

Running Rate-Controlled Music Player
Sabrina Chang, Lilly Liu

E155 - Fall 2017

Abstract

Our project implements a person’s running rate-controlled music player. A song of

similar beats-per-minute (BPM) from the runner’s initial rate is chosen from a stored database,

and depending on the runner’s speed during the length of the song, the song speeds up or slows

down. The runner’s landing rate is obtained through an accelerometer, whose output is processed

with an FPGA. The FPGA calculates the period of the runner’s landing rate, and sends that data

to the Raspberry Pi when it is requested, which does the necessary conversion to BPM and plays

a song and controls the speed. The system is able to accurately obtain the user’s running BPM

and play songs depending on the running speed.

Introduction

Many runners listen to music during their workout to keep up motivation or just to make

their runs more interesting. It is more motivating for runners to listen to songs of similar tempos

to their running rate than if the running rate greatly mismatched the song’s BPM.

This project helps the runner with their music needs by selecting a song initially based off

of their running speed during a calibration period. The music is then sped up or slowed down

depending on the runner’s speed in reference to the song’s BPM. The runner’s BPM is obtained

through an accelerometer that the runner holds in their hand. The runner’s landing rate is

obtained through the accelerometer held in hand as they run because studies and experimentation

have shown that a person’s running rate is 1:1 with their arms’ swinging rate.

The user interfaces with a webpage that contains a start button to start the calibration and

song, and a cancel button that cancels the song. The webpage also displays the runner’s speed

and the title of the song being played. The website is hosted on the Raspberry Pi, which requests

a new running period from the FPGA every two seconds. The FPGA does signal processing on

the data from the analog-to-digital converter that converts the output from the accelerometer. The

FPGA counts the number of cycles that pass between each swing, and sends this number to the

Raspberry Pi upon request. Figure 1 shows the block diagram of our system.

Figure 1: System block diagram

New Hardware

In this project, we used an accelerometer to track the user’s hand swings’ acceleration.

Only the z output pin of the accelerometer is used to gather data, since the user’s arm swing

accelerates predominantly in the vertical z direction. A low-pass filter is implemented at the

output pin. Since the range of data of interest in this project is at most 3 Hz (or 180 BPM, which

is the running BPM of advanced athletes), a low-pass filter with cutoff frequency of 1 Hz is

implemented with a simple RC filter to improve measurement resolution and prevent aliasing.

The datasheet specifies that the bandwidth should be limited to the lowest frequency needed for

application to maximize resolution.

The accelerometer’s output data is observed to be roughly sinusoidal (see Figure 2), with

maximum peaks at the point of maximum acceleration, which is at the lowest point of the user’s

swing. Our initial data collection revealed that the data is acceptably noise-free and clean to do

signal processing on without additional filtering.

Figure 2: Sample data collected with FPGA from accelerometer

Schematics

As seen in Figure 3, our system’s overall circuit schematic is shown. Data is first

collected from the z acceleration output pin of the accelerometer ADXL335, then fed into

Channel 1 of the analog-to-digital converter MCP3002, where it is converted into 10-bit data for

the FPGA to process. The data is transferred from the ADC to FPGA using Serial Peripheral

Interface (SPI).

The FPGA receives the data from the accelerometer and calculates the period in real

time, then adds it to the stored average of past 8 detected periods to ensure a smoother transition

in song speeds for the Raspberry Pi to play out.

The Raspberry Pi requests data from the FPGA over SPI, and converts the period value

into BPM, and depending on whether the start button has just been pressed or if it’s in the middle

of a song, selects a song of similar BPM from a stored database or multiplies the song speed by

the ratio of current running BPM over song BPM.

Figure 3: Overall Circuit Schematic

FPGA Design

Figure 4: Block Diagram of FPGA

Summary

Upon receiving data from the accelerometer with SPI communication, the FPGA

calculates the period between each arm swing using peak detection and sends it to the Raspberry

Pi upon request with SPI communication.

ADC slave FPGA master SPI Communication

The ADC converts the analog voltage output from the accelerometer into 10-bit data that

is sent to the FPGA. The FPGA requests data from the ADC on the adc_clk by sending out

adc_mosi and adc_cs which contains information on CS, channel selection mode, and data

transfer order. The slow clock (sclk) is chosen to be a factor of 215 slower than the utility board’s

clock (40 MHz) because our counter for the period is based off of the communication, and faster

clocks would cause overflow in our period counter since we are only sending eight bits.

Finding Period

Once all ten bits of data are shifted in from the ADC, the find_peaks module takes the

new data in and determines whether there is a peak. The model for peak detection was first

simulated in MATLAB to verify the accuracy of detection. On the FPGA, it accomplishes peak

detection by first identifying all peaks by computing the slopes between the current and previous

data points and multiplying the newly found slope with the stored previous slope, then

identifying the previous data point as a potential peak if the multiplied result is less than or equal

to zero.

Another criteria the potential peak must pass to be identified as an actual peak is that it

must be a certain margin above the local minimum, or the valley before the peak. This margin is

defined as ‘new_select’ in the find_peaks module, and it is the difference between the values of a

confirmed peak and valley divided by four. The actual margin used to determine peaks is the

moving average of the past four ‘select’ values.

This peak detection function performs more accurately as time goes on. As seen in Figure

5, it is able to detect peaks with sufficient accuracy, but the initial detection and transitional

periods are less accurate because the ‘select’ values and periods need to settle to a steady-state

value to consistently be able to pick the correct peaks.

Figure 5: Sample Data with Detected Peaks after FPGA Processing

If a potential peak is confirmed to be an actual peak, the output ‘pulse’ is set to one, and

another module called ‘calc_period’ restarts the counter and counts the number of cycles of

adc_done (high when ADC is done transferring data) that passes until the next pulse. This

number is then stored along with the past seven periods and averaged out. The averaged periods

is the value sent to the Pi upon request with SPI communication.

Microcontroller Design

Summary

The Pi controls the main logic for the system. It hosts a website with a play button, once

the button is pushed the C code is run. The C code first waits five seconds so the periods

received could be more accurate, asks for a period value and uses that to find a song. There are

three arrays that store information, one is an array that has the bpm and the length of the song.

The second array includes the filename of the song, and the third one is a string that has the

official title and artist. All the songs are placed in the same order so the indexing is the same. It

iterates through the array that has the bpm and length of the song and finds the one that is the

closest and chooses that as the song. Then it goes into a loop that plays the song. It plays portions

of the song at two seconds at a time and adjusts the tempo of each two second chunk so that the

song tempo will reflect the period received from the player. Our website also displays the song

name and artist and current speed in real time. The website also has a cancel button that cancels

the process

Finding BPM

The Pi receives the period value from the FPGA. The period value received is actually

the number of cycles of adc_done passed. To compute the frequency of running, the MuddPi

board’s clock (40MHz) is divided by 215 and again by 16 (takes 16 cycles to collect 2 bytes of

data from ADC) to obtain adc_done’s frequency. The received period is then multiplied by the

inverse of adc_done’s frequency to find the actual time period between each peak. The BPM of

the runner is then computed by taking the inverse of this period multiplied by 60 seconds/minute.

Playing Music

Playing the music uses an external library called SoX (Sound eXchange). SoX allows

users to trim part of the song as well as adjust the tempo. How a typical system call in the C

program with SoX is formatted is “play songname.wav trim start_time length_of_trim tempo

tempo_rate.” The song is selected earlier, the start_time is iterated through, the length_of_trim is

two seconds, and the tempo_rate is calculated as shown above. One problem we had earlier was

because we needed to wait for the Pi to receive the period value from the FPGA there was a

noticeable gap between the two sections of the song being played. To solve this problem, at the

end of the system call we added an “&” which meant the command is forked into a sub shell and

run asynchronously. Then we had to delayMillis, because when the song is run in a sub shell, it

goes immediately back to the main program and we want that section to play before we play the

next section. We delayMillis slightly less than how fast the song would play so the main program

could ask for the period from the FPGA and it would be able to start a new call as the old call

ended. As a result, the song played sounded continuous.

Website

The website uses Javascript to fetch the current song, artist and frequency. In the C code,

it writes the current song, artist, and frequency to a txt file. In the Javascript it uses XML to fetch

the text from the txt file and display it on the website. There are currently some issues with the

Javascript because it starts updating the text as soon as the play button is pushed but the there

should be no current song and frequency so it loads what is previously on the txt file. The fix we

attempted was in our C code, before it chooses a song, it writes “Loading Data…” into the txt

file so that it shows that it is still loading before it actually is playing the song. Our website also

has a cancel button which calls a C program that makes a system call to kill the processes.

Although it successfully ends the program, it also leads to a 500 internal server error because the

play program is canceled. We were unable to find a way to prevent the 500 internal server error

from showing. For a better product, we would fix the Javascript and 500 internal server

problems.

Results

We successfully implemented our project, which included accurate detection of the

runner’s landing rate, correct selection of songs of similar BPM to play, as well as ability to

speed up or slow down the song’s speed depending on the runner’s speed. The website

implemented is also able to successfully start and cancel playing the song depending on the

user’s control. It is also able to display the song title and runner’s current BPM.

There is room for improvement in the robustness of our system. Because we are swinging

the accelerometer mounted on a breadboard, sometimes the wires would come loose and we

would be perplexed as to why the system suddenly stopped working. Another aspect that could

be improved is to tailor the sensitivity of the accelerometer to suit our purposes better. While the

accelerometer is able to obtain reasonable data, it requires horizontal positioning of the board, or

else it would be too sensitive to unintentional tilts and human motions.

References

D. M. Harris and S. L. Harris, “I/O Systems,” in Digital Design and Computer Architecture:
ARM Edition, 1st ed. Burlington, MA: Morgan Kaufmann, 2015, ch. 9, pp. 531.e9.

Ford, Matthew P., et al. “Arm constraint and walking in healthy adults.” Gait & Posture, vol. 26,
no. 1, 2007, pp. 135–141., doi:10.1016/j.gaitpost.2006.08.008.

 “Small, Low Power, 3 Axis +/-g Accelerometer” ADXL335 datasheet, Analog Devices, Inc.

2009. https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

Tom O'Haver. “Peak Finding and Measurement.” Peak Finding and Measurement,

terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb.

“2.7V Dual Channel 10-Bit A/D Converter with SPI Serial Interface,” MCP3002 datasheet,

Microchip Technology Inc. 2011.

Parts List

Part Source Part Number Price

https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

Accelerometer https://www.sparkfun

.com/products/9269

ADXL335

$14.95

Headphones Personal Bose SoundLink

on-ear wireless

headphones

N/A

ADC E155 Cabinet MCP3002 N/A

Capacitor E155 Cabinet 030KQ N/A

Appendices

Appendix A: SystemVerilog Code
///

// final_ll_sc.sv
// Lilly Liu, Sabrina Chang
// lliu@hmc.edu, schang@hmc.edu
// December 2, 2017
// Finds the periods between peaks
///

module final_ll_sc(input logic pi_clk, clk, reset,
 input logic adc_miso, pi_mosi,
 output logic adc_mosi, pi_miso,
 output logic adc_clk,
 output logic adc_cs,
 output logic led, adc_done);

logic [9:0] data; //accelerometer data
logic [7:0] pi_data, send_period; //pi_data not used, placeholder
pi_spi pi(pi_clk, pi_mosi, pi_miso, reset, send_period, pi_data);
adc_spi adc(clk, reset, adc_miso, adc_mosi, adc_clk, adc_cs, data, adc_done);
calc_period run_per(reset, data, adc_done, send_period);

assign led = 1;
endmodule

///

// Pi Master, FPGA Slave
// Sends data to Raspberry pi on request
// Based off of code found in

// Digital Design and Computer Architecture by Harris and Harris
///

module pi_spi(input logic sck, //From master
 input logic mosi, //From master
 output logic miso, //To master
 input logic reset, // System reset,
 input logic[7:0] d, // Data to send
 output logic [7:0] q); // Data recieved

logic [2:0] cnt;
logic qdelayed;

//3-bit counter tracks when full byte is transmitted
always_ff@(negedge sck, posedge reset)

if (reset) cnt = 0;
else cnt = cnt + 3'b1;

// Loadable shift register
// Loads d at the start, shifts mosi into bottom on each step
always_ff@(posedge sck)

q <= (cnt == 0) ? {d[6:0], mosi} : {q[6:0], mosi};

// Align miso to falling edge of sck
// Load d at the start

always_ff@(negedge sck)
qdelayed = q[7];

assign miso = (cnt == 0) ? d[7] : qdelayed;
endmodule

///

// FPGA Master, ADC Slave
// Sends accelerometer data on request
///

module adc_spi(input logic clk, reset,
input logic adc_miso,
output logic adc_mosi,
output logic adc_clk,
output logic adc_cs,
output logic[9:0] data,
output logic adc_done);

typedef enum logic {S0, S1} statetype;
statetype state, next_state;

logic [14:0] sclk;

always_ff@(posedge clk, posedge reset)
if (reset) sclk <= 15'b0;

else sclk <= sclk + 15'b1;

assign adc_clk = sclk[14];

logic [15:0] send;
assign send = 16'b1111000000000000;

logic next_adc_mosi, next_adc_cs;
logic [5:0] i, next_i;

always_comb

case(state)

S0: begin
adc_done = 0;
next_adc_mosi = send[15 - i];
next_adc_cs = 0;
next_i = i + 1;
if (i < 15)

begin

next_state = S0;
end

else

begin

next_state = S1;
end

end

S1: begin
adc_done = 1;
next_adc_mosi = 0;
next_i = 0;
next_adc_cs = 1;
next_state = S0;

end

endcase

always_ff@(posedge adc_clk, posedge reset)
if (reset) state <= S0;
else state <= next_state;

always_ff@(posedge adc_clk, posedge reset)
if (reset) i <= 0;
else i <= next_i;

always_ff@(posedge adc_clk)
if (i == 0) data = 0;
else if ((i >= 5) && (i < 16)) data[15 - i] <= adc_miso;

always_ff@(negedge adc_clk)
adc_cs <= next_adc_cs;

always_ff@(negedge adc_clk)

adc_mosi <= next_adc_mosi;

endmodule

///

// Finds peaks in data
// Given accelerometer data and sends out a pulse when it detects a peak
// Based off Matlab peak finding algorithm
///

module find_peaks(input logic reset,
input logic [9:0] data,
input logic adc_done,
output logic pulse);

logic [10:0] curr_data, prev_data, curr_slope, prev_slope, mult_slope;
logic [10:0] temp_max, temp_min, new_select, avg_select, peak_mag,

new_peak, new_valley, valley_mag;
logic [43:0] prev_selects, new_prev_selects; //prev_selects stores past 4

selects; new_prev_selects has new_select shifted in
logic next_pulse;

assign curr_data[10] = 0; //sign extention since data from adc is
unsigned

assign curr_data[9:0] = data[9:0];

always_ff@(posedge adc_done, posedge reset)
if (reset) begin

pulse <= 0;
prev_data <= 0;
prev_slope <= 0;

end else begin
pulse <= next_pulse; //nextpulse is output from state

kdlfjafkdjlfjdklajfdklajfdlajffkdlasfjdklajfdlkamachine when peak is detected
prev_data <= curr_data; //data and slopes shifted on next

cycle

prev_slope <= curr_slope;
end

assign curr_slope = curr_data - prev_data; //current slope defined
assign mult_slope = curr_slope * prev_slope; //multiplication of current

slope and previous slope shows whether there is sign change or zero (getting all
potential peaks)

//peak_mag is set to 0 in state machine unless an actual peak is
confirmed, and new peak's magnitude value is output

always_ff@(posedge adc_done, posedge reset)
if (reset) new_peak <= curr_data;
else if (peak_mag != 0) new_peak <= peak_mag;
else new_peak <= new_peak;

//valley_mag is set to 0 in state machine unless an actual peak is
confirmed, valley magnitude used in calculating select

always_ff@(posedge adc_done, posedge reset)
if (reset) new_valley <= curr_data;
else if (valley_mag != 0) new_valley <= valley_mag;
else new_valley <= new_valley;

//temp_min is the temporary minimum before a potential peak; resets once
peak is detected;

always_ff@(posedge adc_done, posedge pulse, posedge reset)
if (pulse || reset) temp_min <= curr_data;
else if (curr_data < temp_min) temp_min <= curr_data;
else temp_min <= temp_min;

//temp_max is temporary maximum; changes to current data if it fulfills
conditions

always_ff@(posedge adc_done, posedge pulse, posedge reset)
if (pulse || reset) temp_max <= 0;
else if ((curr_data > temp_max) && (curr_data > (temp_min +

avg_select))) temp_max <= curr_data;
else temp_max <= temp_max;

assign new_select = (new_peak-new_valley) >>> 2; //new_select calculated
based on current peak and valley different divided by 4

find_select fndsel(prev_selects, new_select, avg_select,
dfaksfjdlkajfdlsanew_prev_selects); //calls find_select module to compute the average
dsafdasfkdlsafjdklasjfof past 4 select values

//stored previous select values get updated if there is a new select
fdsafdasfdasf((occurs when there is a pulse

always_ff@(posedge adc_done, posedge reset)
if (reset) prev_selects <= 44'd0;
else if (pulse) prev_selects <= new_prev_selects;
else prev_selects <= prev_selects;

//State machine to pick peaks
typedef enum logic {s0, s1} statetype;
statetype state, next_state;

always_ff@(posedge adc_done, posedge reset)
if (reset) state <= s0;
else state <= next_state;

always_comb

case(state)

s0: begin
next_pulse = 0;

//passes first check of peak validation if
it's a potential peak due to change in slope; current data should be less than
previous data and temp_max because of how the slope of current data is calculated

if (((mult_slope[10] == 1) || (mult_slope ==
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa11'b0)) && (curr_data < prev_data) &&
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa((curr_data < temp_max) || (curr_data ==
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaatemp_max)) && (curr_data > (temp_min +
aaaaaaaaaaaaasdsdSdsdsdsdsdsafdsafdsfaaavg_select))) begin

next_state = s1;
peak_mag = 0;
valley_mag = 0;
end

else begin
next_state = s0;
peak_mag = 0;
valley_mag = 0;
end

end

//if the temporary maximum is greater than temporary
current fdasfdasfdasfdasfdsafdsafdasminimum, or valley, a peak is detected

s1: begin
if ((temp_max > (temp_min +

avg_select))||(temp_max == (temp_min + avg_select))) begin
next_pulse = 1;
next_state = s0;
peak_mag = temp_max;
valley_mag = temp_min;

end else begin
next_pulse = 0;
next_state = s0;
peak_mag = 0;
valley_mag = 0;

end

end

endcase

endmodule

///

// Calculates select variable
// Helper module for peak finder
// Select value is the average of the past 4 select values
///

module find_select(input logic [43:0] prev_selects,
 input logic [10:0] new_select,
 output logic [10:0] avg_select,
 output logic [43:0] new_prev_selects);

logic [11:0] sum, avg;
assign new_prev_selects[43:11] = prev_selects[32:0];
assign new_prev_selects[10:0] = new_select;

assign sum = prev_selects[43:33] + prev_selects[32:22] +
prev_selects[21:11] + prev_selects[10:0];

assign avg = (sum >>> 2);
assign avg_select = avg[10:0];

endmodule

///

// Calculates average period
// Helper module for calc_period
// Average of the past 8 period values
///

module find_period(input logic [63:0] prev_periods,
 input logic [7:0] new_period,
 output logic [7:0] avg_period,
 output logic [63:0] new_prev_periods);

logic [10:0] sum,avg;
assign new_prev_periods[63:8] = prev_periods[55:0];
assign new_prev_periods[7:0] = new_period;
assign sum = new_prev_periods[63:56] + new_prev_periods[55:48] +

new_prev_periods[47:40] + new_prev_periods[39:32] + new_prev_periods[31:24] +
new_prev_periods[23:16] + new_prev_periods[15:8] + new_prev_periods[7:0];

assign avg = (sum >>> 3);
assign avg_period = avg[7:0];

endmodule

///

// Calculates average of 4 periods from pulses output by find_peaks
///

module calc_period(input logic reset,
input logic [9:0] data,
input logic adc_done,
output logic [7:0] send_period);

logic pulse, reset_counter;
logic [7:0] period_counter, temp_period, new_period, avg_period;
logic [63:0] prev_period, new_prev_period;

find_peaks peaks(reset, data, adc_done, pulse);

assign reset_counter = (pulse || reset);
counter #(8) peakcount(adc_done, reset_counter, period_counter);

flopr #(8) floppin(adc_done, reset, period_counter, temp_period);
flopenr #(8) moarflop(adc_done, reset, pulse, temp_period, new_period);

always_ff@(posedge reset_counter)
prev_period <= new_prev_period;

find_period findperiod(prev_period, new_period, avg_period,
new_prev_period);

always_ff@(posedge reset_counter)
send_period <= avg_period;

endmodule

module counter #(parameter WIDTH = 10)
(input logic clk, reset,

output logic [WIDTH-1:0] q);
always_ff@(posedge clk, posedge reset)

if(reset) q<=0;
else q<=q+1;

endmodule

module flopenr #(parameter WIDTH = 10)
(input logic clk, reset, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

always_ff@(posedge clk, posedge reset)
if (reset) q<=0;
else if (en) q<=d;

endmodule

module flopr #(parameter WIDTH = 10)
(input logic clk, reset,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

always_ff@(posedge clk, posedge reset)
if (reset) q<=0;
else q <= d;

endmodule

Appendix B: Main C Code

#include "EasyPIO.h"
#include <string.h>

#define DONE_PIN 24

const char* song_names[12] = {"Octahate by Ryn Weaver", "Slow Hands by Niall Horan",
"Cheap Thrills by Sia", "Youth by Glass Animals", "Another One Bites The Dust by
Queen", "Should I Stay Or Should I go by The Clash", "Shower by Becky G",
 "Sweater Weather by The Neighborhood", "Shut Up And Dance by Walk The Moon", "The
Walker by Fitz And The Tantrums", "Ex's & Oh's by Elle King", "Breezeblocks by Alt
J"};

const char* song_locations[12] = {"octahate.wav", "slowHands.wav", "cheapThrills.wav",
"youth.wav", "anotherOneBitesTheDust.wav”, “shouldIStayOrShouldIGo.wav”, “shower.wav”,

"sweaterWeather.wav", "shutUpAndDance.wav", "theWalker.wav", "exsAndOhs.wav",
"breezeblocks.wav"};

int song_data[][12] = {{80, 204}, {86, 188}, {90, 212}, {96, 231}, {110, 215}, {113,
189}, {120, 206}, {124, 240}, {128, 199}, {131, 233}, {140, 202}, {150, 227}}
char current_song[1000] = "";
FILE *fp;

// Finds the current running frequency
float find_freq(void) {
 unsigned short received;
 unsigned short received_period;
 float run_freq;
 spiInit(244000, 0);
 received = spiSendReceive(0b00000000);
 if (received == 0) { //Should only happen at beginning
 return 95;
 }
 run_freq = (4030)/received; // calculating freq off period
 fp = fopen("/var/www/html/liveData.txt", "w+");
 char curr_song[500];
 strcpy(curr_song, current_song);
 strcat(curr_song, "Frequency of Runner: %f \n");
 printf("%s \n", curr_song);
 fprintf(fp, curr_song, run_freq);
 fflush(fp);
 return run_freq;
}

// Returns a system call to sox that is duration seconds long
// from start at the speed of tempo
const char* song_string(int song_index, int start, int duration, float tempo_ratio) {
 char play[500] = "play ";
 char song_name[400] = "/home/pi/";
 char trim[50] = " trim ";
 char tempo[50] = " tempo ";
 char empty[50] = " ";
 char str_start[50];
 char str_tempo[50];
 char str_duration[50];
 strcat(song_name, song_locations[song_index]);
 strcat(play, song_name);
 sprintf(str_start, "%d", start);
 strcat(trim, str_start);
 sprintf(str_duration, "%d", duration);
 strcat(empty, str_duration);
 sprintf(str_tempo, "%f", tempo_ratio);
 strcat(tempo, str_tempo);
 strcat(play, trim);
 sprintf(str_start, "%d", start);

 strcat(empty, tempo);
 strcat(empty, " &");
 strcat(play, empty);
 char *return_val = malloc(sizeof(play));
 strcpy(return_val, play);
 printf("%s \n", return_val);
 return return_val;
}

// Finds song with similar bpm
int find_song(void) {
 float run_freq = find_freq();
 int i;
 printf("Found song with this freq: %f \n", run_freq);
 for (i = 0; i < 12; i++) {
 if (song_data[i][0] > run_freq) {
 if (i != 0) {
 if (run_freq - song_data[i][0] < run_freq -
song_data[i-1][0]) {
 return i;
 } else {
 return i - 1;
 }
 } else {
 return 0;
 }
 }
 }
 return 10;
}

// Plays the song that is chosen
void play_song(int song_index, int song_bpm, int song_length) {
 float run_freq;
 float tempo_ratio;
 int last_length;
 int i = 0;
 while (i < song_length) {
 run_freq = find_freq();
 printf("Run Freq: %f \n", run_freq);
 tempo_ratio = (float)run_freq/song_bpm;
 printf("Tempo ratio %f \n", tempo_ratio);
 const char* play = song_string(song_index, i, 2, tempo_ratio);
 system(play);
 delayMillis(1980.0/tempo_ratio);
 i = i + 2;
 }
 if (i % 2) {
 run_freq = find_freq();

 tempo_ratio = song_bpm/run_freq;
 const char* play = song_string(song_index, -1, 1, tempo_ratio);
 system(play);
 }
}

void main(void) {
 pioInit();
 pinMode(DONE_PIN, INPUT);
 fp = fopen("/var/www/html/liveData.txt", "w+");
 fprintf(fp, "Loading Data...");
 fflush(fp);
 delayMillis(5000);
 int song_index = find_song();
 char song[500] = "Current Song: ";
 strcat(song, song_names[song_index]);
 strcat(song, "\n");
 strcpy(current_song, song);
 printf("%s \n", current_song);
 play_song(song_index, song_data[song_index][0], song_data[song_index][1]);
}

Appendix D: Main C Code

#include <stdlib.h>
#include <stdio.h>

void main(void) {
 system("sudo killall -9 play");
 system("sudo killall -9 final");
}

Appendix E: HTML Code

<!DOCTYPE html>
<html>

<head>

 <title> Lilly and Sabrina's final project </title>
 <meta http-equiv="content-type" content="text-html; charset=utf-8">
 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>

 <script type="text/javascript" src="reloader.js"></script>
 <link rel="stylesheet" type="text/css"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/cs$

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>

</head>

<body>

 <h1 align="center"> Lilly and Sabrina's 155 Final Project </h1>
 </br>
 <form action="cgi-bin/final" method="POST" target="display" id="submit"
align="center">

 <button type= "submit" class="btn btn-success"> Play Song </button>
 </form>
 </br>
 <form action="cgi-bin/cancel" method="POST" align="center" id = "cancel">
 <button type= "submit" class="btn btn-danger"> Cancel Song</button>
 </form>
 </br>
 <div id="currentData" align="center">
 <p> Loading Data...</p>
 </div>
</body>

Appendix F: Javascript Code

$(document).ready(function () {
 $(document).on('click', '#submit', function() {
 setTimeout(loadSong(), 50000);
 reloadData();
 })

var req;

function reloadData()
{

 var now = new Date();
 url = 'liveData.txt';
 try {
 req = new XMLHttpRequest();
 } catch (e) {
 try {
 req = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (oc) {
 alert("No AJAX Support");
 return;
 }
 }
 }

 req.onreadystatechange = processReqChange;

 req.open("GET", url, true);
 req.send(null);
}

function processReqChange()
{

 // If req shows "complete"
 if (req.readyState == 4)
 {
 dataDiv = document.getElementById('currentData');
 // If "OK"
 if (req.status == 200)
 {
 // Set current data text
 dataDiv.innerHTML = req.responseText;
 console.log(req.responseText);
 // Start new timer (1 min)
 setTimeout(reloadData(), 50000);
 }
 else
 {
 // Flag error
 dataDiv.innerHTML = '<p>There was a problem retrieving data: ' +
req.statusText + '</p>';
 }
 }
}

});

