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Abstract: 
Tracking a patient’s biosignals is critical for monitoring the status of a patient in critical 
condition. Heart rate is one of the signals that can be accessed in a non-invasive manner. Other 
than pulse oximetry, electrocardiography is the main way to accomplish this. This project created 
a prototype of a heart rate monitor using an electrocardiographic setup (capacitive probes on the 
body wired to an amplification circuit). The amplified pulse was sent to an ADC, and then heart 
rate was extracted using time-domain peak finding, and sent serially to a Raspberry Pi. The Pi 
then displayed the result on a web page, accessible from the Internet.  
 

 



Introduction 
Electrocardiography is the noninvasive process of recording electrical activity from the heart 
using electrodes placed on the skin. Typically, this electrical activity is used to create an 
Electrocardiogram and extract heart rate. Our project accomplished the latter. Using a simplified 
electrode setup (3 electrodes as opposed to the 6-8 used in hospitals), we combined analog 
circuitry and FPGA data processing to extract a user’s heart rate. This heart rate was sent to a 
Raspberry Pi and displayed on a webpage.  

 
Figure 1. Overall System Block Diagram.  

 

New Hardware 
Two new pieces of hardware were used in the analog front end of the electrocardiographic signal 
processing. The analog hardware had three stages with the first stage being an instrumentation 
amplifier utilizing the AD623AN and the third stage being a non-inverting amplifier utilizing a 
MCP601 operational amplifier. The second stage was a first order low pass filter using passive 
components.  
 
The instrumentation amplifier amplified the raw electrical pulse signals received from the 
probes. The low pass filter output a cleaner signal and then the third stage amplifier amplified the 
cleaned up signal once more before it was sent to the ADC. The corner frequency of the low pass 
filter was around 320 Hz and was determined through trial and error.  
 
These analog components were selected with the constraints of being able to run off the Pi 5V 
power supply, a 3.3V power rail, and GND. The Pi 5V and GND provided the rails for the two 
ICs and the 3.3V was used to form a voltage divider to provide an adequate reference voltage for 
the instrumentation amplifier in the first stage. The instrumentation amplifier was chosen 
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because it was able to provide a gain ranging from 1 to 1000 (we ended up using a gain of 51 to 
ensure we didn’t hit the rails).  
 
Three 3M capacitive probes attached via alligator clip cables were used to collect the raw 
electrical signal. Two of the probes were placed on either side of the heart and a third reference 
probe was placed on the abdomen and connected to the circuit ground.  
 

Schematics 

 
Figure 2. Overall System Circuit Schematic  

 

Microcontroller Design 
Data Processing: 
The purpose of the Raspberry Pi is to send an SPI clock to the FPGA at roughly 200 kHz and 
generate a chip select signal to start communication with the FPGA. Instead of using a separate 
chip select wire, the PI and the FPGA begin communication when the MOSI bit goes high. This 
way, sixteen bits can be sent and received between the two devices. A one in the 8th bit place of 
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the shift register will result in the FPGA returning the 8 bit HR result. The Pi will receive the 8 
bit heart rate, convert it to a float value and run an HTML script to continuously display it on a 
webpage using C. HTML code on the Pi creates a visually appealing overall page and refreshes 
an iFrame with the webpage created from the C code for displaying the heart rate. The overall 
webpage page is refreshed every 5 seconds to display a real-time heart rate.  
 
Simulation: 
To test this portion of the system was working properly, the FPGA miso output was set to a fixed 
value and sent to the Pi. The webpage was opened and confirmed to displaying the floating value 
of the binary number sent by the FPGA. The FPGA also had a reset value, so to test that our page 
was updating in real-time, we would switch on the reset and see the webpage display change to 
the reset value, then switch off the reset and observe the webpage change back to the fixed miso 
value being sent.  

FPGA Design 
The purpose of the FPGA in this project was to act as an SPI slave and an SPI master as well as a 
time domain data processing instrument. The inputs to the FPGA are the on-board 40MHz clk, a 
PiSCLK, a mosi bit, a Din bit, and a reset bit. The reset bit is tied to one of the switches on the 
FPGA board, and this is helpful for debugging, and for starting in a known state. Mosi and 
PiSCLK are provided by the Raspberry Pi. The Din bit comes from the MCP3002 ADC, and gets 
connected to the Dout pin on the ADC. The outputs of the FPGA are SCLK, Dout, and CSBar 
which are sent to the ADC. A miso bit is also sent to the Pi.  

 

 
Figure 3. SPI Communication Protocol for MCP3002. 

 
First, the FPGA acts as an SPI master for communication with the MCP3002 10-bit analog to 
digital converter. A clock divider is used to take the on-board 40MHz clock, and divide it to 
around 250kHz for use as a serial clock. This SCLK signal is sent to the ADC. Using the serial 
clock, a second clock divide is performed to generate a chip select signal, CSbar, which is also 
sent to the ADC. When CSbar is set low, the ADC waits for a start, clock polarity, and channel 
select bit from the FPGA. On the negative edge of the CSbar signal, a shift register is loaded, and 
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on each clock cycle the most significant bit is sent out and the bit received from the ADC is 
shifted in. In Figure 3 one can see how on the negative edge of the serial clock that the Din, Dout 
values change. The Din in the figure is the data into the ADC, which is referred to as Dout in the 
verilog. After 16 clock cycles, the 10 bit readings from the ADC is captured, and sent to the data 
processing module. Also, a ‘done’ bit is sent out of the SPI master module as well. This is used 
in another clock divider to set the sampling rate of the data processing module. The ~7800Hz 
refresh rate of the ADC value is slowed down to 400Hz for use in data processing.  
 
There is also an SPI Slave module for communication between the FPGA and the Pi. The 
module takes in a serial clock from the Pi, PiSCLK, which operates at around 250kHz as well as 
a mosi bit. The Pi sends mosi high for one serial clock cycle, and at this, the shift register is 
loaded with the most recent heart rate value calculated, and on each successive clock cycle, bits 
are shifted and the most significant is sent the Pi on miso. After the heart rate bits are sent, the 
module will just output zeros.  
 
The final module is the time domain, peak finding module: HRFind. This module takes in an 
ADC readings, as well as a newData flag, a reset, and it outputs the calculated heart rate. At the 
positive edge of the 400Hz newData signal, a data processing operation begins on the most 
recent ADC value. There first exists a reset state which, on reset, sets all of the inner signals to 
zero, and outputs heart rate zero. 

  
The data processing algorithm works on a moving envelope which is calculated from 10, 200 bit 
shift registers. The sum of the 200 most recent samples is calculated, and then divided to get a 
moving average, which can be approximated at the baseline of the heart rate signal. On each new 
ADC readings, bit 0 - 9 are put into the first spot of the corresponding shift register 
(bit0Reg-bit9Reg), and each bit shifted out is combined into a subVal. The new ADC reading is 
added to movingAvg, and the subVal is subtracted. At setup, a baselineN variable tracks the 
number of points that have been added to the baselineSum. Once the number of points reaches 
200, baselineN stays at 200 since movingAvg is calculated from the average of the sum of the 
most recent 200 points. Using this movingAvg, each new ADC value is compared to movingAvg 
plus a delta value. Delta is calculated based on what type of outputs are expected from the 
amplification circuitry. Based on what was seen in the lab delta was set to 2 (2 ADC ‘units’ 
which range from 0-1023). If a higher gain was achieved, a higher delta would be set. If the 
ADC value goes above movingAvg + delta, then a counter is started, and a startCount variable is 
set to one. Once the count exceeds around 200, and it goes above movingAvg + delta again, the 
count is captured into a variable, peakSep, and count is reset, and startCount is set to zero. Count 
is required to exceed 200 because this helps to avoid catching the same peak. The samples 
between peaks is relatively flat, but there is a sinc-looking peak at each heartbeat, and if the first 
bit above the envelope triggers the count start, then we know that we need to wait until the next 
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peak, and avoid mistaking later points on the same beat as the next beat Peaksep is multipied by 
2500 to convert the count to microseconds, stored in timeBetween, and then a hardware divide is 
performed where 1 minute in microseconds is divided by timeBetween. This gives a sampleHR, 
which is then sent out of the module.  
 
To validate that the various modules worked, each was simulated in ModelSim with a test vector 
file. Once the modules passed the ModelSim stage, each was tested in the lab. First, the SPI 
master module was verified by using a phototransistor circuit hooked up to the ADC. On a flip of 
a switch, the FPGA would output to the onboard LEDs the most recent ADC reading in binary. 
After carefully analyzing Figure 3 to determine how the bit order is, the clock edge requirements, 
and making sure to have the Din of the module hooked up to Dout of the ADC, it was found to 
work. Next, the SPI slave module was tested by sending a constant number to the Pi. It was 
found that it was easier to operate the Pi shift register as sending a single 1 which would reset the 
FPGA shift register, as opposed to dealing with a chip select signal. This meant using the 
SPISendRecieve16 from the GPIO library with the input 0x0100 to receive the 8 HR bits from 
the FPGA in the last 8 bits of the register. Last, once the pipeline from the ADC to the Pi 
worked, it was verified that an generated pulse and sine wave would produce a heart rate reading. 
The width of the pulse was also varied, and the same heart rate was observed, showing that the 
minimum separation threshold worked. This validated the heart rate finding module.  

 

Results 
In the end, we were able to complete the data processing on the FPGA and extract a heart rate 
from the electrocardiographic setup. The data collected from the probes was very noisy despite 
the low pass filter and the supply rails of the Pi also had a lot of noise despite a healthy use of 
bypass capacitors. This led to certain instances of an inaccurate heart rate. However, based on 
our simulated data, we are confident that with a cleaner power supply and better probes, a more 
consistent heart rate display will result.  
 
The most difficult parts of the project were in extracting a clean heart rate signal using the 
probes, and in finding the best practice to capture a heart rate from said noisy signal. There is a 
tradeoff between having a robust algorithm, and capturing a meaningful and accurate signal. 

 
From an analog standpoint, a larger gain may have helped with produce a cleaner signal; one 
where the peaks were far more significant than the noise. This would have helped improve the 
accuracy of our peak finding algorithm. 
 
The data processing algorithm could have been improved by using a more robust envelope, as 
well as a dynamic delta for pulse values. Also, it would be preferable to stabilize the heart rate 
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output as the average of the most recent heart rates calculated to avoid large swings in calculated 
values that occurred during testing. It would also be better to perform peak separation based on 
the maximum of each cycle, as opposed to the first value which goes out of the envelope. This 
would lead to a more accurate heart rate, since each beat is not identical.  

 
  

-6- 



References 
Digital Design and Computer Architecture, Sarah L. Harris & David Money Harris 
Datasheets: 
● MCP601 http://ww1.microchip.com/downloads/en/DeviceDoc/21314g.pdf  
● AD623AN http://www.analog.com/media/en/technical-documentation/data-sheets/AD623.pdf  

Design References: 
● E84 Spring 2017, Lab 5  

 

Parts List 
Item Price Quantity 

Mudd Pi Board + FPGA ~ 1 

Raspberry Pi 3.0 ~ 1 

MCP601 $0.34 1 

AD623 $6.72 1 

ECG Pads $15 for 100 3 

Alligator Clip Cables Lab Stock 3 

Wires + Passives  Stock  
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Appendices  
 
Appendix A: FPGA Block Diagram 
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Appendix B: Pi HTML code 
 
//BBhr.html file  
<!DOCTYPE html> 
 
<html> 
 
<head> 
 
        <title> align = "center" BB’s EKG!</title> 
 
        <meta http-equiv="content-type" content="text-html;charset=utf-8"> 
 
        <meta http-equiv="refresh" content="3"> 
 
</head> 
 
<body> 
 
        <h1 style="background-color:DodgerBlue;"><b> align = "center" BB’s EKG!</h1> 
 
        <iframe  align = “center” src="cgi-bin/HRread" style="border:none;" height="500" 

 width="500"></iframe> 
 
 
</body> 
 
</html> 
 
 
 
 
 
  

-9- 



Appendix C: Pi C code 
 
// Brenden Brown, Benjamin Iten 
// HRread.c 
// Code for extracting HR 
  
#include "SPI_GPIO.h" 
  
char miso; 
float miso2; 
  
int main(void){  
pioInit(); 
SPIInit(); 
spiInit(1250,0);  
miso = spiSendReceive16(0x100);  
miso2 = (float)miso; 
printf("%s%c%c\n", 

"Content-Type:text/html;charset=iso-8859-1",13,10); 
printf("<META HTTP-EQUIV=\"Refresh\" CONTENT=\"0;url=/cgi-bin/HRread.html \">"); 
printf("<html>\n"); 
printf("<body>\n"); 
printf("<h2>Your HR: "); 
printf("%f", miso2); 
printf("bpm</h2>\n"); 
printf("</body>\n"); 
printf("</html>\n"); 
return 0; 
} 
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Appendix D: FPGA Verilog Modules  
 

/* 

Benjamin Iten  biten@g.hmc.edu  
Brenden Brown bjbrown@g.hmc.edu 
E155 Project: Electrocardiographic HR 
 

This verilog code is used to take in an input from an external MCP3002 ADC, and 
using SPI,  
receive a ten bit reading. The FPGA is the  
master and the ADC is the slave. The FPGA generates a chip select signal for 
the ADC. It also 
 serially communicates to the Pi an 8 bit heart rate for display on a webpage.  
 

A divided serial clock is run at ~250Khz to communicate with the ADC, 
and to the chip select signal is toggled every 16 clock cycles, 
which means a new ADC reading is provided every 32 clock cycles. Then  
another divided clock slows the rate at which samples enter data processing to 
around 800hz. 
 

Since the heart beat is so slow, a faster sampling rate is not needed.  

 

Once an ADC reading is obtained it is passed to the signal processing along 
with a corresponding 
 done bit which controls a further divided clock to set the sampling rate of 
the data processing  
 at around 400 Hz. At the edge of this clock, a new data processing operation 
begins on the most recent ADC reading. 
A peak finding algorithm operates on finding the first sample that goes outside 
of a dynamic 
 envelope that is calculated based on the 200 most recent samples. Once the 
number of samples 
 between peaks is found, this is converted to the time domain and output as 
beats per minute.  
*/ 

 

 

module ECG(input logic clk,//40MHz 
     input logic PiSCLK,//master clock from pi 
     input logic reset,//from on board switch 
     input logic mosi, 
     input logic Din, //data from ADC, this is Dout on ADC pinout!   

           output logic SCLK,//to ADC 
     output logic CSBar,//to ADC 
     output logic Dout,//to ADC   Din on schematic!! 
     output logic miso);//to Pi 
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logic done,newData; 
logic [9:0] ADC;//10-bit reading from ADC 

      logic [7:0]HRout;//combined HR and voltage bits  
logic [9:0] sampleSlowClock; 

 

always_ff@(posedge done) 
begin //to slow down data processing rate to 100Hz 

sampleSlowClock <= sampleSlowClock+10'b1101000;//52 = 110100 
end  

 

assign newData = sampleSlowClock[9]; 
 

SPIMaster spiM(Din,reset,clk,SCLK,Dout,CSBar,ADC,done);  
spiSlave spiS(PiSCLK,reset,miso,mosi,HRout); 
HRFind hrv(ADC,newData,reset,HRout); 

endmodule  

  

//module to communicate with MCP3002 ADC 
//sends 250khz clock, and follows communication protocol from datasheet   

module SPIMaster(input logic Din,//The MISO bit read each clock cycle from ADC 
     input logic reset, 
     input logic clk, 
     output logic SCLK, 
     output logic Dout, //MOSI bit to send to ADC 
     output logic CSBar, 
     output logic [9:0]Din10,//10 bit ADC num to be processed 
     output logic done);//flag for when the entire ADC num is read 

  

logic [15:0] SCLKCounter; //Generates serial clock 
 

always_ff@(posedge clk)//Clock divider 
SCLKCounter<= SCLKCounter + 9'b110011010;//divided clk,250khz 

 

assign SCLK = SCLKCounter[15]; 
 

logic [15:0]shiftReg; //inner sequence of bits to send to ADC to start  
read cycle and read MISO bits 

logic [4:0]SPICycle; //to generate inner CSBar signal 
 

always_ff@(posedge SCLK) 
SPICycle <= SPICycle + 5'b1;//CSBar clock divider  

 

always_ff@(negedge SCLK) 
begin 

CSBar = SPICycle[4];//Chip select signal, goes high for 16 sclk 
cycles at a time 

Dout = shiftReg[15]; //bit to send to slave 
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if (~CSBar) shiftReg<={shiftReg[14:0],Din};//shift register to take 
MISO bits into shift reg  

else if (SPICycle == 5'b11111)shiftReg<= 16'h6000;//mosi bit reset 
end 

 

always_ff@(posedge CSBar) 
Din10 <= shiftReg[9:0]; //sends ADC output to signal processing 
 

always_comb 

case(CSBar) 

 1'b1: done = 1'b1; 
 1'b0: done = 1'b0; 
endcase 

endmodule 

  

//module SPI Slave--adapted and inspired by DDCA 531.e15-16 
//fpgaSEL asserted for one clock cycle then waits one clock cycle, then 8 bits 
are sent to PI 
//MSB is sent first, outputs zeros on tail end of signal  
 

module spiSlave(input logic PiSCLK, 
    input logic reset, 
    output logic miso, 
    input logic mosi, 
    input logic [7:0]HRout );//combined signal of produced heart 

rate and peak heartbeat); 
  

logic [7:0]HRsend;//inner module sample of the HRV input that can be 
modified as a shift register 

 

always_ff@(negedge PiSCLK) 
begin 

if (mosi) HRsend= HRout;//on mosi bit, shift in HR, therefore Pi 
only needs to send a single bit high 

else HRsend={HRsend[6:0],1'b0}; 
end 

 

assign miso = HRsend[7];   

endmodule  

 

module HRFind(input logic [9:0]ADC, 
  input logic newData, 
  input logic reset, 
  output logic[7:0] HRout); 

 

logic [17:0] movingAvg,baselineSum; //the average of the 200 most recent 
samples, and the sum of last 200 samples 

logic [27:0] sampleHR; 
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logic [9:0] subVal;//combined value from shift register to subtract from 
200 value sum 

logic [14:0] count;//counter for samples between peakS 
logic [7:0] HR,baselineN; 
logic [15:0]peakSep;////total number of points between peaks 
logic [8:0]delta;//amount required for a sample to be outside of moving 

envelope 

logic [199:0] bit0Reg, bit1Reg,  bit2Reg,  bit3Reg,  bit4Reg, bit5Reg, 
bit6Reg,bit7Reg,bit8Reg,bit9Reg; 

logic startCount; 
logic [39:0]timeBetween;//time in microseconds between pulses 

 

 

always_ff@(posedge newData) 
begin 

if (reset) 
begin 

{movingAvg}=18'b0;  

count = 15'b0; 
{bit0Reg,bit1Reg,bit2Reg,bit3Reg,bit4Reg,bit5Reg,bit6Reg,bit7

Reg,bit8Reg,bit9Reg}=200'b0; 

baselineN =8'b1; 
baselineSum=18'h155;//initial guess that  baseline adc 

reading is initially around 600  
HRlast1<=8'b1000000; 

sampleHR=8'b1000000; 

HR = 8'b0; //reset HR to 0bpm 
delta= 9'b10;//set value based on known circuit behavior  
startCount = 1'b0; 

end  

else  

begin 

movingAvg = baselineSum/baselineN;//moving average of the 
baseline ADC readings  

if (baselineN < 8'b11001000) baselineN <= baselineN+8'b1; 
      subVal ={bit9Reg[199], bit8Reg[199], bit7Reg[199], 

bit6Reg[199], bit5Reg[199], bit4Reg[199], bit3Reg[199], bit2Reg[199], 
bit1Reg[199], bit0Reg[199]}; 

baselineSum = baselineSum+ADC-subVal;//only adds values near 
baseline to moving average 

bit0Reg = {bit0Reg[198:0],ADC[0]}; 
bit1Reg = {bit1Reg[198:0],ADC[1]}; 
bit2Reg = {bit2Reg[198:0],ADC[2]};//shifts in most recent ADC 

value,shifts out oldest 
bit3Reg = {bit3Reg[198:0],ADC[3]}; 
bit4Reg = {bit4Reg[198:0],ADC[4]}; 
bit5Reg = {bit5Reg[198:0],ADC[5]}; 
bit6Reg = {bit6Reg[198:0],ADC[6]}; 
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bit7Reg = {bit7Reg[198:0],ADC[7]}; 
bit8Reg = {bit8Reg[198:0],ADC[8]}; 
bit9Reg = {bit9Reg[198:0],ADC[9]}; 
 

if ((ADC > (movingAvg+delta))&&(startCount ==0)) 
begin 

startCount = 1'b1; 
count = 15'b1; 

end 

 

else if((count>15'b11100001)&&(ADC>(movingAvg + delta))) 
begin 

peakSep = count; 
count = 15'b0; 
startCount = 1'b0; 
timeBetween = 16'b10011100010* peakSep; //converts from 

num of samples to time in microseconds, 2500== 100111000100 
sampleHR= (40'h3938700 / timeBetween); //=60 seconds in 

microseconds divided by time between gets hr 
end  

else if (startCount) 
begin 

count = count+15'b1; 
end  

end 

end  

assign HRout = sampleHR;  

endmodule 
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Appendix E: Pi Library File  
 
// SPI_GPIO.h 
  
// Include statements 
#include <sys/mman.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <fcntl.h> 
#include <unistd.h> 
  
// GPIO FSEL Types 
#define INPUT  0 
#define OUTPUT 1 
#define ALT0   4 
#define ALT1   5 
#define ALT2   6 
#define ALT3   7 
#define ALT4   3 
#define ALT5   2 
  
#define GPFSEL   ((volatile unsigned int *) (gpio + 0)) 
#define GPSET    ((volatile unsigned int *) (gpio + 7)) 
#define GPCLR    ((volatile unsigned int *) (gpio + 10)) 
#define GPLEV    ((volatile unsigned int *) (gpio + 13)) 
#define INPUT  0 
#define OUTPUT 1 
  
typedef struct 
{ 
unsigned CS  :2; 
unsigned CPHA :1; 
unsigned CPOL :1; 
unsigned CLEAR  :2; 
unsigned CSPOL :1; 
unsigned TA  :1; 
unsigned DMAEN :1; 
unsigned INTD  :1; 
unsigned INTR  :1; 
unsigned ADCS :1; 
unsigned REN  :1; 
unsigned LEN  :1; 
unsigned LMONO  :1; 
unsigned TE_EN :1; 
unsigned DONE :1; 
unsigned RXD :1; 
unsigned TXD :1; 
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unsigned RXR  :1; 
unsigned RXF  :1; 
unsigned CSPOL0  :1; 
unsigned CSPOL1  :1; 
unsigned CSPOL2  :1; 
unsigned DMA_LEN :1; 
unsigned LEN_LONG :1; 
unsigned  :6; 
}spi0csbits; 
#define SPI0CSbits (* (volatile spi0csbits*) (spi + 0))  
#define SPI0CS (* (volatile unsigned int *) (spi + 0)) 
  
#define SPI0FIFO (* (volatile unsigned int *) (spi + 1)) 
#define SPI0CLK (* (volatile unsigned int *) (spi + 2)) 
#define SPI0DLEN (* (volatile unsigned int *) (spi + 3)) 
  
// Physical addresses 
#define BCM2836_PERI_BASE        0x3F000000 
#define GPIO_BASE               (BCM2836_PERI_BASE + 0x200000) 
#define SYSTIMER_BASE           (BCM2836_PERI_BASE + 0x3000) 
#define BLOCK_SIZE (4*1024) 
#define SPI0_BASE               (BCM2836_PERI_BASE + 0x204000) 
  
// Pointers that will be memory mapped  
volatile unsigned int *gpio; //pointer to base of gpio 
volatile unsigned int *spi; // pointer to base of systimer 
  
void pioInit() { 
int  mem_fd; 
void *reg_map; 
  
// /dev/mem is a psuedo-driver for accessing memory in the Linux filesystem 
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) { 
      printf("can't open /dev/mem \n"); 
      exit(-1); 
} 
  
reg_map = mmap( 
  NULL,             //Address at which to start local mapping (null means don't-care) 
      BLOCK_SIZE,       //Size of mapped memory block 
      PROT_READ|PROT_WRITE,// Enable both reading and writing to the mapped memory 
      MAP_SHARED,       // This program does not have exclusive access to this memory 
      mem_fd,           // Map to /dev/mem 
      GPIO_BASE);       // Offset to GPIO peripheral 
  
if (reg_map == MAP_FAILED) { 
      printf("gpio mmap error %d\n", (int)reg_map); 
      close(mem_fd); 
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      exit(-1); 
    } 
  
gpio = (volatile unsigned *)reg_map; 
} 
  
void SPIInit() { 
int  mem_fd; 
void *reg_map; 
  
// /dev/mem is a psuedo-driver for accessing memory in the Linux filesystem 
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) { 
      printf("can't open /dev/mem \n"); 
      exit(-1); 
} 
  
reg_map = mmap( 
  NULL,             //Address at which to start local mapping (null means don't-care) 
      BLOCK_SIZE,       //Size of mapped memory block 
      PROT_READ|PROT_WRITE,// Enable both reading and writing to the mapped memory 
      MAP_SHARED,       // This program does not have exclusive access to this memory 
      mem_fd,           // Map to /dev/mem 
      SPI0_BASE );  
  
if (reg_map == MAP_FAILED) { 
      printf("spi mmap error %d\n", (int)reg_map); 
      close(mem_fd); 
      exit(-1); 
    } 
  
spi = (volatile unsigned *)reg_map; 
} 
  
void pinMode(int pin, int function){ 
int reg = pin/10; 
int offset = (pin%10)*3; 
GPFSEL[reg] |= ((0b111&function)<<offset); 
GPFSEL[reg] &= ~((0b111&~function)<<offset); 
} 
  
  
void spiInit(int freq, int settings) { 
    //set GPIO 8 (CE), 9 (MISO), 10 (MOSI), 11 (SCLK) alt fxn 0 (SPI0) 
    pinMode(8, ALT0); 
    pinMode(9, ALT0); 
    pinMode(10, ALT0); 
    pinMode(11, ALT0); 
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    //Note: clock divisor will be rounded to the nearest power of 2 
    SPI0CLK = 250000000/freq;   // set SPI clock to 250MHz / freq 
    SPI0CS = settings;  
    SPI0CSbits.TA = 1;          // turn SPI on with the "transfer active" bit 
} 
  
char spiSendReceive(char send){ 
    SPI0FIFO = send;            // send data to slave 
    while(!SPI0CSbits.DONE);    // wait until SPI transmission complete 
    return SPI0FIFO;            // return received data 
} 
  
short spiSendReceive16(short send) { 
    short rec; 
    SPI0CSbits.TA = 1;          // turn SPI on with the "transfer active" bit 
    rec = spiSendReceive((send & 0xFF00) >> 8); // send data MSB first 
    rec = (rec << 8) | spiSendReceive(send & 0xFF); 
    SPI0CSbits.TA = 0;          // turn off SPI 
    return rec; 
} 
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