Running Rate-Controlled Music Player

Sabrina Chang, Lilly Liu
E155 - Fall 2017

Abstract

Our project implements a person’s running rate-controlled music player. A song of
similar beats-per-minute (BPM) from the runner’s initial rate is chosen from a stored database,
and depending on the runner’s speed during the length of the song, the song speeds up or slows
down. The runner’s landing rate is obtained through an accelerometer, whose output is processed
with an FPGA. The FPGA calculates the period of the runner’s landing rate, and sends that data
to the Raspberry Pi when it is requested, which does the necessary conversion to BPM and plays
a song and controls the speed. The system is able to accurately obtain the user’s running BPM

and play songs depending on the running speed.

Introduction

Many runners listen to music during their workout to keep up motivation or just to make
their runs more interesting. It is more motivating for runners to listen to songs of similar tempos
to their running rate than if the running rate greatly mismatched the song’s BPM.

This project helps the runner with their music needs by selecting a song initially based off
of their running speed during a calibration period. The music is then sped up or slowed down
depending on the runner’s speed in reference to the song’s BPM. The runner’s BPM is obtained
through an accelerometer that the runner holds in their hand. The runner’s landing rate is
obtained through the accelerometer held in hand as they run because studies and experimentation
have shown that a person’s running rate is 1:1 with their arms’ swinging rate.

The user interfaces with a webpage that contains a start button to start the calibration and
song, and a cancel button that cancels the song. The webpage also displays the runner’s speed
and the title of the song being played. The website is hosted on the Raspberry Pi, which requests
a new running period from the FPGA every two seconds. The FPGA does signal processing on
the data from the analog-to-digital converter that converts the output from the accelerometer. The
FPGA counts the number of cycles that pass between each swing, and sends this number to the

Raspberry Pi upon request. Figure 1 shows the block diagram of our system.

Website

Low Pass
Filter

;

A
-~
4
Y

ADC FPGA

SPI SPI

Accelerometer

A J

Raspberry Pi Speaker

Figure 1: System block diagram

New Hardware

In this project, we used an accelerometer to track the user’s hand swings’ acceleration.
Only the z output pin of the accelerometer is used to gather data, since the user’s arm swing
accelerates predominantly in the vertical z direction. A low-pass filter is implemented at the
output pin. Since the range of data of interest in this project is at most 3 Hz (or 180 BPM, which
is the running BPM of advanced athletes), a low-pass filter with cutoff frequency of 1 Hz is
implemented with a simple RC filter to improve measurement resolution and prevent aliasing.
The datasheet specifies that the bandwidth should be limited to the lowest frequency needed for
application to maximize resolution.

The accelerometer’s output data is observed to be roughly sinusoidal (see Figure 2), with
maximum peaks at the point of maximum acceleration, which is at the lowest point of the user’s
swing. Our initial data collection revealed that the data is acceptably noise-free and clean to do

signal processing on without additional filtering.

s 3 fast swings 5 slow swings
« T T T

Voltage (V)

0.5 |-

0 1 L L 1 L
0 100 200 300 400 500 600
Data points

700

Figure 2: Sample data collected with FPGA from accelerometer

Schematics

As seen in Figure 3, our system’s overall circuit schematic is shown. Data is first
collected from the z acceleration output pin of the accelerometer ADXL335, then fed into
Channel 1 of the analog-to-digital converter MCP3002, where it is converted into 10-bit data for
the FPGA to process. The data is transferred from the ADC to FPGA using Serial Peripheral
Interface (SPI).

The FPGA receives the data from the accelerometer and calculates the period in real
time, then adds it to the stored average of past 8 detected periods to ensure a smoother transition
in song speeds for the Raspberry Pi to play out.

The Raspberry Pi requests data from the FPGA over SPI, and converts the period value
into BPM, and depending on whether the start button has just been pressed or if it’s in the middle

of a song, selects a song of similar BPM from a stored database or multiplies the song speed by

the ratio of current running BPM over song BPM.

+5V

mos) —L
MISD —2
SCLK f—2
#2y |4
GND [—2
‘5

~ -~

o=

o = s
NHC,\DU*-«IU\U!-E‘UNH

Vin

GND

3.3v
Reset
ADC_Done
ADC_CS
ADC_CLK
ADC_MISO
ADC_MOS
Pi_MOS
Bi_MIS0
PIi_CLK

MCP3002

vDD/VREF (2

VSS

T5/SHON
CLK

pout
DIN

5

Yec
GND
Z
5T

ADXL3I35

é.N:"

o
=
=]

gbeaker_out

U GND

Figure 3: Overall Circuit Schematic

LS?
Speaker

1

FPGA Design

A
To ADC: find_select

From adc_mosi Gives out the average select value

FPGA: ade_clk

clk ade_cs prev_selects new_prev_selects

reset new_select avg_select

adc_spi
— i s find_peaks
data
From ’,ADC' HEGA MasT.er.ADlC Slave ™| Given data, it sends out a pulse
adciimiso comIpCALon every time it detects a peak
—> | Gets 10 bits of digital data from ADC ey P
From Pi:
pi_clk
pi_mosi
pulse reset l l
calc_period pi_spi To pi
. pi_miso
Given the pulses of peaks it stores the current_period Pi Master, FPGA Slave -
most recent bpms and outputs the Sends the current average period to the
average p data_received

Figure 4: Block Diagram of FPGA

Summary

Upon receiving data from the accelerometer with SPI communication, the FPGA
calculates the period between each arm swing using peak detection and sends it to the Raspberry
Pi upon request with SPI communication.
ADC slave FPGA master SPI Communication

The ADC converts the analog voltage output from the accelerometer into 10-bit data that
is sent to the FPGA. The FPGA requests data from the ADC on the adc_clk by sending out
adc_mosi and adc_cs which contains information on CS, channel selection mode, and data
transfer order. The slow clock (sclk) is chosen to be a factor of 2'° slower than the utility board’s
clock (40 MHz) because our counter for the period is based off of the communication, and faster
clocks would cause overflow in our period counter since we are only sending eight bits.
Finding Period

Once all ten bits of data are shifted in from the ADC, the find peaks module takes the
new data in and determines whether there is a peak. The model for peak detection was first

simulated in MATLAB to verify the accuracy of detection. On the FPGA, it accomplishes peak

detection by first identifying all peaks by computing the slopes between the current and previous
data points and multiplying the newly found slope with the stored previous slope, then
identifying the previous data point as a potential peak if the multiplied result is less than or equal
to zero.

Another criteria the potential peak must pass to be identified as an actual peak is that it
must be a certain margin above the local minimum, or the valley before the peak. This margin is
defined as ‘new_select’ in the find peaks module, and it is the difference between the values of a
confirmed peak and valley divided by four. The actual margin used to determine peaks is the
moving average of the past four ‘select’ values.

This peak detection function performs more accurately as time goes on. As seen in Figure
5, it is able to detect peaks with sufficient accuracy, but the initial detection and transitional
periods are less accurate because the ‘select’ values and periods need to settle to a steady-state

value to consistently be able to pick the correct peaks.

Found peaks with FPGA find_peaks module
2.2 T T T

| F |
Tl |

1.6

Voltage
-
!

1.2 N

Y u _

D ; 6 1 | 1 1 1 1
0 100 200 300 400 500 600 700

Points

Figure 5: Sample Data with Detected Peaks after FPGA Processing

If a potential peak is confirmed to be an actual peak, the output ‘pulse’ is set to one, and
another module called ‘calc_period’ restarts the counter and counts the number of cycles of
adc_done (high when ADC is done transferring data) that passes until the next pulse. This
number is then stored along with the past seven periods and averaged out. The averaged periods

is the value sent to the Pi upon request with SPI communication.

Microcontroller Design
Summary

The Pi controls the main logic for the system. It hosts a website with a play button, once
the button is pushed the C code is run. The C code first waits five seconds so the periods
received could be more accurate, asks for a period value and uses that to find a song. There are
three arrays that store information, one is an array that has the bpm and the length of the song.
The second array includes the filename of the song, and the third one is a string that has the
official title and artist. All the songs are placed in the same order so the indexing is the same. It
iterates through the array that has the bpm and length of the song and finds the one that is the
closest and chooses that as the song. Then it goes into a loop that plays the song. It plays portions
of the song at two seconds at a time and adjusts the tempo of each two second chunk so that the
song tempo will reflect the period received from the player. Our website also displays the song
name and artist and current speed in real time. The website also has a cancel button that cancels
the process
Finding BPM

The Pi receives the period value from the FPGA. The period value received is actually
the number of cycles of ade _done passed. To compute the frequency of running, the MuddPi
board’s clock (40MHz) is divided by 2'° and again by 16 (takes 16 cycles to collect 2 bytes of
data from ADC) to obtain adc_done’s frequency. The received period is then multiplied by the
inverse of adc_done’s frequency to find the actual time period between each peak. The BPM of

the runner is then computed by taking the inverse of this period multiplied by 60 seconds/minute.

Playing Music

Playing the music uses an external library called SoX (Sound eXchange). SoX allows
users to trim part of the song as well as adjust the tempo. How a typical system call in the C
program with SoX is formatted is “play songname.wav trim start _time length of trim tempo
tempo_rate.” The song is selected earlier, the start time is iterated through, the length of trim is
two seconds, and the tempo_rate is calculated as shown above. One problem we had earlier was
because we needed to wait for the Pi to receive the period value from the FPGA there was a
noticeable gap between the two sections of the song being played. To solve this problem, at the
end of the system call we added an “&” which meant the command is forked into a sub shell and
run asynchronously. Then we had to delayMillis, because when the song is run in a sub shell, it
goes immediately back to the main program and we want that section to play before we play the
next section. We delayMillis slightly less than how fast the song would play so the main program
could ask for the period from the FPGA and it would be able to start a new call as the old call
ended. As a result, the song played sounded continuous.
Website

The website uses Javascript to fetch the current song, artist and frequency. In the C code,
it writes the current song, artist, and frequency to a txt file. In the Javascript it uses XML to fetch
the text from the txt file and display it on the website. There are currently some issues with the
Javascript because it starts updating the text as soon as the play button is pushed but the there
should be no current song and frequency so it loads what is previously on the txt file. The fix we
attempted was in our C code, before it chooses a song, it writes “Loading Data...” into the txt
file so that it shows that it is still loading before it actually is playing the song. Our website also
has a cancel button which calls a C program that makes a system call to kill the processes.
Although it successfully ends the program, it also leads to a 500 internal server error because the
play program is canceled. We were unable to find a way to prevent the 500 internal server error
from showing. For a better product, we would fix the Javascript and 500 internal server

problems.

Results

We successfully implemented our project, which included accurate detection of the
runner’s landing rate, correct selection of songs of similar BPM to play, as well as ability to
speed up or slow down the song’s speed depending on the runner’s speed. The website
implemented is also able to successfully start and cancel playing the song depending on the
user’s control. It is also able to display the song title and runner’s current BPM.

There is room for improvement in the robustness of our system. Because we are swinging
the accelerometer mounted on a breadboard, sometimes the wires would come loose and we
would be perplexed as to why the system suddenly stopped working. Another aspect that could
be improved is to tailor the sensitivity of the accelerometer to suit our purposes better. While the
accelerometer is able to obtain reasonable data, it requires horizontal positioning of the board, or

else it would be too sensitive to unintentional tilts and human motions.

References

D. M. Harris and S. L. Harris, “I/O Systems,” in Digital Design and Computer Architecture:
ARM Edition, 1st ed. Burlington, MA: Morgan Kaufmann, 2015, ch. 9, pp. 531.¢9.

Ford, Matthew P., et al. “Arm constraint and walking in healthy adults.” Gait & Posture, vol. 26,
no. 1, 2007, pp. 135-141., doi:10.1016/j.gaitpost.2006.08.008.

“Small, Low Power, 3 Axis +/-g Accelerometer” ADXL335 datasheet, Analog Devices, Inc.
2009. https://www.sparkfun.com/datasheets/Components/SMD/adx1335.pdf

Tom O'Haver. “Peak Finding and Measurement.” Peak Finding and Measurement,
terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb.

“2.7V Dual Channel 10-Bit A/D Converter with SPI Serial Interface,” MCP3002 datasheet,
Microchip Technology Inc. 2011.

Parts List

Part Source Part Number Price

https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

Accelerometer https://www.sparkfun | ADXL335 $14.95
.com/products/9269
Headphones Personal Bose SoundLink N/A
on-ear wireless
headphones
ADC E155 Cabinet MCP3002 N/A
Capacitor E155 Cabinet 030KQ N/A

Appendices

Appendix A: SystemVerilog Code

[1/770777 7770777 77777777777777777777777777777
// final 11 sc.sv

// Lilly Liu, Sabrina Chang

// 1liu@hmc.edu, schang@hmc.edu

// December 2, 2017

// Finds the periods between peaks

I/ 7777777777777 7777777777 777777777777

module final 11 sc(input logic pi clk, clk, reset,
input logic adc miso, pi mosi,
output logic adc mosi, pi miso,
output logic adc_clk,
output logic adc cs,
output logic led, adc done);

logic [9:0] data; //accelerometer data

logic [7:0] pi_data, send period; //pi data not used, placeholder

pi spi pi(pi clk, pi mosi, pi miso, reset, send period, pi data);

adc_spi adc(clk, reset, adc miso, adc _mosi, adc_clk, adc_cs, data, adc_done);
calc period run per(reset, data, adc done, send period);

assign led = 1;
endmodule

[T 7777777777777 7777777777 777777777777777
// Pi Master, FPGA Slave

// Sends data to Raspberry pi on request

// Based off of code found in

// Digital Design and Computer Architecture by Harris and Harris

L1777 0007077777770 7 70777077777 77777777

module pi spi (input logic sck, //From master
input logic mosi, //From master
output logic miso, //To master
input logic reset, // System reset,
input logic[7:0] d, // Data to send
output logic [7:0] q); // Data recieved

logic [2:0] cnt;
logic gdelayed;

//3-bit counter tracks when full byte is transmitted
always ff@(negedge sck, posedge reset)

if (reset) cnt = 0;

else cnt = cnt + 3'bl;

// Loadable shift register
// Loads d at the start, shifts mosi into bottom on each step
always ff@ (posedge sck)

g <= (cnt == 0) ? {d[6:0], mosi} : {g[6:0], mosi};

// Align miso to falling edge of sck

// Load d at the start
always ff@ (negedge sck)

qgdelayed = qgl[7];

assign miso = (cnt == 0) ? d[7] : gdelayed;
endmodule

[/17777777777707777777777777777777777777777777

// FPGA Master, ADC Slave

// Sends accelerometer data on request

[T 7777777777777 7777777777777 77777777777

module adc_spi (input logic clk, reset,
input logic adc_miso,
output logic adc mosi,
output logic adc clk,
output logic adc cs,
output logic[9:0] data,
output logic adc_done);

typedef enum logic {S0, S1} statetype;
statetype state, next state;

logic [14:0] sclk;

always ff@ (posedge clk, posedge reset)
if (reset) sclk <= 15'b0;

else sclk <= sclk + 15'bl;

assign adc _clk = sclk[14];
logic [15:0] send;
assign send = 16'b1111000000000000;

logic next adc mosi, next adc cs;
logic [5:0] i, next i;

always comb
case (state)
S0: begin
adc_done = 0;
next adc mosi = send[15 - i];
next adc cs = 0;
next_i =1i 4+ 1;
if (i < 15)
begin

next state S0;
end
else

begin

next state S1;
end
end
S1l: begin
adc_done = 1;
next adc mosi = 0;
next i = 0;
next adc cs = 1;
next state = S0;
end
endcase

always ff@ (posedge adc clk, posedge reset)
if (reset) state <= S0;
else state <= next state;

always ff@(posedge adc clk, posedge reset)
if (reset) i <= 0;

else i <= next i;
always ff@ (posedge adc clk)
if (i == 0) data = 0;

else if ((i >= 5) && (i < 16)) data[l5 - i] <= adc _miso;

always ff@(negedge adc clk)
adc cs <= next adc cs;

always ff@ (negedge adc clk)

adc_mosi <= next adc mosi;

endmodule

L1177 07077700777 77770777777777777777777
// Finds peaks in data
// Given accelerometer data and sends out a pulse when it detects a peak
// Based off Matlab peak finding algorithm
L1777 7777 7777777
module find peaks (input logic reset,

input logic [9:0] data,

input logic adc_done,

output logic pulse);

logic [10:0] curr data, prev data, curr slope, prev slope, mult slope;
logic [10:0] temp max, temp min, new select, avg select, peak mag,
new peak, new valley, valley mag;
logic [43:0] prev_selects, new prev_selects; //prev_selects stores past 4
selects; new prev selects has new select shifted in

logic next pulse;

assign curr data[l0] = 0; //sign extention since data from adc is
unsigned
assign curr data[9:0] = data[9:0];
always ff@ (posedge adc done, posedge reset)
if (reset) begin
pulse <= 0;
prev_data <= 0;
prev_slope <= 0;
end else begin
pulse <= next pulse; //nextpulse is output from state
machine when peak is detected
prev_data <= curr data; //data and slopes shifted on next
cycle
prev_slope <= curr_ slope;
end
assign curr slope = curr data - prev data; //current slope defined
assign mult slope = curr slope * prev _slope; //multiplication of current

slope and previous slope shows whether there is sign change or zero (getting all

potential peaks)

//peak mag is set to 0 in state machine unless an actual peak is
confirmed, and new peak's magnitude value is output
always ff@ (posedge adc done, posedge reset)
if (reset) new peak <= curr data;
else if (peak mag != 0) new peak <= peak mag;

else new peak <= new peak;

//valley mag is set to 0 in state machine unless an actual peak is
confirmed, valley magnitude used in calculating select
always ff@ (posedge adc _done, posedge reset)
if (reset) new_valley <= curr data;
else if (valley mag != 0) new valley <= valley mag;
else new valley <= new valley;

//temp min is the temporary minimum before a potential peak; resets once
peak is detected;
always ff@ (posedge adc done, posedge pulse, posedge reset)
if (pulse || reset) temp min <= curr data;
else if (curr data < temp min) temp min <= curr data;

else temp min <= temp min;

//temp max is temporary maximum; changes to current data if it fulfills

conditions
always ff@ (posedge adc done, posedge pulse, posedge reset)
if (pulse || reset) temp max <= 0;
else if ((curr data > temp max) && (curr data > (temp min +
avg_select))) temp max <= curr data;

else temp max <= temp max;

assign new select = (new peak-new valley) >>> 2; //new select calculated

based on current peak and valley different divided by 4

find select fndsel (prev_selects, new select, avg select,
new_prev_selects); //calls find select module to compute the average

of past 4 select values

//stored previous select values get updated if there is a new select
occurs when there is a pulse
always ff@(posedge adc done, posedge reset)
if (reset) prev _selects <= 44'd0;
else if (pulse) prev selects <= new prev_ selects;

else prev_selects <= prev selects;

//State machine to pick peaks
typedef enum logic {s0, sl} statetype;
statetype state, next state;

always ff@ (posedge adc done, posedge reset)
if (reset) state <= s0;
else state <= next state;

always comb
case (state)
sO0: begin
next pulse = 0;

//passes first check of peak validation if

it's a potential peak due to change in slope;
previous data and temp max because of how the
if |

11'b0))

((curr data < temp max)

current data should be less than

slope of current data is calculated

((mult _slope([10] == 1) ||
&& (curr data < prev_data)

(mult slope ==
&&
(curr data ==

temp max)) && (curr data > (temp min +

avg_select))) begin
next state = sl;
peak mag = 0;
valley mag = 0;
end

else begin
next state = s0;
peak mag = 0;
valley mag = 0;
end

end

//if the temporary maximum is greater than temporary

current minimum, or valley, a peak is detected
sl: begin
if ((temp max > (temp min +
avg_select)) || (temp max == (temp min + avg select))) begin
next pulse = 1;
next state = s0;
peak mag = temp max;
valley mag = temp min;
end else begin
next pulse = 0;
next state = s0;
peak mag = 0;
valley mag = 0;
end
end
endcase
endmodule

I 777777777 777777777777777777777777777

// Calculates select variable

// Helper module for peak finder

// Select value is the average of the past 4 select values

L1117 7 7007777777777 777077777 777777777777

module find select (input logic [43:0] prev_selects,
input logic [10:0] new select,
output logic [10:0] avg select,
output logic [43:0] new prev selects);
logic [11:0] sum, avg;

assign new prev selects[43:11] prev_selects[32:0];

assign new prev_selects[10:0]

new select;

assign sum = prev_selects[43:33] + prev selects[32:22] +
prev_selects[21:11] + prev_selects[10:0];

assign avg = (sum >>> 2);

assign avg select = avg([10:0];
endmodule

[/17777777777707777777777777777777777777777777
// Calculates average period
// Helper module for calc period
// Average of the past 8 period values
[T 7777777777777 7777777777777 77 777777777
module find period(input logic [63:0] prev periods,
input logic [7:0] new period,
output logic [7:0] avg period,
output logic [63:0] new prev periods);

logic [10:0] sum,avg;

assign new prev periods[63:8] = prev periods[55:0];

assign new prev periods[7:0] = new period;

assign sum = new prev periods[63:56] + new prev periods[55:48] +

new prev periods[47:40] new prev _periods[39:32] + new prev periods[31:24] +

+
new prev periods[23:16] + new prev periods[15:8] + new prev periods[7:0];
assign avg = (sum >>> 3);
assign avg period = avg[7:0];

endmodule

L1717 1000777770077 777 70077777 77777777777777
// Calculates average of 4 periods from pulses output by find peaks
L1707 077777777 7777777777777777777777
module calc period(input logic reset,
input logic [9:0] data,
input logic adc done,
output logic [7:0] send period);
logic pulse, reset counter;
logic [7:0] period counter, temp period, new period, avg period;

logic [63:0] prev period, new prev _period;

find peaks peaks(reset, data, adc done, pulse);

assign reset counter = (pulse || reset);
counter #(8) peakcount (adc _done, reset counter, period_counter);

flopr #(8) floppin(adc_done, reset, period counter, temp period);
flopenr #(8) moarflop(adc done, reset, pulse, temp period, new period);

always ff@(posedge reset counter)
prev_period <= new prev period;

find period findperiod(prev period, new period, avg period,
new _prev_period);

always ff@ (posedge reset counter)
send period <= avg period;

endmodule

module counter # (parameter WIDTH 10)
(input logic clk, reset,
output logic [WIDTH-1:0] qg);
always ff@ (posedge clk, posedge reset)
if (reset) g<=0;
else g<=gtl;
endmodule

module flopenr # (parameter WIDTH = 10)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);
always ff@ (posedge clk, posedge reset)
if (reset) qg<=0;
else if (en) qg<=d;
endmodule

module flopr # (parameter WIDTH = 10)
(input logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);
always ff@ (posedge clk, posedge reset)
if (reset) qg<=0;
else g <= d;
endmodule

Appendix B: Main C Code

#include "EasyPIO.h"
#include <string.h>

#define DONE_PIN 24

const char* song names[12] = {"Octahate by Ryn Weaver", "Slow Hands by Niall Horan",
"Cheap Thrills by Sia", "Youth by Glass Animals", "Another One Bites The Dust by
Queen", "Should I Stay Or Should I go by The Clash", "Shower by Becky G",

"Sweater Weather by The Neighborhood", "Shut Up And Dance by Walk The Moon", "The
Walker by Fitz And The Tantrums", "Ex's & Oh's by Elle King", "Breezeblocks by Alt
J"};

const char* song locations[12] = {"octahate.wav", "slowHands.wav", "cheapThrills.wav",
"youth.wav", "anotherOneBitesTheDust.wav”, “shouldIStayOrShouldIGo.wav”, “shower.wav”,

"sweaterWeather.wav", "shutUpAndDance.wav", "theWalker.wav",

"breezeblocks.wav"};

{96,

int song dataf[]([12] = {{80, 204}, {86, 188}, {90, 212},
189}, {120, 206}, {124, 240}, {128, 199}, {131, 233}, {140,
char current song[1000] = "";

FILE *fp;

// Finds the current running frequency
float find freq(void) {
unsigned short received;
unsigned short received period;
float run freqg;
spiInit (244000, 0);
received = spiSendReceive (0b00000000) ;

"exsAndOhs.wav",

231}y, {110, 215}, {113,

202},

if (received == 0) { //Should only happen at beginning

return 95;

}

{150, 227}}

run_freq = (4030)/received; // calculating freq off period

fp = fopen ("/var/www/html/liveData.txt", "w+");
char curr song[500];

strcpy (curr song, current song);

strcat (curr_song, "Frequency of Runner: %f \n");

printf ("$s \n", curr song);
fprintf (fp, curr song, run freq);
fflush (fp);

return run freq;

}

// Returns a system call to sox that is duration seconds long

// from start at the speed of tempo

const char* song string(int song index, int start, int duration,

char play[500] = "play ";

char song name[400] = "/home/pi/";
char trim[50] = " trim ";

char tempo[50] = " tempo ";

char empty[50] =" ";

char str start[50];

char str tempo[50];

char str duration[50];

strcat (song name, song locations[song index]);
strcat (play, song name);
sprintf (str start, "%d", start);
strcat (trim, str start);
sprintf (str duration, "%d", duration);
strcat (empty, str duration);
sprintf (str tempo, "%£f", tempo ratio);
strcat (tempo, str_tempo);

strcat (play, trim);

sprintf (str start, "%d", start);

float tempo ratio)

strcat (empty, tempo):;

(
strcat (empty, " &");

strcat (play, empty):;

char *return val = malloc(sizeof (play));
strcpy (return val, play);

printf("%s \n", return val);

return return_val;

// Finds song with similar bpm
int find song(void) {
float run freqg = find freq();
int 1i;
printf ("Found song with this freq: %f \n", run freq);
for (i = 0; 1 < 12; i++) {
if (song data[i][0] > run freq) {
if (i !'= 0) {
if (run freq - song data[i] [0] < run freq -
song data[i-1][0]) {
return 1i;
} else {
return i - 1;
}
} else {
return 0;

}

return 10;

// Plays the song that is chosen
void play song(int song index, int song bpm, int song length) {
float run freqg;
float tempo ratio;
int last length;
int 1 = 0;
while (i < song length) {
run freq = find freq();
printf ("Run Freq: %f \n", run freq);
tempo_ratio = (float)run freq/song bpm;
printf ("Tempo ratio %f \n", tempo ratio);
const char* play = song string(song index, i, 2, tempo ratio);
system(play) ;
delayMillis (1980.0/tempo_ratio);
i =1+ 2;

if (1 % 2) {
run freq = find freq();

tempo_ratio = song bpm/run_ fregqg;
const char* play = song string(song index, -1, 1, tempo ratio);
system(play) ;

void main (void) {

pioInit();

pinMode (DONE_PIN, INPUT);

fp = fopen ("/var/www/html/liveData.txt", "w+");
fprintf (fp, "Loading Data...");

fflush (fp);

delayMillis (5000) ;

int song index = find song();

char song[500] = "Current Song: ";

strcat (song, song names[song index]);
strcat (song, "\n");

strcpy (current song, song);
printf ("%s \n", current song);

play song(song_index, song data[song index] [0], song data[song index][1]);

Appendix D: Main C Code

#include <stdlib.h>
#include <stdio.h>

void main (void) {
system("sudo killall -9 play");
system("sudo killall -9 final");

Appendix E: HTML Code

<!DOCTYPE html>
<html>
<head>
<title> Lilly and Sabrina's final project </title>
<meta http-equiv="content-type" content="text-html; charset=utf-8">
<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>
<script type="text/javascript" src="reloader.]js"></script>
<link rel="stylesheet" type="text/css"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/cs$
<script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>

</head>
<body>
<hl align="center"> Lilly and Sabrina's 155 Final Project </hl>
</br>
<form action="cgi-bin/final" method="POST" target="display" id="submit"
align="center">
<button type= "submit" class="btn btn-success"> Play Song </button>
</form>
</br>
<form action="cgi-bin/cancel” method="POST" align="center" id = "cancel">
<button type= "submit" class="btn btn-danger"> Cancel Song</button>
</form>
</br>
<div id="currentData" align="center">
<p> Loading Data...</p>
</div>
</body>

Appendix F: Javascript Code

$ (document) .ready (function () {

S (document) .on ('elick', '#submit', function() {
setTimeout (loadSong (), 50000);
reloadData () ;

var req;

function reloadData ()
{

var now = new Date();
url = 'liveData.txt';
try {

req = new XMLHttpRequest () ;
} catch (e) {

try {

req = new ActiveXObject ("Msxml2.XMLHTTP") ;
} catch (e) {

try {

req = new ActiveXObject ("Microsoft.XMLHTTP") ;
} catch (oc) {
alert ("No AJAX Support");

return;

reqg.onreadystatechange = processRegChange;

req.open ("GET", url, true);
req.send(null) ;

function processRegChange ()
{
// 1If req shows "complete"
if (reqg.readyState == 4)
{
dataDiv = document.getElementById('currentData')
// If "OK"
if (reqg.status == 200)
{
// Set current data text
dataDiv.innerHTML = req.responseText;
console.log(req.responseText) ;
// Start new timer (1 min)
setTimeout (reloadData (), 50000);
}
else
{
// Flag error
dataDiv.innerHTML = '<p>There was a problem retrieving data: ' +
req.statusText + '</p>';
}

