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Abstract

Oscilloscopes are a popular and useful part of electronics benchtop equipment- but generally far
too expensive for the average college student to own. With this project, the team sought to design and
build a simple, low-cost oscilloscope made primarily out of materials used in the E155: Microprocessor
Systems course, that future students could to use to augment their dorm room electronics bench setups
(and save them the long, chilly walk to the Parsons Building basement). The project, MicrOscope, takes
in an analog signal ranging from 0 to 5 V and up to a frequency of 19 kHz, and processes it to be
displayed on a webpage. The input signal is filtered through a model of a 10x scope probe and a Sallen
Key filter, then an FPGA collects the data from an ADC. The FPGA checks the data against the user’s
chosen trigger level, filters it (if the user selects to use the high or low pass filters), and then
communicates with a Raspberry Pi. The Raspberry Pi plots the signal on a web page according to user’s
selected inputs regarding time per division, voltage per division, and noise level.
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Introduction

The team’s project is an oscilloscope that takes an analog input, passes it through analog filters
meant to approximate a 10x scope probe and a Sallen-Key filter to prevent aliasing, filters it again using
high and low pass filters implemented on an FPGA, and finally displays the signal on a web page using a
Raspberry Pi. There are also a myriad of inputs the user can select using switches to control how they
want their signal to display: trigger level (a threshold for which they want the signal to be above if it is to
appear onscreen), volts/division, time/division, noise level. Below, in Figure 1, is a block diagram of how
the oscilloscope is organized as well as a flowchart showing how a signal will progress through the
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Figure 1: Block diagram of whole system
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Figure 2: System overview of MicrOscope; how signal progresses from input to output

New Hardware

The project uses a ADS7818 analog to digital converter (ADC) that can sample up to 500kb/s and
measure voltages ranging from 0 to 5 volts [10]. The ADC requires 8 connections, the full schematic is in
the Schematics section of this report, and can be interfaced using a SPI communication protocol.
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Schematic
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Figure 3: Schematic of overall design
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FPGA Design

ADC Communication

After being passed through the 10x scope probe and the anti-aliasing Sallen Key filter, the analog
signal needs to be converted to be handled by the FPGA, which is done by one of the ADS7818 ADC:s.
Other than the filtering, the same needs to happen for the user’s selected trigger value, which comes out
of a voltage divider also as an analog signal. This module allows the Mudd Pi board to communicate with
the ADS7818 ADCs used. The FPGA communicates to the ADCs using a SPI interface. According to the
timing diagram of the ADS7818 found in its datasheet, the FPGA master needs to drive the slave ADC’s
CONY pin low for 15 cycles and then read data from the MISO wire [10]. The clock speed used in this
operation was 1.25MHz. A diagram of the SystemVerilog module implemented is shown in Figure 4.
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Figure 4: Design for SystemVerilog ADC.sv module used to communicate with ADS7818. Inputs are
ADC sclk, ADC_MISO, reset. Outputs are ADC_MOSI , newNumber, and outputcode.

Digital Filtering

Now the user may want to filter the signal. This module allows the user to run the input signal
through a digital high pass filter, digital low pass filter if chosen. The user toggles DIP switches which the
Mudd Pi boards. The system implemented two digital filters that can be used by setting 3 DIP switches.
The filters used were IIR filters, one low pass the other high pass. The corner frequencies were set by
adjusting a constant, alpha, in two difference equations for digital low pass and high pass filters. The
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equations are shown in Figure 5. The formula used to calculate the corner frequency as well as the
formulas in Figure 5 were taken from Wikipedia [4].

for 1 from 1 to n
y[1] = yli-1] + a ® (x[1] ~ y[1-1])
(a) Digital Low Pass Filter Difference equation
for 1 from 1 to n

y[i] :=a * (y[i-1] + x[i] - x[i-1])

(b) Digital High Pass Filter Difference equation
Figure 5: Difference equations used for (a) Digital Low and (b) High Pass Filters
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Figure 6: Design for SystemVerilog filter.sv module used to implement filtering. Inputs are clk,
reset, signalln, filter choice. Output is signalOut.
The team stored the y[n-1] and x[n-1] term in difference equations using a flip flop. The team
used a mux controlled by the DIP switches in order to determine what the signalOut output should be.

Triggering

This module is used to read a signal based on the trigger level set by the user; this a common
feature for oscilloscopes. The system used a rising edge triggering scheme. It worked by checking to see
if a signal exceeded a trigger threshold value, and then enabling the output a certain number of times
based on the current time scale chosen which is one-hot encoded, and then repeating. Figure 7 depicts the
SystemVerilog module implemented.
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Figure 7: Design for SystemVerilog trig.sv module used to handle user’s trigger level input.
Inputs are scopeln, triglevel, timeScale, clk, and reset. Outputs is scopeOut.

The team used a counter in order count the number of samples passed through when a signal is

greater than the trigger level. The team then used a mux to determine if the signal should be allowed to
pass through or nothing is allowed to pass through.

Volts Scale

This module allows the user to set the voltage scale of the input signal using DIP switches. The
scales are one-hot encoded. The system has three volts scales available: 0V to 5V, 0V to 3V, and 3V to
5V. This was accomplished with the voltsScale module. The module takes in two inputs, a 3-bit bus that
are attached to the Mudd Pi’s onboard DIP switches,voltsScale, and a 8-bit bus data input,signalln. The
module has one 8-bit output, signalOut. The switch inputs what scale to use, the default case is 0 to 5V
scale which allows the signal to pass through without any alterations. The second setting checks to see if
the input is ever larger than 3V, if it is signalOut is forced to 3 V. Similarly, the third setting to see if the

input is ever less than three volts, if signalOut is forced to 3 V. Figure 8 is diagram of the module
implemented in Verilog.
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Figure 8: Design for SystemVerilog voltsScale.sv module used to scale the input signal. Inputs are
voltsScale, signalln. Output is signalOut.

Buffer

The team used a asynchronous first in first out (FIFO) block to store data in a buffer because the
team could not guarantee the same clock for the SPI communication for the ADC and the FPGA and the
SPI communication for the FPGA and Raspberry Pi. Originally, the team had tried to design everything
with one clock, but needed to switch plans and include this FIFO buffer. As the buffer was not the main
focus of the project, the team opted to use an existing FIFO block [1].

Raspberry Pi Communication

Finally, the signal data has made its way from being converted from an analog to a digital signal
in the ADC, collected over SPI into the FPGA, filtered through a low pass or high pass filter, checked to
see if it surpasses the user selected trigger level, and is now being stored in the FIFO buffer. The data now
needs to plotted, which is handled by the Raspberry Pi and discussed in the upcoming section. The data is
passed from the FIFO buffer in the FPGA to the Pi using SPI, where the Pi functions as the master and the
FPGA as the slave. The module pi.sv, the structure of which is show below in Figure 9, builds the slave
module required to implement SPI.
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Figure 9: Design for SystemVerilog pi.sv module used to act as the slave for SPI between the Pi
master and FPGA slave. Inputs are sclk, reset, d (voltage to send) and pi_ MOSI. Outputs are pi_ MISO
and q (voltage sent).

Raspberry Pi Design

The Raspberry Pi was used to plot the data received from the Mudd Pi board on a web page. A diagram
that depicts how the overall code in the Raspberry Pi is structured is shown in Figure 10.
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Figure 10: Diagram explaining the flow of programs called by the Raspberry Pi during Operation

Communication

To first get the signal data, the Raspberry Pi communicated with the Mudd Pi board using SPI
communication protocol. In the program final.c, SPI was implemented to communicate with the FPGA
using the EasyPlO.h library [6]. After taking into account various user inputs regarding time per division
process and noise filtering, which are discussed in further depth below, the data was stored in values.data.

Plotting

The program readVoltsScale.c was written to take the user’s choice for volts per division into
account (which they choose by setting a physical set of DIP switches). Next, final.c calls this program,
and also looks at the user’s choices for time scale and noise level configurations from other sets of DIP
switches. Figure 11, shown below, details a block diagram of how final.c progressed through to logging
signal data into values.data. When oPlot2.py runs, it uses gnuplot-py, a plotting tool, to create a python
gnuplot object, label the plot with titles and axes, and read values.data for points to plot. The plot is then
saved as a PNG file into the web root of the Raspberry Pi, which for simplicity (albeit not security) is
where all of the Pi code is being stored.
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Figure 11: A block diagram of how data was logged into values.data

Noise Filtering

Noise filtering on the Raspberry Pi, as is mentioned above, was accomplished by comparing the
current value and previous value recorded using final.c. If the current value was significantly larger or
significantly smaller than the previous value recorded (the specific delta tolerance is adjustable by the
user with the use of DIP switches), the current value displayed is thrown out and the previous value is
plotted. Figure 12 depicts this filtering method.
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Figure 12: Block diagram depicting how data was processed to take noise into account

Web Design

The oscilloscope output was designed to be viewed on a web page. The program main.py serves
as the main module on the Pi, running final.c and oPlot2.py over and over which continually asks the
FPGA for data over SPI, processes it according to the user inputs, stores it in values.data, creates a plot
using gnuplot-py using what is in values.data, and writes over a PNG file to update the output plot. A
program, MicrOscope2.html, creates a webpage that the user can access to see MicrOscope’s output. It
works by displaying the PNG of the output plot, and then automatically refreshing every 0.1 seconds to
show the most recent data.
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Results

The system was capable of reporting accurate DC levels of signals, change voltage/division
scales, time/division scales, and perform high pass filtering, and triggering. The signal displayed on
screen would vary with frequency even if the input signal did not, the team later discovered that this was
caused by a timing issue with Raspberry Pi read requests. For future endeavors in low-budget
oscilloscope design, a printed circuit board is recommended as they are capable of running faster clocks
and thus faster sampling rates by analog to digital converters.
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Parts List
Part Source Vendor Part# Price
Analog Digital Digikey ADS7818 $6.41
Converter
DIP Switches E155 Cabinet N/A N/A
10 kOhm Potentiometer | Electronics Lab Cabinet | N/A N/A
Operational Amplifier | Electronics Lab Cabinet | MCP6002 N/A
Resistors, Capacitors, E155 & Electronics N/A N/A
Wires Lab Cabinets
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Mudd Pi Board E155 Course N/A $7
Raspberry Pi E155 Course N/A $35
Appendices

Appendix A: FPGA SystemVerilog Code

microscope.sv

L1117 0 7770707777777 77777 777777777777 7777
// E155 Final Project: MicrOscope

// I. Martos-Repath & A. Echeverria

// First written on 18 November 2017

// Updated 4 December 2017

L1177 7 7777070777777 7777077777777 777777777777

L1717 777 77777777777 7777

// ADC_FPGA SPImaster module

// Function: FPGA (acting as master) gets output codes from ADC

(acting as slave)

L1717 777 77777777777 7777

module microscope (input logic clk, reset,

ADCO MISO,ADC1 MISO,pi sclk,pi MOST,
input logic [5:0]timeScale,
input logic [2:0]voltsScale,

1:0]filterSelect,

output logic [7:0]1led,
output logic ADCO_ sclk,

ADCO MOSI,ADCl sclk, ADC1 MOSI,pi MISO,empty) ;

logic [7:0]scopeOut,signalOutWide;

input logic [

logic [7:0]JuntriggeredSignal;
logic [7:01q,d;
logic [11:0]scopeln;
logic newNumber;
logic ADC sclk;
logic [11:0]trigLevel;
logic [31:0]counter; //counter for clock divider to make sclk
//logic to generate sclk to pass to ADC slave
always ff@ (posedge clk, posedge reset) begin
if (reset) counter <= 32'Db0;
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else begin
counter <= counter + 1;
end
end
assign led = trigLevel[1l1:4]; //Used to visually see trigger

value
assign ADC sclk = counter([4];
assign ADCO sclk = ADC sclk;
assign ADCl sclk = ADC sclk;

//Read data from ADC's
ADC triggerLevel (ADC sclk, reset,ADCO MISO,ADCO MOSI, trigLevel);
ADC
channell (ADC sclk, reset,ADC1 MISO,ADCl MOSI, scopeln,newNumber) ;
//Filter input signal if user sets switches
filter
lowOrNot (newNumber, reset,scopeIn[l11:4],filterSelect,untriggeredSignal
) ;
//Check to see if signal passes threshold trigger value
trig
trigger (untriggeredSignal, trigLevel[11:4], timeScale,ADC sclk, reset, sc
opelOut) ;
//Set Voltage Scale
voltsScale scaleOutput (voltsScale, scopeOut, signalOutWide) ;
logic full;
logic writeEn inj;
assign writeEn in = 1;
//Buffer used to write data values and read them
aFifo buffer(d, empty, pi MOSI, pi sclk, signalOutWide, full,
writeEn in,newNumber, reset);
//SPI Slave module used to interface with Raspberry Pi
pi(pi sclk, reset,pi MOSI,pi MISO,d,q);
endmodule

ADC.sv
module ADC (input logic ADC sclk,reset, ADC MISO,
output logic ADC MOSI,
output logic [11:0]outputcode,
output logic newNumber) ;
logic conv; //needs to go low to start collecting from ADC
logic [3:0]count; //counter for negative edges of sclk
logic en;
logic [1l1l:0]datatmp;
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//The clock counter starts at 0, so clock is from 0 to 15
instead of 1-16
always ff@(posedge ADC sclk, posedge reset)
begin
if (reset) count <= 0;
else count <= count + 1;
end
//Assert the CONV signal
always ff@ (negedge ADC sclk, posedge reset)
begin
if (reset) conv <= 0;
else begin
if ((count==4'd1l4) || (count==4'd1l5)) conv <= 0;
else conv <= 1;
end
end
//Read the serial data into a 12-bit register
always ff@(negedge ADC sclk, posedge reset)
begin
if (reset) outputcode <= 0;
else begin
datatmp <= {datatmp[10:0],ADC MISO};
if (count == 4'dl4)
begin
newNumber <= 1;
outputcode <=datatmp;
end
else newNumber <= 0;
end
end
assign ADC MOSI = conv;
endmodule

aFifo.sv

// Function : Asynchronous FIFO (w/ 2 asynchronous clocks).
// Coder : Alex Claros F.

// Date : 15/May/2005.

// Notes : This implementation is based on the article
// 'Asynchronous FIFO in Virtex-II FPGAs'

// writen by Peter Alfke. This TechXclusive

// article can be downloaded from the

// Xilinx website. It has some minor modifications.
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/[ =========================================
module aFifo
# (parameter DATA WIDTH = 8,
ADDRESS WIDTH = 8,
FIFO DEPTH = (8 << ADDRESS WIDTH))

//Reading port

(output logic [DATA WIDTH-1:0] Data out,

output logic Empty out,

input logic ReadEn_ in,

input logic RC1k,

//Writing port.

input logic [DATA WIDTH-1:0] Data in,

output logic Full out,

input logic WriteEn in,

input logic WClk,

input logic Clear in);

/////Internal connections & variables//////

logic [DATA_WIDTH—l:O] Mem [FIFO_DEPTH—l:O];

logic [ADDRESS WIDTH-1:0] pNextWordToWrite,
pNextWordToRead;

logic EqualAddresses;

logic NextWriteAddressEn,
NextReadAddressEn;

logic Set Status, Rst Status;

logic Status;

logic PresetFull, PresetEmpty;

/117177777777 /Code////////1//1/////
//Data ports logic:
// (Uses a dual-port RAM).
//'Data out' logic:
always @ (posedge RC1lk)
if (ReadEn in & !Empty out)
Data out <= Mem[pNextWordToRead];
//'Data_in' logic:
always @ (posedge WClk)
if (WriteEn in & !Full out)
Mem[pNextWordToWrite] <= Data in;
//Fifo addresses support logic:
//'"Next Addresses' enable logic:
assign NextWriteAddressEn = WriteEn in & ~Full out;
assign NextReadAddressEn = ReadEn in & ~Empty out;
//Addreses (Gray counters) logic:
GrayCounter GrayCounter pWr
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(.GrayCount out (pNextWordToWrite),
.Enable in (NextWriteAddressEn),
.Clear_in(Clear in),
.Clk (WC1k)
) ;
GrayCounter GrayCounter pRd
(.GrayCount out (pNextWordToRead),
.Enable in (NextReadAddressEn),
.Clear_in(Clear in),
.C1lk (RC1k)
) ;
//'EqualAddresses' logic:
assign EqualAddresses = (pNextWordToWrite == pNextWordToRead);
//'Quadrant selectors' logic:
assign Set Status = (pNextWordToWrite[ADDRESS WIDTH-2] ~"
pNextWordToRead [ADDRESS WIDTH-1]) &
(pNextWordToWrite [ADDRESS WIDTH-1] ~*
pNextWordToRead[ADDRESS_WIDTH—2]);
assign Rst Status = (pNextWordToWrite[ADDRESS WIDTH-2] *
pNextWordToRead [ADDRESS WIDTH-1]) &
(pNextWordToWrite [ADDRESS WIDTH-1] ~*
pNextWordToRead[ADDRESS_WIDTH—2]);
//'Status' latch logic:
always @ (Set Status, Rst Status, Clear in) //D Latch w/
Asynchronous Clear & Preset.
if (Rst Status | Clear in)
Status = 0; //Going 'Empty'.
else if (Set Status)
Status = 1; //Going 'Full'.
//'Full out' logic for the writing port:
assign PresetFull = Status & EqualAddresses; //'Full' Fifo.
always @ (posedge WClk, posedge PresetFull) //D Flip-Flop w/
Asynchronous Preset.
if (PresetFull)
Full out <= 1;
else
Full out <= 0;
//'Empty out' logic for the reading port:
assign PresetEmpty = ~Status & EqualAddresses; //'Empty' Fifo.
always @ (posedge RClk, posedge PresetEmpty) //D Flip-Flop w/
Asynchronous Preset.
if (PresetEmpty)
Empty out <= 1;
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else
Empty out <= 0;
endmodule

graycounter.sv

[/ ==========================================
// Function : Code Gray counter.

// Coder : Alex Claros F.

// Date : 15/May/2005.

/| =======================================

‘timescale 1lns/lps
module GrayCounter
# (parameter  COUNTER WIDTH = 4)

(output reg [COUNTER WIDTH-1:0] GrayCount out, //'Gray' code
count output.
input wire Enable in, //Count enable.
input wire Clear in, //Count reset.
input wire Clk) ;
/////////Internal connections & variables///////
reg [COUNTER WIDTH-1:0] BinaryCount;

/1111777 /Code// /1111111717777 7/7/777//
always @ (posedge Clk)
if (Clear in) begin
BinaryCount <= {COUNTER WIDTH{1'b 0}} + 1; //Gray
count begins @ 'l1' with
GrayCount out <= {COUNTER WIDTH{1l'b 0}}; // first
'Enable in'.
end
else if (Enable in) begin
BinaryCount <= BinaryCount + 1;
GrayCount out <= {BinaryCount [COUNTER WIDTH-1],
BinaryCount[COUNTER_WIDTH—2:O] ~
BinaryCount[COUNTER_WIDTH—l:l]};
end
endmodule

Filter.sv

module filter (input logic clk, reset,
input logic [7:0]signalln,
input logic [1l:0]filterChoice,
output logic [7:0]signalOut);

logic [7:0]signallowFilt;
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logic [7:0]signalHighFilt;
always comb

begin
case (filterChoice)
2'b00 : signalOut = signalln;
2'b1l0 : signalOut = signallowFilt;
2'b01 : signalOut = signalHighFilt;
default : signalOut = signalln;
endcase
end

//Low Pass Filter
logic [63:0]alphal;
assign alphal = 0.1; //Gives us corner frequency of 40027.70716
logic [7:0]signallowFiltPrevious;
always ff@(posedge clk, posedge reset) begin
if (reset) signallowFilt <= 0;
else begin
signallLowFilt <=
signallLowFiltPrevious+ (alphal* (signalln-signallowFiltPrevious))
signallowFiltPrevious <= signallowFilt;
end
end
//High Pass filter
logic [63:0]alphaH;
assign alphaH = 0.9; //Gives us corner frequency of 40027.70716
logic [7:0]signalHighFiltPrevious;
logic [7:0]signalInPrevious;
always ff@(posedge clk, posedge reset) begin
if (reset) begin
signalHighFilt <= 0;
signalInPrevious <= 0;
end
else begin
signalHighFilt <=
alphaH* (signalHighFiltPrevious+signalIn-signalInPrevious);
signalInPrevious <= signalln;
signalHighFiltPrevious <= signalHighFilt;
end
end
endmodule

pi.sv
module pi (input logic sclk, reset, //from Pi master
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input logic pi MOSTI,
output logic pi MISO,
input logic [7:0]d, //voltage to send
output logic [7:0]1qg); //voltage sent
logic [2:0]counter; //need to be able to count up to 8
logic gdelayed;
always ff@ (negedge sclk, posedge reset)
if (reset) counter <= 0;
else counter <= counter + 3'bl;
always ff@ (posedge sclk)
q <= (counter == 0)? {d[6:0], pi MOSI}: {qg[6:0], pi MOSI};
always ff@ (negedge sclk)
gdelayed = gl[7];
assign pi MISO = (counter == 0) ? d[7] : gdelayed;
endmodule

trig.sv

module trig(input logic [7:0]scopeln,triglLevel,
input logic [5:0]timeScale,
input logic clk, reset,
output logic [7:0]scopeOut);

logic [7:0]scopeInTenX;
assign scopeInTenX = scopeln;
logic [31:0] writeCount;
logic [31:0] timeScaleCount;
always comb
begin
case (timeScale)
6'b000001 : timeScaleCount = 32'd100000;
6'b000010 : timeScaleCount = 32'd10000;
6'b000100 : timeScaleCount = 32'd1000;
6'b001000 : timeScaleCount = 32'd100;
6'b010000 : timeScaleCount = 32'd25;
6'b100000 : timeScaleCount = 32'dl5;
default : timeScaleCount = 32'd200;
endcase
end
always ff@(posedge clk, posedge reset) begin
if (reset) begin
scopeOut = 0;
writeCount <= 32'b0;
end
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else begin
if ((scopeInTenX >= trigLevel) && (writeCount==32'b0)) begin
scopeOut <= scopelInTenX;
writeCount <= writeCount + 1;

end
else if((writeCount != 32'd0)&& (writeCount <
timeScaleCount)) begin

writeCount <= writeCount + 1;
scopeOut <= scopelInTenX;
end
else begin
writeCount <= 0;
scopeOut <= 0;
end
end
end
endmodule

voltsScale.sv

module voltsScale (input logic [2:0]voltsScale,
input logic [7:0]signalln,
output logic [7:0]signalOut);

always comb

begin
case (voltsScale)
3'b001 : signalOut = signalln;
3'b010 : begin
if(signalIn > 12'd3) signalOut =
12'd3;
else signalOut = signalln;
end
3'b100 : begin
if(signallIn < 12'd3) signalOut = 0;
else signalOut = signalln;
end
default : signalOut = signalln;
endcase
end

endmodule
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Appendix B: Raspberry Pi C, Python, HTML Code

main.py

#! /usr/bin/env python

import os //for command line inputs

if name == ' main_ ':

while (1) :

//Get data from FPGA
os.system("sudo ./final")
//Plot it
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os.system ("python oPlot2.py")

final.c
#include <stdio.h>
#include "EasyPIO.h"
void setPins () {
pinMode (4, INPUT)
pinMode (17, INPUT
pinMode (27, INPUT
pinMode (22, INPUT
)
)
T
T

)
) ;
).

4

’

pinMode (5, INPUT
pinMode (6, INPUT

pinMode (24, INPUT) ;

pinMode (18, INPUT) ;

pinMode (23, 0UTPUT) ;

pinMode (12, INPUT) ; //delta =

pinMode (16, INPUT) ; //delta =

pinMode (20, INPUT) ; //delta =
)

(
(
(
(
(
(
(
(
(
(
(
pinMode (21, INPUT) ;//delta =

S = O O

}

int main (void) {
float voltage;
char data;
int empty = 0;
/*Intialize PIO*/
pioInit () ;

.05 //use for DC values
.5
.5
.5

spiInit (8440000,0); //Run this clock much faster than the FPGA to

ensure buffer doesn't fill
pinMode (23, INPUT) ;
int timeScale[6];
int deltal4];

int timeCountTrue;
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int timeCount = 0;

float deltaT = 0.0000128; //From sampling rate of ~79 kHz
float timeToPlot = 0;

float lastValue = 0;

float deltaTolerance = 0;

setPins () ;
while (1) {
timeCount = 0;
if (timeCountTrue == 1) {
printf ("Done with one round of measurements\nStarting
over...\n");
return 0;
timeCountTrue = 0;
}
while (timeCountTrue == 0) {
while (empty == 1) {

lastValue;

lastValue;

empty = digitalRead (23);

printf ("The buffer is empty\n");
}
//Update sensitivity
delta[0] = digitalRead(12);
printf ("delta[0] is %d\n",delta[0]);
delta[l] = digitalRead(16);
delta[2] = digitalRead(20);
delta[3] = digitalRead(21)

14

if (delta[0] == 1) deltaTolerance = 0.05;
else if(delta[l] == 1) deltaTolerance =
else if(delta[2] == 1) deltaTolerance =
else if(delta[3] == 1) deltaTolerance =
else deltaTolerance = 10;

DS = O
g o O

lastValue = voltage;

data = (spiSendReceive('1'));
voltage = data*0.01960784313;

if (timeCount<5) voltage = voltage;
else{

if ((lastValue-voltage)> deltaTolerance) voltage

if ((voltage-lastValue)> deltaTolerance) voltage

}

printf ("voltage is %$f\n",voltage);
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printf ("data is %d\n",data);

timeScale[2] = digitalRead(27);
//Check timeScale
if (timeScale[5] == 1) {
timeCountTrue = (timeCount > 4);
}
else if(timeScale[4] == 1) {
timeCountTrue = (timeCount > 8);

}

else if(timeScale[3] =

1) A

timeCountTrue = (timeCount > 79);
}
else if(timeScale[2] == 1) {
timeCountTrue = (timeCount > 782);

printf ("timeCountTrue is %d\n", timeCountTrue) ;

}

else if(timeScale[l] == 1) {
timeCountTrue = (timeCount > 7813);

}

else if(timeScale[0] == 1) {
timeCountTrue = (timeCount > 78125);

}

timeToPlot = timeCount*deltaT; //plot time based on sample
number and sampling rate

timeCount = timeCount + 1;

printf ("timeCount is %d\n", timeCount) ;

FILE * fp;

// open the file for writing

if (timeCount < 2) fp = fopen("values.data","w");

else fp = fopen ("values.data","a");

fprintf (fp, "%f %f\n",timeToPlot,voltage);

// close the file

fclose (fp):;

timeScale[0] = digitalRead(4)

timeScale[l] = digitalRead(17);
timeScale([2] = digitalRead(27):;
timeScale[3] = digitalRead(22);
timeScale[4] = digitalRead(5);

timeScale[5] = digitalRead(6) ;

printf ("timeScale[2] is %d\n",timeScale[2]);
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}

return 0;

oPlot2.py
#! /usr/bin/env python
""" oPlot.py —-- Displays Oscilloscope Output
Run this program by typing python oPlot2.py
from numpy import *
import Gnuplot, Gnuplot.funcutils
import commands
def display():
"""Demonstrate the Gnuplot package."""
#Get y Axis Bounds
yAxisBound = commands.getstatusoutput ('sudo ./readVoltsScale')
#Create a plot of current Oscilloscope Output
g = Gnuplot.Gnuplot (debug=1)
#Setup title, axis labels etc.
g.title('MicrOscope')
g('set style data linespoints')
g('set grid'")
databuff = Gnuplot.File("values.data",using="'1:2")
g.plot (databuff)
#Setting the volts/div

if (yAxisBound[1l] == '13"):
g('set yrange ["0":"5"]")
elif (yAxisBound[1l] == '19"):
g('set yrange ["0":"2.5"]")
elif (yAxisBound[1l] =='26"):

g('set yrange ["2.5":"5"]")
else:
g('set yrange ["0":"5"]")
#Generate the PNG
g.hardcopy (filename="micrOscopeOutput.png", terminal="png")
if name == ' main ':
display ()

readVoltsScale.c
#include <stdio.h>
#include "EasyPIO.h"
void setPins(){
//TimeScale Pins



pinMode(13,INPUT);
pinMode(19,INPUT);
pinMode(26,INPUT);
}
int main(void){
/*Intialize PIO*/
piolnit();
int voltScale[3];
setPins();
if(digitalRead(13)==1) printf("13"); /0to 5V
else if(digitalRead(19)==1)printf("19"); /0to 3 V
else if(digitalRead(26)==1)printf("26"); //3to S v
return 0;

MicrOscope2.html
<IDOCTYPE html>
<html>
<head>
<title>MicrOscope</title>
<meta http-equiv="content-type" content="text-html;charset=utf-8">
<meta http-equiv="refresh" content="5">
</head>
<body>
<H2>MicrOscope Output Page</H2>
<p><img src="micrOscopeOutput.png"></p>
</body>
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Appendix C: Analog Filter Verification

ADCO sclk, ADCI1 sclk runs at 1.25 MHz.
There’s a new number every 14 clock cycles, according to how team has written SPI for FPGA to

ADCs.
e This means the sampling rate for the input signal is 1‘25124 2 — 89 kHz or %

Thus to meet Nyquist requirement, the fastest possible signal the user can enter is 44.5 kHz.
The Sallen-Key filter is set to have a corner frequency of 21 kHz, well below the maximum
possible frequency that meets Nyquist.

o Designed Bode Plot below using http://sim.okawa-denshi.jp/en/OPstool.php
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Experimentally verified Sallen-Key filter by measuring a Bode Plot, as seen below.
Corner frequency was slightly less than designed value, at around 19 kHz.

Magnitude Plot for E155 Final Project Sallen-Key Filter
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e The digital filters inside the FPGA both have corner frequencies of 1.3 kHz.
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