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Abstract: The goal of this project is to build a rudimentary oscilloscope that has a throughput 

rate of 500 kHz and controls for setting the x and y range of the display. The ADS7818 converts 

the input signal into a digital signal and communicates this to the buffer via SPI. The buffer is 

designed using the FPGA in order to store the data from the ADS7818 and synchronize the 

output with the Raspberry Pi. The Pi receives the data via SPI and converts the values back into 

voltages. The Pi then graphs the data continuously with the appropriate x and y ranges. 
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Introduction 

Modern oscilloscopes are generally costly and not very portable. Even cheap analog 

oscilloscopes can start at hundreds of dollars. This report documents the process for 

constructing a rudimentary oscilloscope using a fast sampling ADC coupled with a Raspberry Pi 

and an Altera Cyclone FPGA. The design will be both inexpensive relative to a professional lab 

oscilloscope and be portable such that a hobbyist or electrical engineering enthusiast can 

transport it with ease. 

 

The basic functionality of an oscilloscope is rather straightforward. Therefore the goal of the 

project is to take in a continuous voltage reading, then pass this analog signal through a 

low-pass filter and then through an analog-to-digital converter. The ADC outputs the now digital 

signal at a high frequency into a buffer which is essentially the memory storage for the samples. 

Then have the buffer read out the stored samples at a lower frequency to a computer or any 

graphing capable device with controls to specify axis limits.  

System Breakdown 

 

Figure 1: Block Diagram of Data Flow Through System 
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The system is comprised of three large scale subsystems highlighted in purple in Figure 1: the 

ADC, the memory buffer on the FPGA, and the Raspberry Pi. An analog waveform between 

zero and five volts is fed into a low pass filter, which consists of a simple RC circuit with a cutoff 

frequency of approximately 25 kHz. From there, the signal is then fed into the ADS7818 ADC 

which converts an analog voltage value in the specified range above into a 12 bit digital code.  

 

From there, the eight most significant from the ADC are then stored into a temporary register on 

the Altera Cyclone IV FPGA EP4CE6 at a rate of 1.25 MHz. This transmission process between 

the FPGA and ADC works over SPI. When the temporary register is filled with the appropriate 

eight bits, a write enable flag goes high to indicate to the system to write the value to RAM. This 

process continually repeats until the whole RAM block, which has a size of about 16.3 Kbytes, is 

filled and the write pointer has reached the last address. Once the RAM buffer fills, the system 

then transitions to its read mode. 

 

In read mode, the system no longer writes any values into RAM and instead sets the read 

pointer to the beginning of the memory block. From there the Raspberry Pi receives a signal 

that it should begin reading. Then while the read pointer has not reached the end the RAM, the 

Pi reads a one byte value each time over SPI at a rate of 100 kHz. After every read, the read 

address is incremented on the FPGA, and the Pi writes the value and a timestamp to a file 

descriptor to keep a record of the data from the current buffer. When the read address has 

finally reached the end of the memory, the FPGA signal the Pi through a GPIO to graph the 

current data. The Pi then uses a program called Gnuplot to plot the data contained in the file. A 

software timer delay displays the plot for a duration and then flushes the data in the file and 

sends a reset signal to the FPGA to reset all addresses and states and the whole process 

repeats. There are also two sets of quad dip switches that control the X-axis and Y-axis scaling 

of the plotted data. 
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New Hardware 

This project uses the ADS7818 because it has the highest frequency speed of any DIP 

packaged ADC which is preferable due to its straightforward implementation.The ADS7818 is a 

successive approximation analog-to-digital converter which means that the conversion is done 

via a binary search through all quantization levels. In other words, the ADC approximates a 

discrete value for the voltage and then converts this approximate digital signal back to analog. 

Then a comparator takes in the original analog signal and the reconstructed analog signal in 

order to test the validity of the approximation. Due to this process of approximation, when the 

ADC is prompted over SPI to begin sending data it sends a 16-bit package where the first two 

bits and the last two bits do not encode any relevant data but rather all of the data is encoded 

into the middle 12 bits.  

 

 

Figure 2: Operation Schematic [2] 
 

 

Figure 3: Pin Reference Table [2] 
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Figure 2 above, shows the schematic for the ADS7818 circuit used in this project. This 

schematic allows for only positive analog inputs since the inverted input is connected to ground. 

This device requires three signals communication, CLK, DATA, and CONV, to transfer data over 

the FPGA. The CLK signal is an input signal which sets the clock speed of the ADC. The 

minimum clock speed is of 200 kHz with a 12.5 kHz throughput rate while the maximum clock 

speed is 8 MHz with a 500 kHz throughput rate. In this project the FPGA outputs a 1.25 MHz 

clock signal to the ADC. The DATA signal outputs voltage in 16-bits with a 12-bit resolution. 

Lastly, CONV acts as a trigger in order to the signal the ADC to stop sampling and begin the 

process of converting the signal and sending it over DATA.  

 

Figure 4: Timing Diagram for Communication Protocol with FPGA [2]  
 

Two important notes about this component. This project instead implements the DSP timing 

diagram from the ADS7818, which is shown above, and this timing sequence works with the SPI 

module on the FPGA and communicates the data over correctly. The next is that the data sheet 

indicates to read on the posedge of the CLK however this created an issue where the LSB of a 

previous reading carried over as the MSB of the next reading causing a 2.5 V shift in some 

values. 

 

In order to convert the values output by the ADC back into voltages, divide the values by 4096, 

which is the maximum for a 12-bit number, and then multiply it by the reference voltage. While 

this covers a general explanation of implementation, the data sheet which is widely available on 

the internet should be referenced for any further guidance. 

 

 



 
6 

Microcontroller (Raspberry Pi) Design 

The Raspberry Pi performs four main functions: 1) Converts the ADC values into voltages while 

also using a counter to approximate the corresponding time value, 2) Writes the voltage and 

corresponding time value into a text file, 3) Reads and decodes the the dip switches in order to 

accordingly set the x and y range or terminate the program, and 4) Graph the values in the text 

file using gnuplot. 

 

1) In order to read in the ADC values from the FPGA, functions were written using SPI. The  Pi 

initiates communication using the SPIinit() fucntion from EasyPio.h [1]. The CS bit is set low and 

the SCLK is set to 100 kHz. However since the project requires that the FPGA be the master, 

GPIO pins FULL and DONE_READING are set as inputs and PI_GRAPH_DONE is set as an 

output. These auxiliary signals allowed the FPGA to function as a pseudo-slave. The FULL 

signal goes HIGH in order to trigger the spiSendReceive() function [1]. The ADC value is 

converted, the corresponding time value is approximated. 

 

2) Once the value has been converted and the time value approximated, it is written to a text 

file. This is repeated until the DONE_READING signal goes HIGH indicating all the values have 

been read out of memory.  

 

3) Once DONE_READING goes HIGH then the Pi reads the switch values and accordingly sets 

the x and y range using the fprintf function to write to the gnuplot command line. In this case the 

commands are set xrange and set yrange.[3] However, if SWITCH_KILL is HIGH then the 

program will not enter the DONE_READING condition, and the program will close gnuplot with 

the fprintf function and gnuplot command clear and exit. 

 

4) Once the x-range and y-range have been set the plot is generated using the fprintf function 

and the gnuplot command plot; then the gnuplot command pause is used in order to pause 

gnuplot while the program continue running in order to read new data from the FPGA. [3] This 

allows for the graph to continuously update but also causes a slight delay between switch input 

and display change. After gnuplot is paused, then PI_GRAPH_DONE is set HIGH in order to 
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appropriately reset registers within both the memory and pi communication modules so that 

data is sent over whenever it is available once again.  

FPGA (Altera Cyclone IV EP4CE6) Design 

The FPGA has three modules each of which performs a crucial function to the system. The first 

module called adc_com in shown in Appendix C is responsible for the communication and data 

retrieval from the ADC. This module is comprised of a state machine with 16 states. In the 

zeroth state, the default, the adc_conv pin raised high. When the system transitions to state 

one, the adc_conv pin is set low. The system then enters state two which corresponds with 

cycle one in Figure 4 for the timing diagram. This state has no relevant data coming over the 

MISO line and thus can be neglected. When the module enters state three, on the negative 

edge of the clock the most significant bit is sent on the MISO line. This happens for the next 11 

cycles since the ADC sends 12 bits of data. After all the bits have been sent out, the adc_conv 

flag is raised back high and then the write_enable flag is raised high. This indicates to the 

memory module to write the eight most significant bits of this voltage reading to RAM. Note that 

that write_enable pin is high for one cycle as to not write the same values multiple times to 

RAM. 

 

The second module handles all the memory interfacing operations and is appropriately declared 

memory. This module configures a large block of memory, in this case about 16 Kbytes, as 

single-port memory shown here in Figure 5.  

 

Figure 5: Single-Port Memory Block Diagram 
The memory takes in two clocks, one which is synchronized with the ADC clock, the inclock, 

and the other being a serial clock coming from the Raspberry Pi, the outclock. It also takes in a 

write_enable flag, one byte of write_data. Its outputs are one byte of read_data, a 14 bit read 
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address, a full flag, and a done_reading flag. The memory logic is quite simple. It functions as a 

three state state machine. In its zeroth state, it just holds and does nothing. In state one, it is in 

the write state. Here the modules accepts write_data from the adc_com module and will write 

the data to RAM when the write_enable flag is high. After every write, the write pointer is 

incremented. Once the write pointer reaches the end of the RAM block, the system transitions to 

state two, read mode. In read mode, the module will not write values anymore and assigns 

read_data to whatever the value in memory is at the read address it is given. After every read, 

which is comprised of one byte, the read pointer is also incremented. Once the read pointer has 

reached the end of the RAM block, the system enters the zeroth state in which it does nothing 

until instructed by the Pi. 

 

The final module is the pi_spi one. This module handles the transmission of data from RAM to 

the Pi using the SPI protocol. In this module, the read address is generated and sent to the 

memory module. It then is given a byte of value, read_data, from which it writes one bit of 

read_data every serial clock cycle to the MISO line. After all eight bits have been sent, the read 

address is incremented. Note that the Pi will send over only eight serial clock cycles at a time 

and the read mode is handled by the Pi. When the FPGA enters the zeroth state, the Pi then 

graphs its current data set. Once the Pi finishes graphing its data with a delay, it raises a reset 

pin high which resets all addresses on the FPGA and causes it to enter write mode.  

 
 

Figure 6: Overall State Machine of System 
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Results and Future Work 

The final project works well and meets all the design parameters laid out in the project proposal. 

It can successfully graph all DC voltages between zero and five volts with very reasonable 

accuracy. It can also graph sinusoidal waves up to 23 kHz with good accuracy and can handle 

five volt peak to peak waves all the way down to 200 mV peak to peak waves with fair accuracy. 

The system can also handle triangle wave inputs as well as square waves. Though the 

frequency of the square waves was more limited due to the large harmonics of its sharp edges. 

Since the low pass filter has a corner frequency of only about 25 kHz, the sharpness of the 

square waves did not show as well as expected. Though it does match what an actual 

oscilloscope measures for the same signal through a low pass filter. 

 

For future work, the system can be improved by adding a programmable gain amplifier (PGA). 

For signals smaller than 200 mV peak to peak, the system could amplify such voltages with a 

PGA and have a wider variety. Other improvements include constructing a triggering module to 

plot as opposed to just a software delay. As well as a fast fourier transform display to improve 

functionality.  
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Parts List 

 

Part Source Vendor Part # Quantity Price (per unit) 

ADS7818 ADC Digikey ADS7818P-ND 5 $6.41 
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Appendix A: Raspberry Pi 3B C Code 

// plot.c 
// jvillegas@g.hmc.edu, ndraper@g.hmc.edu 11/10/2017 
// 
// Receives data from an FPGA which acts as a buffer 
// for a hobbyist oscilloscope and plots the data 
 
#include <stdio.h> 
#include <unistd.h> 
#include <time.h> 
#include <stdlib.h> 
#include "EasyPIO.h" 
 
#define DATA_REQ 26 
#define DONE_READING 27 
#define PI_GRAPH_DONE 22 
#define FULL 19 
#define HIGH 1 
#define LOW 0 
 
#define SW_1 12 //MSB of closest switch 
#define SW_2 16 
#define SW_3 20 
#define SW_4 21 //LSB 
 
#define SW_KILL 18 //closes gnuplot MSB of farthest switch 
#define SW_7 23 
#define SW_6 24 
#define SW_5 25 //LSB 
 
int main(void) 
{ 

char spi_data = 0; 
int spi_data_shift = 0; 
double times = 0; 
double volt = 0; 
int counter = 0; 

 
// Speed of the SCLK from the Pi when reading SPI 
int sclk = 100000; 
// Speed of the clock sent to the ADC, set by the FPGA 



 
12 

double adc_clock = 1250000.0; 
// time spacing between each voltage reading 
double time_div = 16.0/adc_clock; 
 
// file descriptor for both  
char *data_files = "data0.dat"; 
FILE *data = fopen(data_files, "w"); 
FILE *gnuplot = popen ("gnuplot", "w"); 

 
pioInit(); 
// setup SPI on the pi with speed of sclk 
spiInit(sclk, 0); 
// GPIO initialization and setup 
pinMode(DONE_READING, INPUT); 
pinMode(PI_GRAPH_DONE, OUTPUT); 
pinMode(FULL, INPUT); 
pinMode(RESET, OUTPUT); 
pinMode(SW_1, INPUT); 
pinMode(SW_2, INPUT); 
pinMode(SW_3, INPUT); 
pinMode(SW_4, INPUT); 
pinMode(SW_5, INPUT); 
pinMode(SW_6, INPUT); 
pinMode(SW_7, INPUT); 
pinMode(SW_KILL, INPUT); 

 
digitalWrite(RESET, HIGH); 
printf("RESET\n"); 
delayMillis(3000); 
digitalWrite(RESET, LOW); 

 
while(1) { 

// If the kill switch is on, close the gnuplot windows 
if(digitalRead(SW_KILL)) { 

fprintf(gnuplot, "clear\n"); 
fprintf(gnuplot, "exit\n"); 

}  
// If the DONE_READING pin is high, plot the data we have read  
// from RAM 
else if(digitalRead(DONE_READING)) { 

fclose(data); 
 
// Conditionals for how to set the X-axis scales on the plot 
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if(digitalRead(SW_1)) { 
fprintf(gnuplot, "set xrange[0:.0001]\n"); 

}  
else if(digitalRead(SW_2)) { 

fprintf(gnuplot, "set xrange[0:.001]\n"); 
}  
else if(digitalRead(SW_3)) { 

fprintf(gnuplot, "set xrange[0:.01]\n"); 
}  
else if(digitalRead(SW_4)) { 

fprintf(gnuplot, "set xrange[0:.1]\n"); 
}  
else { 

fprintf(gnuplot, "set xrange[0:.001]\n"); 
} 
 
// Conditionals for how to set the Y-axis scales on the plot 
if(digitalRead(SW_5)) { 

fprintf(gnuplot, "set yrange[0:.5]\n"); 
} 
else if(digitalRead(SW_6)) { 

fprintf(gnuplot, "set yrange[0:2.5]\n"); 
} 
else if(digitalRead(SW_7)) { 

fprintf(gnuplot, "set yrange[0:5]\n"); 
} 
else { 

fprintf(gnuplot, "Set yrange[0:5]\n"); 
} 
 
// update the plot and keep it up for 2 seconds with delay 
fprintf(gnuplot, "plot '%s' notitle smooth csplines\n", data_files); 
fflush(gnuplot); 
fprintf(gnuplot, "pause 1\n"); 
delayMillis(2000); 
printf("if: %d\n", counter); 
 
// reset the counter and then reopen the data file to refill it 
counter = 0; 
data = fopen(data_files, "w"); 
// Reset the addresses on the FPGA  
digitalWrite(PI_GRAPH_DONE, HIGH); 
printf("RESET\n"); 
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spiSendReceive(0); 
digitalWrite(PI_GRAPH_DONE, LOW); 

} 
// if the RAM buffer is full execute conditional block 
else if(digitalRead(FULL)) { 

// grab the data from a single address in RAM 
spi_data = spiSendReceive(0); 
printf("else if: %d, byte: %d\n", counter, spi_data); 
spi_data_shift = (int)spi_data << 4; 
volt = (double)spi_data_shift/4096.0 * 5.0; 
// correctly update the time step 
times = time_div * (double)counter; 
// write the time and voltage to the data file 
fprintf(data, "%lf %lf\n", times, volt); 
counter++; 

} 
else { 

printf("else: %d\n", counter); 
continue; 

} 
} // end while 
return 0; 

} 
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Appendix B: Verilog Code  

// oscope.sv 
// jvillegas@g.hmc.edu, ndraper@g.hmc.edu 11/10/2017 
 
/* 
 * Create an oscilloscope that reads in an analog waveform which 
 * is then passed to an ADC. The FPGA will then sample the data  
 * from the ADC and write it to a buffer in its on board RAM. 
 * Once the buffer fills, the FPGA will stop reading writing  
 * values to its memory and then signal the Pi to read values 
 * from the RAM buffer. Once the Pi reads all the data, it will 
 * signal the FPGA to read from the ADC and refill the buffer. 
 */ 
module oscope(input logic osc_clk, 

  input logic reset, 
  input logic adc_data, 
  input logic pi_graph_done, 

              input logic sclk, 
  output logic adc_clk, 
  output logic adc_conv, 
  output logic full, 
  output logic done_reading, 
  output logic miso, 
  output logic [7:0] read_led); 

  
logic [7:0] write_data, read_data; 
logic [13:0] read_adr; 
logic write_enable; 

 
// Instantiation of the adc_com module   
adc_com adc1(osc_clk, reset, adc_data, adc_clk, adc_conv, write_enable, write_data); 
// Instantiation of the memory module   
memory m1(adc_clk, reset, write_enable, write_data, read_adr, pi_graph_done,  

         read_data, done_reading, full, read_led);   
// Instantiation of the pi_spi module   
pi_spi s1(sclk, reset, miso, pi_graph_done, read_adr, read_data); 
 

endmodule 
 
// Module used to communicate with the ADC, collects what data to write to RAM 
// as well as a write enable flag for when to write 
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module adc_com(input logic osc_clk, 
     input logic reset, 

      input logic adc_data, 
     output logic adc_clk, 
     output logic adc_conv, 
     output logic write_enable, 

      output logic [7:0] write_data); 
 
// State declarations 
typedef enum logic [4:0] {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,  

     S12, S13, S14, S15, S16, S17, S18, S19} statetype; 
statetype state, nextstate; 

 
// temp register to hold adc data 
logic [11:0] temp_data; 
// counter for adc_clk 
logic [31:0] counter; 

 
// oscillator clock to set the adc_clk 
always_ff @(posedge osc_clk, posedge reset) 

if (reset) counter <= 0; 
else counter <= counter + 1; 

 
always_ff @(negedge adc_clk, posedge reset) 
begin 

if (reset) state <= S0; 
// state transition and loading of temp_data 
else 
begin 

state <= nextstate; 
case (state) 

// do nothing 
S0: temp_data <= 0;  
// conv goes low, do nothing 
S1: ;  
// junk cycle no data, do nothing 
S2: ; 
// MSB D11 
S3: temp_data[11] <= adc_data; 
S4: temp_data[10] <= adc_data; 
S5: temp_data[9] <= adc_data; 
S6: temp_data[8] <= adc_data; 
S7: temp_data[7] <= adc_data; 
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S8: temp_data[6] <= adc_data; 
S9: temp_data[5] <= adc_data; 
S10: temp_data[4] <= adc_data; 
S11: temp_data[3] <= adc_data; 
S12: temp_data[2] <= adc_data; 
S13: temp_data[1] <= adc_data; 
// LSB D0 
S14: temp_data[0] <= adc_data; 
// Raises the conv pin and write enable no data to collect 
S15: ;  
default: ; // do nothing 

endcase 
end 

end 
 

// state transition logic, adc_conv logic, write_enable logic, 
always_comb 
begin 

case (state) 
// default conv is high and no writing 
S0: begin 

adc_conv = 1; 
write_enable = 0; 
nextstate = S1; 

end 
// first time conv goes low 
S1: begin 

adc_conv = 0; 
write_enable = 0; 
nextstate = S2; 

end 
// junk cycle no data comes in yet 
S2: begin 

nextstate = S3; 
adc_conv = 0; 
write_enable = 0; 

end 
// D11 (MSB) comes in at this point 
S3: begin 

nextstate = S4; 
adc_conv = 0; 
write_enable = 0; 

end 
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// D10  
S4: begin  

nextstate = S5; 
adc_conv = 0; 
write_enable = 0; 

end 
// D9  
S5: begin 

nextstate = S6; 
adc_conv = 0; 
write_enable = 0; 

end 
// D8 
S6: begin 

nextstate = S7; 
adc_conv = 0; 
write_enable = 0; 

end 
// D7 
S7: begin 

nextstate = S8; 
adc_conv = 0; 
write_enable = 0; 

end 
// D6 
S8: begin 

nextstate = S9; 
adc_conv = 0; 
write_enable = 0; 

end 
// D5 
S9: begin 

nextstate = S10; 
adc_conv = 0; 
write_enable = 0; 

end 
// D4 
S10: begin 

nextstate = S11; 
adc_conv = 0; 
write_enable = 0; 

end 
// D3 
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S11: begin 
nextstate = S12; 
adc_conv = 0; 
write_enable = 0; 

end 
// D2 
S12: begin 

nextstate = S13; 
adc_conv = 0; 

write_enable = 0; 
end 

// D1 
S13: begin 

nextstate = S14; 
adc_conv = 0; 
write_enable = 0; 

end 
// D0 (LSB) comes in 
S14: begin 

nextstate = S15; 
adc_conv = 0; 
write_enable = 0; 

end 
// Conv goes high and so do does write enable 
// then we repeat states 
S15: begin 

nextstate = S0; 
adc_conv = 1; 
write_enable = 1; 

end 
 

default: begin 
nextstate = S0; 
adc_conv = 1; 
write_enable = 0; 

end 
endcase // state 

end 
 
assign adc_clk = counter[4]; 
assign write_data = temp_data[11:4]; 

endmodule 
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// This module handles the writing to memory and reading from memory. 
// We write only when the write enable flag is high and  
module memory(input logic adc_clk, 

   input logic reset, 
   input logic write_enable, 

    input logic [7:0] write_data, 
   input logic [13:0] read_adr, 

    input logic pi_graph_done, 
   output logic [7:0] read_data, 
   output logic done_reading, 
   output logic full, 
   output logic [7:0] read_led); 

 
logic [13:0] write_adr; 
logic [7:0] mem[16383:0]; 

 
// full should only be high if the write address has reached 
// the end of the buffer and only be reset when the write_adr changes 
always_ff @(posedge adc_clk, posedge reset) 

if (reset) full <= 0; 
else if (pi_graph_done) full <= 0; 
else if (write_adr == 16382) full <= 1; 
else full <= full; 

 
// logic for writing the data to memory and appropriately changing the  
// writing pointer 
always_ff @(posedge adc_clk, posedge reset) 

if (reset) write_adr <= 0; 
else if (full) write_adr <= write_adr; 
else if (pi_graph_done) write_adr <= 0; 
else  
begin 

if (write_enable & !full)  
begin 

mem[write_adr] <= write_data; 
write_adr <= write_adr + 1; 

end 
else ; // do nothing 

end 
 

assign read_data = mem[read_adr]; 
assign done_reading = (read_adr == 16382); 
assign read_led = write_data; 
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endmodule 
 
// Module to communicate with the Pi and send read_data over MISO to the FPGA, 
// also handle the read address generator to grab data from memory 
module pi_spi( input logic sclk, 

  input logic reset, 
 output logic miso, 
 input logic pi_graph_done, 

  output logic [13:0] read_adr, 
             input logic [7:0] read_data); 

  
logic reset_adr; 

 
typedef enum logic[3:0] {S1, S2, S3, S4, S5, S6, S7, S8} statetype; 
statetype state, nextstate; 
 
// next state transition  
always_ff @(posedge sclk, posedge reset) 

if (reset) state <= S8; 
else if (pi_graph_done) state <= S8; 
else state <= nextstate; 

 
// get read data to miso  
always_ff @(negedge sclk, posedge reset) 

if (reset) miso <= 0; 
else 

case (state) 
S1: miso <= read_data[6]; 
S2: miso <= read_data[5]; 
S3: miso <= read_data[4]; 
S4: miso <= read_data[3]; 
S5: miso <= read_data[2]; 
S6: miso <= read_data[1]; 
S7: miso <= read_data[0]; 
S8: miso <= read_data[7]; 
default: miso <= 0; 

Endcase 
 

// logic to control the read address 
always_ff @(posedge sclk, posedge reset) 

if (reset) read_adr <= 0; 
else if (pi_graph_done) read_adr <= 0; 
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else if (state == S7) read_adr <= read_adr + 1; 
else read_adr <= read_adr; 

 
// nextstate logic 
always_comb 

case (state) 
S8: nextstate = S1; 
S1: nextstate = S2; 
S2: nextstate = S3; 
S3: nextstate = S4; 
S4: nextstate = S5; 
S5: nextstate = S6; 
S6: nextstate = S7; 
S7: nextstate = S8; 
default: nextstate = S8; 

endcase 
endmodule 
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Appendix C: System Block Diagram 
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Appendix D: Circuit Schematic 
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Appendix E: FPGA Pin Assignments 

 

Digital Logic FPGA Pin Number 

Oscillator Clock Pin 88 

ADC Clock Pin 10 

ADC Data / ADC MISO Pin 32 

ADC CE / Conversion Pin 28 

Full Flag Pin 55 

Reset / Pi Graph Done Flag Pin 66 

Done Reading Flag Pin 65 

Pi Serial Clock Pin 60 

Pi MISO Pin 59 

 

Appendix F: Raspberry Pi 3B Pin Assignments 

 

Digital Logic Raspberry Pi Number 

Full Flag Pin 19 

Done Reading Flag Pin 27 

Reset / Pi Graph Done Flag Pin 22 

Pi Serial Clock Pin SCLK 

Pi MISO Pin MISO 

X Axis 0 - .0001 Pin 12 

X Axis 0 - .001 Pin 16 

X Axis 0 - .01 Pin 20 
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X Axis 0 - .1 Pin 21 

Y Axis 0 - .5 Pin 25 

Y Axis 0 - 2.5 Pin 24 

Y Axis 0 - 5 Pin 23 

Kill Program Switch Pin 18 

 
 


