E155 Final Report: The Oscilloscope
Nick Draper & Jesus Villegas
11/29/2017

e EEE R EE SR EEREE
e SRR EEE RN

raaeaaar R TR EEREREREEEJRIES.]

lI.llllll##lllillllIii

Abstract: The goal of this project is to build a rudimentary oscilloscope that has a throughput
rate of 500 kHz and controls for setting the x and y range of the display. The ADS7818 converts
the input signal into a digital signal and communicates this to the buffer via SPI. The buffer is
designed using the FPGA in order to store the data from the ADS7818 and synchronize the
output with the Raspberry Pi. The Pi receives the data via SPI and converts the values back into

voltages. The Pi then graphs the data continuously with the appropriate x and y ranges.

Introduction

Modern oscilloscopes are generally costly and not very portable. Even cheap analog
oscilloscopes can start at hundreds of dollars. This report documents the process for
constructing a rudimentary oscilloscope using a fast sampling ADC coupled with a Raspberry Pi
and an Altera Cyclone FPGA. The design will be both inexpensive relative to a professional lab
oscilloscope and be portable such that a hobbyist or electrical engineering enthusiast can

transport it with ease.

The basic functionality of an oscilloscope is rather straightforward. Therefore the goal of the
project is to take in a continuous voltage reading, then pass this analog signal through a
low-pass filter and then through an analog-to-digital converter. The ADC outputs the now digital
signal at a high frequency into a buffer which is essentially the memory storage for the samples.
Then have the buffer read out the stored samples at a lower frequency to a computer or any

graphing capable device with controls to specify axis limits.

System Breakdown

Analog Filtered
Waveform Analog
Waveform
——> lopres s anc

8-bit encoding of
voltage
File to be plotted

Display |« RE‘SFF',?”W < FPGA

Digital code from
RAM

Figure 1: Block Diagram of Data Flow Through System

The system is comprised of three large scale subsystems highlighted in purple in Figure 1: the
ADC, the memory buffer on the FPGA, and the Raspberry Pi. An analog waveform between
zero and five volts is fed into a low pass filter, which consists of a simple RC circuit with a cutoff
frequency of approximately 25 kHz. From there, the signal is then fed into the ADS7818 ADC

which converts an analog voltage value in the specified range above into a 12 bit digital code.

From there, the eight most significant from the ADC are then stored into a temporary register on
the Altera Cyclone IV FPGA EP4CESG at a rate of 1.25 MHz. This transmission process between
the FPGA and ADC works over SPI. When the temporary register is filled with the appropriate
eight bits, a write enable flag goes high to indicate to the system to write the value to RAM. This
process continually repeats until the whole RAM block, which has a size of about 16.3 Kbytes, is
filled and the write pointer has reached the last address. Once the RAM buffer fills, the system

then transitions to its read mode.

In read mode, the system no longer writes any values into RAM and instead sets the read
pointer to the beginning of the memory block. From there the Raspberry Pi receives a signal
that it should begin reading. Then while the read pointer has not reached the end the RAM, the
Pi reads a one byte value each time over SPI at a rate of 100 kHz. After every read, the read
address is incremented on the FPGA, and the Pi writes the value and a timestamp to a file
descriptor to keep a record of the data from the current buffer. When the read address has
finally reached the end of the memory, the FPGA signal the Pi through a GPIO to graph the
current data. The Pi then uses a program called Gnuplot to plot the data contained in the file. A
software timer delay displays the plot for a duration and then flushes the data in the file and
sends a reset signal to the FPGA to reset all addresses and states and the whole process
repeats. There are also two sets of quad dip switches that control the X-axis and Y-axis scaling
of the plotted data.

New Hardware

This project uses the ADS7818 because it has the highest frequency speed of any DIP

packaged ADC which is preferable due to its straightforward implementation.The ADS7818 is a

successive approximation analog-to-digital converter which means that the conversion is done

via a binary search through all quantization levels. In other words, the ADC approximates a

discrete value for the voltage and then converts this approximate digital signal back to analog.

Then a comparator takes in the original analog signal and the reconstructed analog signal in

order to test the validity of the approximation. Due to this process of approximation, when the

ADC is prompted over SPI to begin sending data it sends a 16-bit package where the first two

bits and the last two bits do not encode any relevant data but rather all of the data is encoded
into the middle 12 bits.

29yF i%: ADSTE18
s 1 | Vees e
Al Wgni i +In CLK | 7 Serial Clock s
o DATA, E—(Serizl Data Microcontrollar
— or DSP
4 |aND CONV E]—(Convert Start

Figure 2: Operation Schematic [2]

PIN HAME DESCRIPTION

1 Vs Reference Quiput. Decouple to ground with & 0.1pF ceramic capacitor and & 2.2pF tantalum capacitor.

2 +In Man-imverting Input.

3 —In Inverting Input. Connect to ground or to remote ground sense point

4 GMD Grownd.

5 CONY Convert Input. Controls the samplethold mode, start of conversion, start of serial data transfer, type of seral transfer, and power
down mode. Sea the Digital Interface section for more information.

B DATA Sarial Data Output. The 12-bit convarsion result is serially transmitted most significant bit first with each bit valid on the rising edge
of CLK. By propery controlling tha CONV input, it is possibly o have the data transmitted least significant kit first. Sea the Digital
Intarface section for more information.

7 CLK Clock Input. Synchronizes the serial data transfer and defermines conversion speed.

a o Power Supply. Decouple to ground with a 0.1wF ceramic capacitor and = 10uF tantalum capacitor.

Figure 3: Pin Reference Table [2]

Figure 2 above, shows the schematic for the ADS7818 circuit used in this project. This
schematic allows for only positive analog inputs since the inverted input is connected to ground.
This device requires three signals communication, CLK, DATA, and CONYV, to transfer data over
the FPGA. The CLK signal is an input signal which sets the clock speed of the ADC. The
minimum clock speed is of 200 kHz with a 12.5 kHz throughput rate while the maximum clock
speed is 8 MHz with a 500 kHz throughput rate. In this project the FPGA outputs a 1.25 MHz
clock signal to the ADC. The DATA signal outputs voltage in 16-bits with a 12-bit resolution.
Lastly, CONV acts as a trigger in order to the signal the ADC to stop sampling and begin the

process of converting the signal and sending it over DATA.

Figure 4: Timing Diagram for Communication Protocol with FPGA [2]

Two important notes about this component. This project instead implements the DSP timing
diagram from the ADS7818, which is shown above, and this timing sequence works with the SPI
module on the FPGA and communicates the data over correctly. The next is that the data sheet
indicates to read on the posedge of the CLK however this created an issue where the LSB of a
previous reading carried over as the MSB of the next reading causing a 2.5 V shift in some

values.

In order to convert the values output by the ADC back into voltages, divide the values by 4096,
which is the maximum for a 12-bit number, and then multiply it by the reference voltage. While
this covers a general explanation of implementation, the data sheet which is widely available on

the internet should be referenced for any further guidance.

Microcontroller (Raspberry Pi) Design

The Raspberry Pi performs four main functions: 1) Converts the ADC values into voltages while
also using a counter to approximate the corresponding time value, 2) Writes the voltage and

corresponding time value into a text file, 3) Reads and decodes the the dip switches in order to
accordingly set the x and y range or terminate the program, and 4) Graph the values in the text

file using gnuplot.

1) In order to read in the ADC values from the FPGA, functions were written using SPI. The Pi
initiates communication using the SPIinit() fucntion from EasyPio.h [1]. The CS bit is set low and
the SCLK is set to 100 kHz. However since the project requires that the FPGA be the master,
GPIO pins FULL and DONE_READING are set as inputs and PI_GRAPH_DONE is set as an
output. These auxiliary signals allowed the FPGA to function as a pseudo-slave. The FULL
signal goes HIGH in order to trigger the spiSendReceive() function [1]. The ADC value is

converted, the corresponding time value is approximated.

2) Once the value has been converted and the time value approximated, it is written to a text
file. This is repeated until the DONE_READING signal goes HIGH indicating all the values have

been read out of memory.

3) Once DONE_READING goes HIGH then the Pi reads the switch values and accordingly sets
the x and y range using the fprintf function to write to the gnuplot command line. In this case the
commands are set xrange and set yrange.[3] However, if SWITCH_KILL is HIGH then the
program will not enter the DONE_READING condition, and the program will close gnuplot with

the fprintf function and gnuplot command clear and exit.

4) Once the x-range and y-range have been set the plot is generated using the fprintf function
and the gnuplot command plot; then the gnuplot command pause is used in order to pause
gnuplot while the program continue running in order to read new data from the FPGA. [3] This
allows for the graph to continuously update but also causes a slight delay between switch input
and display change. After gnuplot is paused, then PI_GRAPH_DONE is set HIGH in order to

appropriately reset registers within both the memory and pi communication modules so that

data is sent over whenever it is available once again.

FPGA (Altera Cyclone IV EP4CEG6) Design

The FPGA has three modules each of which performs a crucial function to the system. The first
module called adc_com in shown in Appendix C is responsible for the communication and data
retrieval from the ADC. This module is comprised of a state machine with 16 states. In the
zeroth state, the default, the adc_conv pin raised high. When the system transitions to state
one, the adc_conv pin is set low. The system then enters state two which corresponds with
cycle one in Figure 4 for the timing diagram. This state has no relevant data coming over the
MISO line and thus can be neglected. When the module enters state three, on the negative
edge of the clock the most significant bit is sent on the MISO line. This happens for the next 11
cycles since the ADC sends 12 bits of data. After all the bits have been sent out, the adc_conv
flag is raised back high and then the write_enable flag is raised high. This indicates to the
memory module to write the eight most significant bits of this voltage reading to RAM. Note that
that write_enable pin is high for one cycle as to not write the same values multiple times to
RAM.

The second module handles all the memory interfacing operations and is appropriately declared
memory. This module configures a large block of memory, in this case about 16 Kbytes, as

single-port memory shown here in Figure 5.

- | data(]
| address]]
— |wren
—» | byteenal]

P | addressstall qf) —»
— > inclack outclock <|€———
—|inclocken outclocken |-
—— - |rden
—le | ACIT

Figure 5: Single-Port Memory Block Diagram
The memory takes in two clocks, one which is synchronized with the ADC clock, the inclock,
and the other being a serial clock coming from the Raspberry Pi, the outclock. It also takes in a

write_enable flag, one byte of write_data. Its outputs are one byte of read_data, a 14 bit read

address, a full flag, and a done_reading flag. The memory logic is quite simple. It functions as a
three state state machine. In its zeroth state, it just holds and does nothing. In state one, itis in
the write state. Here the modules accepts write_data from the adc_com module and will write
the data to RAM when the write_enable flag is high. After every write, the write pointer is
incremented. Once the write pointer reaches the end of the RAM block, the system transitions to
state two, read mode. In read mode, the module will not write values anymore and assigns
read_data to whatever the value in memory is at the read address it is given. After every read,
which is comprised of one byte, the read pointer is also incremented. Once the read pointer has
reached the end of the RAM block, the system enters the zeroth state in which it does nothing

until instructed by the Pi.

The final module is the pi_spi one. This module handles the transmission of data from RAM to
the Pi using the SPI protocol. In this module, the read address is generated and sent to the
memory module. It then is given a byte of value, read_data, from which it writes one bit of
read_data every serial clock cycle to the MISO line. After all eight bits have been sent, the read
address is incremented. Note that the Pi will send over only eight serial clock cycles at a time
and the read mode is handled by the Pi. When the FPGA enters the zeroth state, the Pi then
graphs its current data set. Once the Pi finishes graphing its data with a delay, it raises a reset

pin high which resets all addresses on the FPGA and causes it to enter write mode.

S B
.
Ve ™
LN
\'.

{ |
| State 1 |
". Write Mode |

Wite pointer
reachas mamaory
end

f State 2 4

| Read Mode II

"‘\\ ,f"' Read pointer Il\ /'Jl
- f,/ reaches memory -

T—— end

Figure 6: Overall State Machine of System

Results and Future Work

The final project works well and meets all the design parameters laid out in the project proposal.
It can successfully graph all DC voltages between zero and five volts with very reasonable
accuracy. It can also graph sinusoidal waves up to 23 kHz with good accuracy and can handle
five volt peak to peak waves all the way down to 200 mV peak to peak waves with fair accuracy.
The system can also handle triangle wave inputs as well as square waves. Though the
frequency of the square waves was more limited due to the large harmonics of its sharp edges.
Since the low pass filter has a corner frequency of only about 25 kHz, the sharpness of the
square waves did not show as well as expected. Though it does match what an actual

oscilloscope measures for the same signal through a low pass filter.

For future work, the system can be improved by adding a programmable gain amplifier (PGA).
For signals smaller than 200 mV peak to peak, the system could amplify such voltages with a
PGA and have a wider variety. Other improvements include constructing a triggering module to
plot as opposed to just a software delay. As well as a fast fourier transform display to improve

functionality.

References

[1] E155: Microprocessor-Based Systems. Harvey Mudd College, 2016. Web:

http://pages.hmc.edu/harris/class/e155/

[2] “12-Bit High Speed Low Power Sampling ANALOG-TO-DIGITAL CONVERTER”. Burr
Brown. May 2000. https://datasheet.lcsc.com/szlcsc/ADS7818E-250_C122808.pdf

[3] “gnuplot 5.0 An Interactive Plotting Program” Williams & Kelley. August 2017

http://www.gnuplot.info/docs 5.0/gnuplot.pdf

http://pages.hmc.edu/harris/class/e155/
https://datasheet.lcsc.com/szlcsc/ADS7818E-250_C122808.pdf
http://www.gnuplot.info/docs_5.0/gnuplot.pdf

10

Parts List
Part Source Vendor Part # Quantity Price (per unit)
ADS7818 ADC | Digikey ADS7818P-ND |5 $6.41

Appendix A: Raspberry Pi 3B C Code

I/ plot.c

/I jvillegas@g.hmc.edu, ndraper@g.hmc.edu 11/10/2017
I

/I Receives data from an FPGA which acts as a buffer

/I for a hobbyist oscilloscope and plots the data

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include "EasyPIO.h"

#define DATA_REQ 26
#define DONE_READING 27
#define PI_GRAPH_DONE 22
#define FULL 19

#define HIGH 1

#define LOW 0

#define SW_1 12 //MSB of closest switch
#define SW_2 16

#define SW_3 20

#define SW_4 21 //LSB

#define SW_KILL 18 //closes gnuplot MSB of farthest switch
#define SW_7 23

#define SW_6 24

#define SW_5 25 //LSB

int main(void)

{
char spi_data = 0;
int spi_data_shift = 0;
double times = 0;
double volt = 0;
int counter = 0;

/I Speed of the SCLK from the Pi when reading SPI
int sclk = 100000;
/I Speed of the clock sent to the ADC, set by the FPGA

11

12

double adc_clock = 1250000.0;
/I time spacing between each voltage reading
double time_div = 16.0/adc_clock;

/I file descriptor for both

char *data_files = "data0.dat";

FILE *data = fopen(data_files, "w");
FILE *gnuplot = popen ("gnuplot", "w");

piolnit();

I/l setup SPI on the pi with speed of sclk
spilnit(sclk, 0);

/I GPIO initialization and setup
pinMode(DONE_READING, INPUT);
pinMode(PI_GRAPH_DONE, OUTPUT);
pinMode(FULL, INPUT);
pinMode(RESET, OUTPUT);
pinMode(SW_1, INPUT);
pinMode(SW_2, INPUT
pinMode(SW_3, INPUT
pinMode(SW_4, INPUT
pinMode(SW_5, INPUT
pinMode(SW_6, INPUT
pinMode(SW_7, INPUT);
pinMode(SW_KILL, INPUT);

N~ N N N N N

digitalWrite(RESET, HIGH);
printf("RESET\n");
delayMillis(3000);
digitalWrite(RESET, LOW);

while(1) {
/I If the kill switch is on, close the gnuplot windows
if(digitalRead(SW_KILL)) {
fprintf(gnuplot, "clear\n");
fprintf(gnuplot, "exit\n");
}
/l If the DONE_READING pin is high, plot the data we have read
/l from RAM
else if(digitalRead(DONE_READING)) {
fclose(data);

/I Conditionals for how to set the X-axis scales on the plot

if(digitalRead(SW_1)) {

fprintf(gnuplot, "set xrange[0:.0001]\n");
}
else if(digitalRead(SW_2)) {

fprintf(gnuplot, "set xrange[0:.001]\n");
}
else if(digitalRead(SW_3)) {

fprintf(gnuplot, "set xrange[0:.017\n");
}
else if(digitalRead(SW_4)) {

fprintf(gnuplot, "set xrange[0:.1]\n");
}
else {

fprintf(gnuplot, "set xrange[0:.001]\n");
}

/I Conditionals for how to set the Y-axis scales on the plot
if(digitalRead(SW_5)) {

fprintf(gnuplot, "set yrange[0:.5]\n");
}
else if(digitalRead(SW_6)) {

fprintf(gnuplot, "set yrange[0:2.5]\n");
}
else if(digitalRead(SW_7)) {

fprintf(gnuplot, "set yrange[0:5]\n");
}
else {

fprintf(gnuplot, "Set yrange[0:5]\n");
}

/I update the plot and keep it up for 2 seconds with delay

fprintf(gnuplot, "plot '%s' notitle smooth csplines\n”, data_files);

fflush(gnuplot);
fprintf(gnuplot, "pause 1\n");
delayMillis(2000);

printf("if: %d\n", counter);

/l reset the counter and then reopen the data file to refill it
counter = 0;

data = fopen(data_files, "w");

/I Reset the addresses on the FPGA
digitalWrite(PI_GRAPH_DONE, HIGH);
printf("RESET\n");

13

14

spiSendReceive(0);
digitalWrite(PI_GRAPH_DONE, LOW);
}
/I if the RAM buffer is full execute conditional block
else if(digitalRead(FULL)) {
I/l grab the data from a single address in RAM
spi_data = spiSendReceive(0);
printf("else if: %d, byte: %d\n", counter, spi_data);
spi_data_shift = (int)spi_data << 4;
volt = (double)spi_data_shift/4096.0 * 5.0;
I correctly update the time step
times = time_div * (double)counter;
I/l write the time and voltage to the data file
fprintf(data, "%If %If\n", times, volt);
counter++;

else {
printf("else: %d\n", counter);
continue;
}
} // end while
return O;

15

Appendix B: Verilog Code

/] oscope.sv
Il jvillegas@g.hmc.edu, ndraper@g.hmc.edu 11/10/2017

[
* Create an oscilloscope that reads in an analog waveform which
* is then passed to an ADC. The FPGA will then sample the data
* from the ADC and write it to a buffer in its on board RAM.

* Once the buffer fills, the FPGA will stop reading writing
* values to its memory and then signal the Pi to read values
* from the RAM buffer. Once the Pi reads all the data, it will
* signal the FPGA to read from the ADC and refill the buffer.
*/
module oscope(input logic osc_clk,

input logic reset,

input logic adc_data,

input logic pi_graph_done,

input logic sclk,

output logic adc_clk,

output logic adc_conv,

output logic full,

output logic done_reading,

output logic miso,

output logic [7:0] read_led);

logic [7:0] write_data, read_data;
logic [13:0] read_adr;
logic write_enable;

/I Instantiation of the adc_com module

adc_com adc1(osc_clk, reset, adc_data, adc_clk, adc_conv, write_enable, write_data);

/I Instantiation of the memory module

memory m1(adc_clk, reset, write_enable, write_data, read_adr, pi_graph_done,
read_data, done_reading, full, read_led);

/I Instantiation of the pi_spi module

pi_spi s1(sclk, reset, miso, pi_graph_done, read_adr, read_data);

endmodule

// Module used to communicate with the ADC, collects what data to write to RAM
/I as well as a write enable flag for when to write

module adc_com(input logic osc_clk,
input logic reset,
input logic adc_data,
output logic adc_clk,
output logic adc_conv,
output logic write_enabile,
output logic [7:0] write_data);

/| State declarations

typedef enum logic [4:0] {SO, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,
S12, 813, S14, S15, S16, S17, S18, S19} statetype;

statetype state, nextstate;

/l temp register to hold adc data
logic [11:0] temp_data;

I/l counter for adc_clk

logic [31:0] counter;

/I oscillator clock to set the adc_clk

always_ff @(posedge osc_clk, posedge reset)
if (reset) counter <= 0;
else counter <= counter + 1;

always_ff @(negedge adc_clk, posedge reset)
begin

if (reset) state <= S0;

/I state transition and loading of temp_data

else

begin

state <= nextstate;
case (state)

// do nothing
S0: temp_data <=0;
/I conv goes low, do nothing
S1: :
I/l junk cycle no data, do nothing
S2: :
// MSB D11
S3: temp_data[11] <= adc_data;
S4: temp_data[10] <= adc_data;
S5: temp_data[9] <= adc_data;
S6: temp_data[8] <= adc_data;
S7: temp_data[7] <= adc_data;

16

17

S8: temp_data[6] <= adc_data;
S9: temp_data[5] <= adc_data;
S10: temp_data[4] <= adc_data;
S11: temp_data[3] <= adc_data;
S12: temp_data[2] <= adc_data;
S13: temp_data[1] <= adc_data;
/I LSB DO
S14: temp_data[0] <= adc_data;
/I Raises the conv pin and write enable no data to collect
S15:
default: ; /1 do nothing
endcase

end
end

/[state transition logic, adc_conv logic, write_enable logic,

always_comb
begin
case (state)

/I default conv is high and no writing

SO:

begin
adc_conv = 1;
write_enable = 0;
nextstate = S1;
end

// first time conv goes low

S1:

begin
adc_conv = 0;
write_enable = 0;
nextstate = S2;
end

I/l junk cycle no data comes in yet

S2:

begin
nextstate = S3;
adc_conv = 0;
write_enable = 0;
end

// D11 (MSB) comes in at this point

S3:

begin
nextstate = S4;
adc_conv = 0;
write_enable = 0;
end

/I D10
S4:

/I D9
S5:

/I D8
S6:

/I D7
S7:

/I D6
S8:

/ D5
S9:

/| D4
S10:

/' D3

begin

end

begin

end

begin

end

begin

end

begin

end

begin

end

begin

end

nextstate = S5;
adc_conv = 0;
write_enable = 0;

nextstate = S6;
adc_conv = 0;
write_enable = 0;

nextstate = S7;
adc_conv = 0;
write_enable = 0;

nextstate = S8;
adc_conv = 0;
write_enable = 0;

nextstate = S9;
adc_conv = 0;
write_enable = 0;

nextstate = S10;
adc_conv = 0;
write_enable = 0;

nextstate = S11;
adc_conv = 0;
write_enable = 0;

18

S11: begin
nextstate = S12;
adc_conv = 0;
write_enable = 0;

end
/I D2
S12: begin
nextstate = S13;
adc_conv = 0;
write_enable = 0;
end
/I D1
S13: begin
nextstate = S14;
adc_conv = 0;
write_enable = 0;
end
// DO (LSB) comes in
S14: begin
nextstate = S15;
adc_conv = 0;
write_enable = 0;
end

/I Conv goes high and so do does write enable
/l then we repeat states

S15: begin
nextstate = SO;
adc_conv = 1;
write_enable = 1;
end
default: begin
nextstate = SO;
adc_conv = 1;
write_enable = 0;
end

endcase // state
end

assign adc_clk = counter[4];
assign write_data = temp_data[11:4];
endmodule

20

/I This module handles the writing to memory and reading from memory.
/I We write only when the write enable flag is high and
module memory(input logic adc_clk,

input logic reset,

input logic write_enable,

input logic [7:0] write_data,

input logic [13:0] read_adr,

input logic pi_graph_done,

output logic [7:0] read_data,

output logic done_reading,

output logic full,

output logic [7:0] read_led);

logic [13:0] write_adr;
logic [7:0] mem[16383:0];

/I full should only be high if the write address has reached
I/l the end of the buffer and only be reset when the write_adr changes
always_ff @(posedge adc_clk, posedge reset)

if (reset) full <= 0;

else if (pi_graph_done) full <= 0;

else if (write_adr == 16382) full <= 1;

else full <= full;

/l'logic for writing the data to memory and appropriately changing the
// writing pointer
always_ff @(posedge adc_clk, posedge reset)

if (reset) write_adr <= 0;

else if (full) write_adr <= write_adr;

else if (pi_graph_done) write_adr <= 0;

else
begin
if (write_enable & !full)
begin
mem][write_adr] <= write_data;
write_adr <= write_adr + 1;
end
else ; // do nothing
end

assign read_data = mem[read_adr];
assign done_reading = (read_adr == 16382);
assign read_led = write_data;

endmodule

/I Module to communicate with the Pi and send read_data over MISO to the FPGA,
/I also handle the read address generator to grab data from memory
module pi_spi(input logic sclk,

input logic reset,

output logic miso,

input logic pi_graph_done,

output logic [13:0] read_adr,

input logic [7:0] read_data);

logic reset_adr;

typedef enum logic[3:0] {S1, S2, S3, S4, S5, S6, S7, S8} statetype;
statetype state, nextstate;

/I next state transition

always_ff @(posedge sclk, posedge reset)
if (reset) state <= S8;
else if (pi_graph_done) state <= S8;
else state <= nextstate;

/I get read data to miso
always_ff @(negedge sclk, posedge reset)
if (reset) miso <= 0;
else
case (state)
S1: miso <= read_data[6];
S2: miso <= read_data[5];
S3: miso <= read_data[4];
S4: miso <= read_data[3];
S5: miso <= read_data[2];
S6: miso <= read_data[1];
S7: miso <= read_data[0];
S8: miso <= read_data[7];
default: miso <= 0;
Endcase

/l'logic to control the read address
always_ff @(posedge sclk, posedge reset)
if (reset) read_adr <= 0;
else if (pi_graph_done) read_adr <= 0;

21

else if (state == S7) read_adr <=read_adr + 1;
else read_adr <= read_adr;

/I nextstate logic
always_comb

endmodule

case (state)
S8: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S3;
S3: nextstate = S4;
S4: nextstate = S5;
S5: nextstate = S6;
S6: nextstate = S7;
S7: nextstate = S8;
default: nextstate = S8;

endcase

22

23

|
. - S

(5= +

pir ihe —dada
_ l.|\m.| M
| ADC ! f’
ADC . clk Anc _ com

T.||

7 Wik —ere ble

__

_
X |
 ADC_canv lEE | ___. \
1

i Aok | |
_ |_Alc.data / Mz el | |

s ibssssid ; q

e B

(= i
nlu__.nfm_.lﬂnﬂnrr._m\t..n‘.

Lot

iagram

System Block D

Appendix C

24

Appendix D: Circuit Schematic

QST W

A 25

InvIJad 3N

LT53 ¥

24

H12 glL

Appendix E: FPGA Pin Assignments

Digital Logic FPGA Pin Number
Oscillator Clock Pin 88
ADC Clock Pin 10
ADC Data / ADC MISO Pin 32
ADC CE / Conversion Pin 28
Full Flag Pin 55
Reset / Pi Graph Done Flag Pin 66
Done Reading Flag Pin 65
Pi Serial Clock Pin 60
Pi MISO Pin 59

Appendix F: Raspberry Pi 3B Pin Assignments

Digital Logic Raspberry Pi Number
Full Flag Pin 19
Done Reading Flag Pin 27
Reset / Pi Graph Done Flag Pin 22
Pi Serial Clock Pin SCLK
Pi MISO Pin MISO
X Axis 0 - .0001 Pin 12
X Axis 0 - .001 Pin 16
X Axis 0 - .01 Pin 20

26

X Axis 0 - .1 Pin 21
Y Axis 0 - .5 Pin 25
Y Axis 0 - 2.5 Pin 24
Y Axis 0 -5 Pin 23

Kill Program Switch

Pin 18

