of the ADS7818 found in its datasheet, the FPGA master needs to drive the slave ADC’s 
CONV pin low for 15 cycles and then read data from the MISO wire [10]. The clock speed used in this 
operation was 1.25MHz. A diagram of the SystemVerilog module implemented is shown in Figure 4.  

 
Figure 4:  Design for SystemVerilog ADC.sv module used to communicate with ADS7818. Inputs are 

ADC_sclk, ADC_MISO, reset. Outputs are ADC_MOSI , newNumber, and outputcode. 
 
Digital Filtering 

Now the user may want to filter the signal. This module allows the user to run the input signal 
through a digital high pass filter, digital low pass filter if chosen. The user toggles DIP switches which the 
Mudd Pi boards. The system implemented two digital filters that can be used by setting 3 DIP switches. 
The filters used were IIR filters, one low pass the other high pass. The corner frequencies were set by 
adjusting a constant, alpha, in two difference equations for digital low pass and high pass filters. The 
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equations are shown in Figure 5. The formula used to calculate the corner frequency as well as the 
formulas in Figure 5 were taken from Wikipedia [4]. 

 
(a) Digital Low Pass Filter Difference equation 

 
(b) Digital High Pass Filter Difference equation 

Figure 5: Difference equations used for (a) Digital Low and (b) High Pass Filters 

 
Figure 6:  Design for SystemVerilog filter.sv module used to implement filtering. Inputs are clk, 

reset, signalIn, filter choice. Output is signalOut. 
The team stored the y[n-1] and x[n-1] term in difference equations using a flip flop. The team 

used a mux controlled by the DIP switches in order to determine what the signalOut output should be. 
 

Triggering  
This module is used to read a signal based on the trigger level set by the user; this a common 

feature for oscilloscopes. The system used a rising edge triggering scheme. It worked by checking to see 
if a signal exceeded a trigger threshold value, and then enabling the output a certain number of times 
based on the current time scale chosen which is one-hot encoded, and then repeating. Figure 7 depicts the 
SystemVerilog module implemented. 
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Figure 7:  Design for SystemVerilog trig.sv module used to handle user’s trigger level input. 

Inputs are scopeIn, trigLevel, timeScale, clk, and reset. Outputs is scopeOut. 
 

The team used a counter in order count the number of samples passed through when a signal is 
greater than the trigger level. The team then used a mux to determine if the signal should be allowed to 
pass through or nothing is allowed to pass through. 
 
Volts Scale 

This module allows the user to set the voltage scale of the input signal using DIP switches. The 
scales are one-hot encoded. The system has three volts scales available: 0V to 5V, 0V to 3V, and 3V to 
5V. This was accomplished with the voltsScale module. The module takes in two inputs, a 3-bit bus that 
are attached to the Mudd Pi’s onboard DIP switches,voltsScale, and a 8-bit bus data input,signalIn. The 
module has one 8-bit output, signalOut. The switch inputs what scale to use, the default case is 0 to 5V 
scale which allows the signal to pass through without any alterations. The second setting checks to see if 
the input is ever larger than 3V, if it is signalOut is forced to 3 V. Similarly, the third setting to see if the 
input is ever less than three volts, if signalOut is forced to 3 V. Figure 8 is diagram of the module 
implemented in Verilog. 



Echeverria & Martos-Repath 6 

 
Figure 8: Design for SystemVerilog voltsScale.sv module used to scale the input signal. Inputs are 

voltsScale, signalIn. Output is signalOut. 
 
Buffer 

The team used a asynchronous first in first out (FIFO) block to store data in a buffer because the 
team could not guarantee the same clock for the SPI communication for the ADC and the FPGA and the 
SPI communication for the FPGA and Raspberry Pi. Originally, the team had tried to design everything 
with one clock, but needed to switch plans and include this FIFO buffer. As the buffer was not the main 
focus of the project, the team opted to use an existing FIFO block [1]. 
 
Raspberry Pi Communication 

Finally, the signal data has made its way from being converted from an analog to a digital signal 
in the ADC, collected over SPI into the FPGA, filtered through a low pass or high pass filter, checked to 
see if it surpasses the user selected trigger level, and is now being stored in the FIFO buffer. The data now 
needs to plotted, which is handled by the Raspberry Pi and discussed in the upcoming section. The data is 
passed from the FIFO buffer in the FPGA to the Pi using SPI, where the Pi functions as the master and the 
FPGA as the slave. The module pi.sv, the structure of which is show below in Figure 9, builds the slave 
module required to implement SPI. 
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Figure 9: Design for SystemVerilog pi.sv module used to act as the slave for SPI between the Pi 

master and FPGA slave. Inputs are sclk, reset, d (voltage to send) and pi_MOSI. Outputs are pi_MISO 
and q (voltage sent). 

Raspberry Pi Design 
The Raspberry Pi was used to plot the data received from the Mudd Pi board on a web page. A diagram 
that depicts how the overall code in the Raspberry Pi is structured is shown in Figure 10. 
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Figure 10: Diagram explaining the flow of programs called by the Raspberry Pi during Operation 

 
Communication 

To first get the signal data, the Raspberry Pi communicated with the Mudd Pi board using SPI 
communication protocol. In the program final.c, SPI was implemented to communicate with the FPGA 
using the EasyPIO.h library [6]. After taking into account various user inputs regarding time per division 
process and noise filtering, which are discussed in further depth below, the data was stored in values.data. 
 
Plotting 

The program readVoltsScale.c was written to take the user’s choice for volts per division into 
account (which they choose by setting a physical set of DIP switches). Next, final.c calls this program, 
and also looks at the user’s choices for time scale and noise level configurations from other sets of DIP 
switches. Figure 11, shown below, details a block diagram of how final.c progressed through to logging 
signal data into values.data. When oPlot2.py runs, it uses gnuplot-py, a plotting tool, to create a python 
gnuplot object, label the plot with titles and axes, and read values.data for points to plot. The plot is then 
saved as a PNG file into the web root of the Raspberry Pi, which for simplicity (albeit not security) is 
where all of the Pi code is being stored. 
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Figure 11: A block diagram of how data was logged into values.data 

 
Noise Filtering 

Noise filtering on the Raspberry Pi, as is mentioned above, was accomplished by comparing the 
current value and previous value recorded using final.c. If the current value was significantly larger or 
significantly smaller than the previous value recorded (the specific delta tolerance is adjustable by the 
user with the use of DIP switches), the current value displayed is thrown out and the previous value is 
plotted. Figure 12 depicts this filtering method. 

 
Figure 12: Block diagram depicting how data was processed to take noise into account 

Web Design 

The oscilloscope output was designed to be viewed on a web page. The program main.py serves 
as the main module on the Pi, running final.c and oPlot2.py over and over which continually asks the 
FPGA for data over SPI, processes it according to the user inputs, stores it in values.data, creates a plot 
using gnuplot-py using what is in values.data, and writes over a PNG file to update the output plot. A 
program, MicrOscope2.html, creates a webpage that the user can access to see MicrOscope’s output. It 
works by displaying the PNG of the output plot, and then automatically refreshing every 0.1 seconds to 
show the most recent data. 
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Results 
The system was capable of reporting accurate DC levels of signals, change voltage/division 

scales, time/division scales, and perform high pass filtering, and triggering. The signal displayed on 
screen would vary with frequency even if the input signal did not, the team later discovered that this was 
caused by a timing issue with Raspberry Pi read requests. For future endeavors in low-budget 
oscilloscope design, a printed circuit board is recommended as they are capable of running faster clocks 
and thus faster sampling rates by analog to digital converters. 
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Parts List 
Part Source Vendor Part#  Price 

Analog Digital 
Converter 

Digikey ADS7818 $6.41 

DIP Switches E155 Cabinet N/A N/A 

10 kOhm Potentiometer Electronics Lab Cabinet N/A N/A 

Operational Amplifier Electronics Lab Cabinet MCP6002 N/A 

Resistors, Capacitors, 
Wires 

E155 & Electronics 
Lab Cabinets 

N/A N/A 

http://www.asic-world.com/examples/verilog/asyn_fifo.html
http://sim.okawa-denshi.jp/en/OPstool.php
https://alteraforum.com/forum/showthread.php?t=20814
https://en.wikipedia.org/wiki/Low-pass_filter#Discrete-time_realization
https://en.wikipedia.org/wiki/High-pass_filter
https://www.cs.hmc.edu/~vrable/gnuplot/using-gnuplot.html
https://www.w3schools.com/tags/att_meta_http_equiv.asp
https://www.ti.com/lit/ds/symlink/ads7818.pdf
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Mudd Pi Board E155 Course N/A $7 

Raspberry Pi E155 Course N/A $35 

 

Appendices 

Appendix A: FPGA SystemVerilog Code 
 
microscope.sv 
////////////////////////////////////////////// 

//  E155  Final  Project:  MicrOscope 
//  I.  Martos-Repath  &  A.  Echeverria 
//  First  written  on  18  November  2017 
//  Updated  4  December  2017 
////////////////////////////////////////////// 

 

///////////////////////// 

//  ADC_FPGA_SPImaster  module 
//  Function:  FPGA  (acting  as  master)  gets  output  codes  from  ADC 
(acting  as  slave) 
///////////////////////// 

module  microscope(input  logic  clk,  reset, 
ADC0_MISO,ADC1_MISO,pi_sclk,pi_MOSI, 

input  logic  [5:0]timeScale, 
input  logic  [2:0]voltsScale, 
input  logic  [1:0]filterSelect, 
output  logic  [7:0]led, 
output  logic  ADC0_sclk, 

ADC0_MOSI,ADC1_sclk,  ADC1_MOSI,pi_MISO,empty); 
logic  [7:0]scopeOut,signalOutWide; 
logic  [7:0]untriggeredSignal; 
logic  [7:0]q,d; 
logic  [11:0]scopeIn; 
logic  newNumber; 
logic  ADC_sclk; 
logic  [11:0]trigLevel; 
logic  [31:0]counter;  //counter  for  clock  divider  to  make  sclk 
//logic  to  generate  sclk  to  pass  to  ADC  slave 
always_ff@(posedge  clk,  posedge  reset)  begin 

if(reset)  counter  <=  32'b0; 
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else  begin 
counter  <=  counter  +  1; 
end 

end 

assign  led  =  trigLevel[11:4];  //Used  to  visually  see  trigger 
value 

assign  ADC_sclk  =  counter[4]; 
assign  ADC0_sclk   =  ADC_sclk; 
assign  ADC1_sclk   =  ADC_sclk; 
//Read  data  from  ADC's 
ADC  triggerLevel(ADC_sclk,reset,ADC0_MISO,ADC0_MOSI,trigLevel); 
ADC 

channel1(ADC_sclk,reset,ADC1_MISO,ADC1_MOSI,scopeIn,newNumber); 

//Filter  input  signal  if  user  sets  switches 
filter 

lowOrNot(newNumber,reset,scopeIn[11:4],filterSelect,untriggeredSignal

); 

//Check  to  see  if  signal  passes  threshold  trigger  value 
trig 

trigger(untriggeredSignal,trigLevel[11:4],timeScale,ADC_sclk,reset,sc

opeOut); 

//Set  Voltage  Scale  
voltsScale  scaleOutput(voltsScale,scopeOut,signalOutWide); 
logic  full; 
logic  writeEn_in; 
assign  writeEn_in  =  1; 
//Buffer  used  to  write  data  values  and  read  them 
aFifo  buffer(d,  empty,  pi_MOSI,  pi_sclk,  signalOutWide,full, 

writeEn_in,newNumber,reset); 

//SPI  Slave  module  used  to  interface  with  Raspberry  Pi 
pi(pi_sclk,reset,pi_MOSI,pi_MISO,d,q); 

endmodule 

 
ADC.sv  
module  ADC(input  logic  ADC_sclk,reset,  ADC_MISO, 

  output  logic  ADC_MOSI, 
  output  logic  [11:0]outputcode, 
  output  logic  newNumber); 

     logic  conv;  //needs  to  go  low  to  start  collecting  from  ADC 
logic  [3:0]count;  //counter  for  negative  edges  of  sclk 
logic  en; 
logic  [11:0]datatmp; 
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//The  clock  counter  starts  at  0,  so  clock  is  from  0  to  15 
instead  of  1-16 

always_ff@(posedge  ADC_sclk,  posedge  reset) 
begin  

if(reset)  count  <=  0; 
else count  <=  count  +  1; 

end 

//Assert  the  CONV  signal 
always_ff@(negedge  ADC_sclk,  posedge  reset) 

begin 

if(reset)  conv  <=  0; 
else  begin 

if((count==4'd14)||(count==4'd15))  conv  <=  0; 
else  conv  <=  1; 

end 

end 

//Read  the  serial  data  into  a  12-bit  register  
always_ff@(negedge  ADC_sclk,  posedge  reset) 

begin 

if(reset)  outputcode  <=  0; 
else  begin 

datatmp  <=  {datatmp[10:0],ADC_MISO}; 
if(count  ==  4'd14)  
begin 

newNumber  <=  1; 
outputcode  <=datatmp; 

end 

else  newNumber  <=  0; 
end 

end 

assign  ADC_MOSI  =  conv; 
endmodule  

 

aFifo.sv 
//========================================== 

//  Function  :  Asynchronous  FIFO  (w/  2  asynchronous  clocks). 
//  Coder     :  Alex  Claros  F. 
//  Date      :  15/May/2005. 
//  Notes     :  This  implementation  is  based  on  the  article  
//             'Asynchronous  FIFO  in  Virtex-II  FPGAs' 
//             writen  by  Peter  Alfke.  This  TechXclusive  
//             article  can  be  downloaded  from  the 
//             Xilinx  website.  It  has  some  minor  modifications. 
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//========================================= 

module  aFifo 
  #(parameter     DATA_WIDTH     =  8, 
                 ADDRESS_WIDTH  =  8, 
                 FIFO_DEPTH     =  (8  <<  ADDRESS_WIDTH)) 
     //Reading  port 
    (output  logic   [DATA_WIDTH-1:0]         Data_out,  
     output  logic                           Empty_out, 
     input  logic                           ReadEn_in, 
     input  logic                           RClk,  

     //Writing  port.   

     input  logic   [DATA_WIDTH-1:0]         Data_in,  

     output  logic                           Full_out, 
     input  logic                           WriteEn_in, 
     input  logic                           WClk, 
     input  logic                           Clear_in); 
    /////Internal  connections  &  variables////// 
    logic    [DATA_WIDTH-1:0]               Mem  [FIFO_DEPTH-1:0]; 
    logic   [ADDRESS_WIDTH-1:0]            pNextWordToWrite, 
pNextWordToRead; 

    logic                                 EqualAddresses; 
    logic                                 NextWriteAddressEn, 
NextReadAddressEn; 

    logic                                 Set_Status,  Rst_Status; 
    logic                                  Status; 
    logic                                 PresetFull,  PresetEmpty; 
    //////////////Code/////////////// 
    //Data  ports  logic: 
    //(Uses  a  dual-port  RAM). 
    //'Data_out'  logic: 
    always  @  (posedge  RClk) 
        if  (ReadEn_in  &  !Empty_out) 
            Data_out  <=  Mem[pNextWordToRead]; 
    //'Data_in'  logic: 
    always  @  (posedge  WClk) 
        if  (WriteEn_in  &  !Full_out) 
            Mem[pNextWordToWrite]  <=  Data_in; 
    //Fifo  addresses  support  logic:  
    //'Next  Addresses'  enable  logic: 
    assign  NextWriteAddressEn  =  WriteEn_in  &  ~Full_out; 
    assign  NextReadAddressEn   =  ReadEn_in   &  ~Empty_out; 
    //Addreses  (Gray  counters)  logic: 
    GrayCounter  GrayCounter_pWr 
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       (.GrayCount_out(pNextWordToWrite), 
        .Enable_in(NextWriteAddressEn), 
        .Clear_in(Clear_in), 
        .Clk(WClk) 
       ); 
    GrayCounter  GrayCounter_pRd 
       (.GrayCount_out(pNextWordToRead), 
        .Enable_in(NextReadAddressEn), 
        .Clear_in(Clear_in), 
        .Clk(RClk) 
       ); 
    //'EqualAddresses'  logic: 
    assign  EqualAddresses  =  (pNextWordToWrite  ==  pNextWordToRead); 
    //'Quadrant  selectors'  logic: 
    assign  Set_Status  =  (pNextWordToWrite[ADDRESS_WIDTH-2]  ~^ 
pNextWordToRead[ADDRESS_WIDTH-1])  & 
                         (pNextWordToWrite[ADDRESS_WIDTH-1]  ^ 
pNextWordToRead[ADDRESS_WIDTH-2]); 

    assign  Rst_Status  =  (pNextWordToWrite[ADDRESS_WIDTH-2]  ^ 
pNextWordToRead[ADDRESS_WIDTH-1])  & 
                         (pNextWordToWrite[ADDRESS_WIDTH-1]  ~^ 
pNextWordToRead[ADDRESS_WIDTH-2]); 

    //'Status'  latch  logic: 
    always  @  (Set_Status,  Rst_Status,  Clear_in)  //D  Latch  w/ 
Asynchronous  Clear  &  Preset. 
        if  (Rst_Status  |  Clear_in) 
            Status  =  0;   //Going  'Empty'. 
        else  if  (Set_Status) 
            Status  =  1;   //Going  'Full'. 
    //'Full_out'  logic  for  the  writing  port: 
    assign  PresetFull  =  Status  &  EqualAddresses;   //'Full'  Fifo. 
    always  @  (posedge  WClk,  posedge  PresetFull)  //D  Flip-Flop  w/ 
Asynchronous  Preset. 
        if  (PresetFull) 
            Full_out  <=  1; 
        else 
            Full_out  <=  0; 
    //'Empty_out'  logic  for  the  reading  port: 
    assign  PresetEmpty  =  ~Status  &  EqualAddresses;   //'Empty'  Fifo. 
    always  @  (posedge  RClk,  posedge  PresetEmpty)   //D  Flip-Flop  w/ 
Asynchronous  Preset. 
        if  (PresetEmpty) 
            Empty_out  <=  1; 
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        else 
            Empty_out  <=  0;  

endmodule 

 
graycounter.sv 
//========================================== 

//  Function  :  Code  Gray  counter. 
//  Coder     :  Alex  Claros  F. 
//  Date      :  15/May/2005. 
//======================================= 

`timescale  1ns/1ps 
module  GrayCounter 
   #(parameter    COUNTER_WIDTH  =  4) 
    (output  reg   [COUNTER_WIDTH-1:0]     GrayCount_out,   //'Gray'  code 
count  output. 
     input  wire                          Enable_in,   //Count  enable. 
     input  wire                          Clear_in,    //Count  reset. 
     input  wire                          Clk); 
    /////////Internal  connections  &  variables/////// 
    reg     [COUNTER_WIDTH-1:0]          BinaryCount; 
 

    /////////Code/////////////////////// 
    always  @  (posedge  Clk) 
        if  (Clear_in)  begin 
            BinaryCount    <=  {COUNTER_WIDTH{1'b  0}}  +  1;   //Gray 
count  begins  @  '1'  with 
            GrayCount_out  <=  {COUNTER_WIDTH{1'b  0}};       //  first 
'Enable_in'. 

        end 
        else  if  (Enable_in)  begin 
            BinaryCount    <=  BinaryCount  +  1; 
            GrayCount_out  <=  {BinaryCount[COUNTER_WIDTH-1], 
                              BinaryCount[COUNTER_WIDTH-2:0]  ^ 
BinaryCount[COUNTER_WIDTH-1:1]}; 

        end 
endmodule 

 

Filter.sv 
module  filter(input  logic  clk,  reset,  

  input  logic  [7:0]signalIn, 
  input  logic  [1:0]filterChoice, 
  output  logic  [7:0]signalOut); 

logic  [7:0]signalLowFilt; 
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logic  [7:0]signalHighFilt;  
always_comb 

begin 

case(filterChoice) 

2'b00  :  signalOut  =  signalIn; 
2'b10  :  signalOut  =  signalLowFilt; 
2'b01  :  signalOut  =  signalHighFilt; 
default  :  signalOut  =  signalIn; 

endcase 

end 

//Low  Pass  Filter  
logic  [63:0]alphaL; 
assign  alphaL  =  0.1;  //Gives  us  corner  frequency  of  40027.70716 
logic  [7:0]signalLowFiltPrevious; 
always_ff@(posedge  clk,  posedge  reset)  begin 

if(reset)  signalLowFilt  <=  0; 
else begin 

signalLowFilt  <= 
signalLowFiltPrevious+(alphaL*(signalIn-signalLowFiltPrevious)); 

signalLowFiltPrevious  <=  signalLowFilt; 
end 

end 

//High  Pass  filter 
logic  [63:0]alphaH; 
assign  alphaH  = 0.9;  //Gives  us  corner  frequency  of  40027.70716 
logic  [7:0]signalHighFiltPrevious; 
logic  [7:0]signalInPrevious; 
always_ff@(posedge  clk,  posedge  reset)  begin 

if(reset)  begin 
signalHighFilt  <=  0; 
signalInPrevious  <=  0; 

end 

else  begin 
signalHighFilt  <= 

alphaH*(signalHighFiltPrevious+signalIn-signalInPrevious); 

signalInPrevious  <=  signalIn; 
signalHighFiltPrevious  <=  signalHighFilt; 

end 

end 

endmodule  

 

pi.sv 
module  pi(input  logic  sclk,  reset,  //from  Pi  master 
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input  logic  pi_MOSI, 
output  logic  pi_MISO, 
input  logic  [7:0]d,  //voltage  to  send 
output  logic  [7:0]q);  //voltage  sent 

logic  [2:0]counter;  //need  to  be  able  to  count  up  to  8 
logic  qdelayed; 
always_ff@(negedge  sclk,  posedge  reset) 

if(reset)  counter  <=  0; 
else  counter  <=  counter  +  3'b1; 

always_ff@(posedge  sclk) 
q  <=  (counter  ==  0)?  {d[6:0],  pi_MOSI}:  {q[6:0],  pi_MOSI};  

always_ff@(negedge  sclk) 
qdelayed  =  q[7]; 

assign  pi_MISO  =  (counter  ==  0)  ?  d[7]  :  qdelayed; 
endmodule 

 
trig.sv 
module  trig(input  logic  [7:0]scopeIn,trigLevel, 

input  logic  [5:0]timeScale, 
input  logic  clk,reset, 
output  logic  [7:0]scopeOut); 

 

logic  [7:0]scopeInTenX; 
assign  scopeInTenX  =  scopeIn; 
logic  [31:0]  writeCount; 
logic  [31:0]  timeScaleCount; 
always_comb 

begin 

case(timeScale) 

6'b000001  :  timeScaleCount  =  32'd100000; 
6'b000010  :  timeScaleCount  =  32'd10000; 
6'b000100  :  timeScaleCount  =  32'd1000; 
6'b001000  :  timeScaleCount  =  32'd100; 
6'b010000  :  timeScaleCount  =  32'd25; 
6'b100000  :  timeScaleCount  =  32'd15; 
default  :  timeScaleCount  =  32'd200; 

endcase 

end 

always_ff@(posedge  clk,  posedge  reset)  begin 
if(reset)  begin 

scopeOut  =  0; 
writeCount  <=  32'b0; 

end 



Echeverria & Martos-Repath 19 

else  begin 
if((scopeInTenX  >=  trigLevel)&&(writeCount==32'b0))  begin 

scopeOut  <=  scopeInTenX; 
writeCount  <=  writeCount  +  1; 

end 

else  if((writeCount  !=  32'd0)&&  (writeCount  < 
timeScaleCount))  begin 

writeCount  <=  writeCount  +  1; 
scopeOut  <=  scopeInTenX; 
end 

else  begin 
writeCount  <=  0; 
scopeOut  <=  0; 

end 

end 

end 

endmodule  

 
voltsScale.sv 
module  voltsScale(input  logic  [2:0]voltsScale, 

  input  logic  [7:0]signalIn, 
  output  logic  [7:0]signalOut);

 

always_comb 

begin 

case(voltsScale) 

3'b001  :  signalOut  =  signalIn; 
3'b010  :  begin 

if(signalIn  >  12'd3)  signalOut  = 
12'd3; 

else  signalOut  =  signalIn; 
end 

3'b100  :  begin 
if(signalIn  <  12'd3)  signalOut  =  0; 
else  signalOut  =  signalIn; 
end 

default  :  signalOut  =  signalIn; 
endcase 

end 

endmodule  
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Appendix B: Raspberry Pi C, Python, HTML Code 
main.py 
#!  /usr/bin/env  python 
import  os  //for  command  line  inputs 
if  __name__  ==  '__main__': 

while(1): 

//Get  data  from  FPGA 
os.system("sudo  ./final") 
//Plot  it 
os.system("python  oPlot2.py") 

 

final.c 
#include  <stdio.h> 
#include  "EasyPIO.h" 
void  setPins(){ 
       pinMode(4,INPUT);  
       pinMode(17,INPUT);  
       pinMode(27,INPUT);  
       pinMode(22,INPUT);  
       pinMode(5,INPUT);  
       pinMode(6,INPUT); 
       pinMode(24,INPUT);  
       pinMode(18,INPUT);  
       pinMode(23,OUTPUT);  
       pinMode(12,INPUT);//delta  =  0.05  //use  for  DC  values 
       pinMode(16,INPUT);//delta  =  0.5 
       pinMode(20,INPUT);//delta  =  1.5 
       pinMode(21,INPUT);//delta  =  4.5 
} 

 int  main(void){ 
   float  voltage; 
   char  data; 
   int  empty  =  0; 
   /*Intialize  PIO*/ 
   pioInit(); 
   spiInit(8440000,0);  //Run  this  clock  much  faster  than  the  FPGA  to 
ensure  buffer  doesn't  fill 
   pinMode(23,INPUT); 
   int  timeScale[6]; 
   int  delta[4]; 
   int  timeCountTrue; 
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   int  timeCount  =  0; 
   float  deltaT  =  0.0000128;  //From  sampling  rate  of  ~79  kHz 
   float  timeToPlot  =  0; 
   float  lastValue  =  0; 
   float  deltaTolerance  =  0; 
   setPins(); 
   while(1){ 

timeCount  =  0; 
if(timeCountTrue  ==  1){ 

 printf("Done  with  one  round  of  measurements\nStarting 
over...\n"); 

 return  0; 
 timeCountTrue  =  0; 

} 

while(timeCountTrue  ==  0){ 
while(empty  ==  1){ 

empty  =  digitalRead(23); 
printf("The  buffer  is  empty\n"); 

} 

//Update  sensitivity 
delta[0]  =  digitalRead(12); 
printf("delta[0]  is  %d\n",delta[0]); 
delta[1]  =  digitalRead(16); 
delta[2]  =  digitalRead(20); 
delta[3]  =  digitalRead(21); 

 

if(delta[0]  ==  1)  deltaTolerance  =  0.05; 
else  if(delta[1]  ==  1)  deltaTolerance  =  0.5; 
else  if(delta[2]  ==  1)  deltaTolerance  =  1.5; 
else  if(delta[3]  ==  1)  deltaTolerance  =  4.5; 
else  deltaTolerance  =  10; 

 

lastValue  =  voltage; 
data  =   (spiSendReceive('1')); 

 voltage  =  data*0.01960784313; 
if(timeCount<5)  voltage  =  voltage; 
else{ 

if((lastValue-voltage)>  deltaTolerance)  voltage  = 
lastValue; 

if((voltage-lastValue)>  deltaTolerance)  voltage  = 
lastValue; 

} 

printf("voltage  is  %f\n",voltage); 
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 printf("data  is  %d\n",data); 
timeScale[2]  =  digitalRead(27); 

 //Check  timeScale 
   if(timeScale[5]  ==  1){ 
  timeCountTrue  =  (timeCount  >  4); 
   } 
   else  if(timeScale[4]  ==  1){ 
  timeCountTrue  =  (timeCount  >  8); 
   } 
   else  if(timeScale[3]  ==  1){ 
  timeCountTrue  =  (timeCount  >  79); 
   } 
   else  if(timeScale[2]  ==  1){ 
  timeCountTrue  =  (timeCount  >  782); 
  printf("timeCountTrue  is  %d\n",timeCountTrue); 

  } 
   else  if(timeScale[1]  ==  1){ 
  timeCountTrue  =  (timeCount  >  7813); 
   } 
   else  if(timeScale[0]  ==  1){ 

timeCountTrue  =  (timeCount  >  78125); 
 } 

timeToPlot  =  timeCount*deltaT;  //plot  time  based  on  sample 
number  and  sampling  rate 

timeCount  =  timeCount  +  1; 
printf("timeCount  is  %d\n",timeCount); 
FILE  *  fp; 
//  open  the  file  for  writing 
if(timeCount  <  2)  fp  =  fopen("values.data","w"); 
else  fp  =  fopen  ("values.data","a"); 
fprintf  (fp,  "%f  %f\n",timeToPlot,voltage); 
//  close  the  file 
fclose  (fp); 

 

   timeScale[0]  =  digitalRead(4); 
   timeScale[1]  =  digitalRead(17); 
   timeScale[2]  =  digitalRead(27); 
   timeScale[3]  =  digitalRead(22); 
   timeScale[4]  =  digitalRead(5); 
   timeScale[5]  =  digitalRead(6); 
   printf("timeScale[2]  is  %d\n",timeScale[2]); 

 

} 
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   } 
   return  0; 
} 

 
oPlot2.py 
#!  /usr/bin/env  python 
"""  oPlot.py  --  Displays  Oscilloscope  Output 
Run  this  program  by  typing  python  oPlot2.py 
""" 

from  numpy  import  * 
import  Gnuplot,  Gnuplot.funcutils 
import  commands 
def  display(): 

"""Demonstrate  the  Gnuplot  package.""" 
#Get  y  Axis  Bounds 
yAxisBound  =  commands.getstatusoutput('sudo  ./readVoltsScale') 
#Create  a  plot  of  current  Oscilloscope  Output 
g  =  Gnuplot.Gnuplot(debug=1) 
#Setup  title,  axis  labels  etc. 
g.title('MicrOscope') 

g('set  style  data  linespoints') 
g('set  grid') 
databuff  =  Gnuplot.File("values.data",using='1:2') 
g.plot(databuff) 

#Setting  the  volts/div 
if(yAxisBound[1]  ==  '13'): 

g('set  yrange  ["0":"5"]') 
elif(yAxisBound[1]  ==  '19'): 

g('set  yrange  ["0":"2.5"]') 
elif(yAxisBound[1]  =='26'): 

g('set  yrange  ["2.5":"5"]') 
else: 

g('set  yrange  ["0":"5"]') 
#Generate  the  PNG 
g.hardcopy(filename="micrOscopeOutput.png",terminal="png") 

if  __name__  ==  '__main__': 
display() 

 
readVoltsScale.c 
#include <stdio.h> 
#include "EasyPIO.h" 
void setPins(){ 

//TimeScale Pins 
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       pinMode(13,INPUT);  
       pinMode(19,INPUT);  
       pinMode(26,INPUT);  
} 
 int main(void){ 
   /*Intialize PIO*/ 
   pioInit(); 
   int voltScale[3]; 
   setPins(); 
   if(digitalRead(13)==1) printf("13"); //0 to 5 V 
   else if(digitalRead(19)==1)printf("19"); //0 to 3 V 
   else if(digitalRead(26)==1)printf("26"); //3 to 5 v 
   return 0; 
} 
 
MicrOscope2.html 
<!DOCTYPE html> 
<html> 
<head> 

<title>MicrOscope</title> 
<meta http-equiv="content-type" content="text-html;charset=utf-8"> 
<meta http-equiv="refresh" content="5"> 

</head> 
<body> 

<H2>MicrOscope Output Page</H2> 
<p><img src="micrOscopeOutput.png"></p> 

</body> 
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Appendix C: Analog Filter Verification 
● ADC0 sclk, ADC1 sclk runs at 1.25 MHz. 
● There’s a new number every 14 clock cycles, according to how team has written SPI for FPGA to 

ADCs. 
● This means the sampling rate for the input signal is  or 9 kHz14

1.25 MHz = 8 11.2 μs
1 sample  

● Thus to meet Nyquist requirement, the fastest possible signal the user can enter is 44.5 kHz. 
● The Sallen-Key filter is set to have a corner frequency of 21 kHz, well below the maximum 

possible frequency that meets Nyquist. 
○ Designed Bode Plot below using http://sim.okawa-denshi.jp/en/OPstool.php 

○  
○ Experimentally verified Sallen-Key filter by measuring a Bode Plot, as seen below. 

Corner frequency was slightly less than designed value, at around 19 kHz. 

○  
● The digital filters inside the FPGA both have corner frequencies of 1.3 kHz. 

http://sim.okawa-denshi.jp/en/OPstool.php

