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Abstract

The goal of this project was to create a music box that outputs three music parts from three
speakers, has three dancers spin to the speed of the music, and has a row of LEDs that
correspond to different sets of “notes” and light up as the music is playing. The Raspberry Pi
takes in input from a keypad via the FPGA to determine which song to play. It then uses
frequency-duration pairs in order to play three parts of the song. From these notes, the Raspberry
Pi also uses a moving average of the note durations to determine how quickly the music is being
played, and sets the PWM of the motors accordingly. The Pi then sends a generated square wave
to the speakers and FPGA. The FPGA performs the Fast Fourier Transform on this signal and
uses it to determine the most likely frequency being played. This is used to light up the LEDs.



Introduction

The motivation for this project was to create a music box that was both visually and audibly
entertaining. The box is able to play multiple songs, and the song being played is selected by the
user. The music box also plays three parts of a song together, allowing for multiple harmonies
for a richer musical effect. The design also emphasizes visual effects as well, with an array of
LEDs that light up based on the notes being played, and dancers that spin to the music. The
speakers and dancers are mounted in a box, shown on the title page. The box was made from
quarter-inch wood on a laser cutter. The drawings for this box are included in Appendix E.

A user chooses a song by pressing a number on a keypad. This press is read by the Field
Programmable Gate Array (FPGA), which passes this input to the Raspberry Pi. The Pi reads the
music of the corresponding song and creates a series of square waves that it sends to the three
speakers. The Pi computes a moving average of the duration of the notes that corresponds to the
speed of the music. It then sets the speed of the motors, using the PWM channels, so that when
the music speeds up, the dancers also speed up. The Pi also sends the “first” of these three square
waves (usually corresponding to the melody) to the FPGA. The FPGA then performs the Fast
Fourier Transform on this square wave in order to determine the most likely frequency—and
therefore note—being played at any time. It outputs this to an array of 16 LEDs, each of which
corresponds to a frequency range of 60 Hz, over the range 60 Hz to 1.1 kHz. This is from the
notes D2 to D5, a three octave range. If the notes go out of this range, however, the harmonics
are registered by the Fast Fourier Transform as the most-likely peaks, and therefore the
harmonic’s LED lights up. The interaction between all of these systems is shown in Figure 1.
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Figure 1: Block Diagram



New Hardware

This project made use of standard DC motors in order to spin the dancers. These motors were
driven by a PWM signal from the Raspberry Pi. This was done using the L298DNE H-bridge.
The pinout of the H-bridge is shown in Figure 2.
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Figure 2: Pinout of the H-bridge

The motor was connected between 4Y and ground. This is the output of half of the second
H-bridge in this quad package. The H-bridge was driven by the PWM signal from the Pi, which
was connected to the 3,4EN. This is the enable pin for channels three and four. Since we
connected the motor to the output of channel 4, the right set of pins are enabled. Pins 4, 5, 12 and
13 were grounded. Vccl, the logic voltage, was connected to 3.3 volts. 4A was driven to 3.3 V to
spin the motor forward. Vcc2 was connected to about 2.5 volts. This 2.5 volts was provided
from the 20V setting of the power supply, which provides higher current. The overall speed of
the dancers could be adjusted from baseline by raising or lowering the voltage applied to Vec2.



Schematics

Pinout of FPGA:
0, {dic} Input PIN_88
SU cols[3] Output FIN_30
24t cols[7] Output FIN 32
24t cols[1] Output FIN 34
24 cols[0] Output FIN_ 43
- dats Input PIN_95
2U done Output PIN_75
24! leds[15] Output FIN 1
24t leds[14] Output FIN 3
24! leds[13] Output FIN_10
24! leds[17] Output FIN_ 28
24t leds[11] Output FIN 31
24t leds[10] Output FIN_33
24 leds[4] Output FIN 33
24t leds[a] Output FIN_ 42
24t leds[7] Output FIN_ 44
24 leds[a] Output FIN 49
24¢ leds[5] Output FIN_ 51
24t leds[4] Output FIN_53
24t leds[3] Output PIN_54
24t leds[2] Output PIN_58
24t leds[1] Output PIN_&0
2L leds[0] Output FIN_&5
T, reset Input PIMN_&7
%, rows[3] Input PIMN_39
% rows[2] Input PIM_45
%, rows[1] Input PIM_50
N rows[0] Input PIM_11
2U song[4] Output FIN_T0
2Y song[3] Output PIN_ 71
24t song[Z] Output PIN_72
2Y% song[1] Output PIN_73
2Ut song[o] Output PIN_74
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Microcontroller Design

The Raspberry Pi receives input on pins 5, 6, 17, 22, and 27, specifying which piece to play. It
outputs three different square waves on pins 4, 13, and 23, as well as a PWM signal on pin 18.

The Raspberry Pi is responsible for reading in a music score, comprised of notes and durations
from a preset file. The Pi can parse an input of notes, written as {sC4, E}, where the first entry
denotes C,#, and the second entry denotes a duration as long as an eighth note. This is achieved
through type definitions and structs in the C code. These music files are provided as header files
and on the Raspberry Pi.

Further, the Raspberry Pi supports multiple audio channels for playback. It can read and play
from three separate specifications of music data simultaneously, each corresponding to a
different part of the same piece. While the pointers to the three music data arrays are held and
updated separately, at the core the C program discretizes the music data into 25 millisecond
chunks, so instead of separate notes and durations, the music is played as a series of 25
millisecond three-note chords.

To generate the three separate frequencies, we use the pigpio library, which can be found at
<http://abyz.me.uk/rpi/pigpio/> [2], in conjunction with the WiringPi library, which can be found
at <http://wiringpi.com/> [3]. We used these libraries because the implementation for generating
a frequency using the methods described in class required putting the C program to sleep while
waiting for a delay timer, which means parallel execution is impossible. These libraries allow the
generation of independent clock frequencies on the GPIO pins, as well as hardware PWM
signals. However, we still use the EasyPIO library from class to add an extra channel of audio.

The Raspberry Pi can read a provided music header file and select the correct array of notes to
play based on the keypad input from the FPGA. We have bound “Concerto for Two Violins” by
J. S. Bach to key 1, “Canon in D by Johann Pachelbel to key 2, “Sleigh Ride” by Leroy
Anderson to key 3, and “He’s a Pirate” by Klaus Badelt and Hans Zimmer to key 4. We have
also created a test music file that plays a C major scale with varying speeds and bound that music
to key 5.

Finally, the Raspberry Pi records a moving average of the durations of the previous three notes to
estimate the current tempo of the song being played. This average is transformed into a PWM
duty cycle by a linear relation which maps 75, the fastest average, to a 100% duty cycle and
1200, the slowest average, to a 50% duty cycle. This is output on PWM channel 0 and sent to the
enable pins on the three H-bridges.



FPGA Design

Fast Fourier Transform

The FPGA performs the Fast Fourier Transform on a set of sample data. The Fast Fourier
Transform was created from analyzing the paper described in the Slade 2013 paper [1]. Our FFT
performed on the FPGA is not pipelined, but is instead a two-cycle process that alternates
between write and read cycles. It makes use of a butterfly unit, a RAM, an address generation
unit, and a twiddle factor unit. The butterfly unit, address generation unit, and twiddle factor unit
were tested separately to confirm their functionality using ModelSim Altera. Then, the entire
FFT was tested and debugged in ModelSim Altera by comparing waveforms with the expected
waveforms in the paper. An example waveform is provided in Appendix B.

The FFT controller samples from a single GPIO input pin at a sampling rate of 2.4 kHz. A high
is translated to 1023, and a low is translated to -1024, and 32 points are loaded into the FFT
memory. The controller pulses a start signal to begin the FFT calculation and waits for a done
signal from the address generating unit.

In Figure 3, the structure of the FFT in hardware is described. The code for each of these
modules is shown collectively in Appendix A. Each module is described in depth below.
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Figure 3: Block diagram of the logic of the FFT

Address Generation Unit: The AGU takes in a start signal, a load signal, and sixteen bits of data.

The load signal is asserted when the data is being loaded onto the FPGA. The start signal is
asserted when the system should begin to perform the FFT, and the data is a 16-bit bus that
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represents the real parts of the input data, which is sampled at the sampling rate when the load
signal is high.

The AGU closely follows the pseudo-code described in the Slade 2013 paper, Table II1 [1]. The
“for loops” in the code are translated into a Finite State Machine (FSM), described in Figure 4.

(i<588]<16)

Figure 4: Finite State Machine in the Address Generation Unit

The AGU initializes in a wait state, which does not perform the FFT, but instead loads in the
starting data. When start is asserted, the real parts of the data are loaded into memory, registers
are cleared, and the system begins to perform the FFT by going into the read state. The system
then uses a ping-pong memory buffer, which alternates between read and write states in order to
give the system time for the data memory to read the data. In the write state, the AGU writes out
the addresses it has calculated using the shifting algorithm in the Slade 2013 paper [1]. When
this process is complete, it transitions to a done state. An output, done, is then asserted.

Butterfly Unit: The butterfly unit performs complex adds and multiplies, as described in the
Slade paper, Figure 6 [1]. It takes real and imaginary data of two signals, each 16-bit, and returns
the transformed real and imaginary parts to the data memory. It makes use of real and imaginary
parts (each also 16-bit) of a twiddle factor as well.

Twiddle Lookup: The twiddle factors are generated using a lookup table. These factors are
described in the Slade paper, Table II [1]. It receives a twiddle address from the AGU, and
outputs the correct twiddle factor from the lookup table to the butterfly unit.

Data Memory: The data memory closely follows the block diagram outlined in the Slade paper,
Figure 9 [1]. It implements a two-bank ping-pong memory buffer, receiving addresses to read
and write from the AGU and sending the memory output to the butterfly unit. Further, when load
is asserted, data can be loaded into bank 0 of the memory buffer, after which calculation can
begin.



Keypad Scanner

The FPGA also implements a keypad scanner to read from a 4x4 keypad. The system sampled
the keypad to determine which button was pressed. This was done by cycling a high, 3.3V output
through the columns using a Finite State Machine (FSM). The rows were then sampled to find
out if there was a connection, and therefore a button pressed. Any connection between the two,
recorded as a high row for a high column signal, would then be recorded and decoded to the
corresponding decimal number pressed. Then, the keypad configured the output so that each
decimal number used (1-5) would turn on a different output pin. Thus, there were five outputs
from the keypad module to the Raspberry Pi. This was done on a slower clock of about 153 Hz
in order to avoid switch bounce.

Peak Finding

On the last cycle of the FFT calculation, the FPGA simultaneously calculates the maximum
energy frequency bin and clears the FFT memory blocks. It does this using a counter to count
through the FFT output and uses a register to store the maximum value. The maximum energy
frequency bin is outputted on 16 LEDs corresponding to the frequency range 60Hz to 1.1kHz
with each LED corresponding to a 60 Hz bin. However, the LEDs don’t change on every note.
This is because lower frequency are closer together, so there are about two notes per bin, but for
higher frequencies, each note has its own LED. Thus, the LEDs change often enough over a wide
range of frequencies, which is the desired effect.



Results

Our music box functions as intended, and we have achieved all of the goals we set out for our
project. Our box can read a user input from a keypad and select a song to play on the Pi. The
specification is parsed correctly and output three separate music parts on three speakers. The
dancers on the box also spin at a rate that is correlated with the music tempo, spinning faster as
the music gets faster.

Further, our implementation of 32-bit Fast Fourier Transform works effectively to determine the
frequency of a square wave. Simulation results in Appendix B validate the correctness of our
FFT. In hardware, the LEDs light up in time with the music and correctly indicate the note being
played.

One of the difficult aspects of the project was the Fast Fourier Transform module. Debugging
required looking through a number of signals and waveforms to track down issues. Key parts of
the FFT were the address generating unit and the data memory blocks. Thankfully, the paper by
Slade was descriptive enough to implement everything correctly, with test cases and sample
output.

A subtle difference between our proposal and our final delivered project is the output of the FFT
modules. The highest energy frequency bin is output on 16 LEDs, rather than the note being
played. This is because at lower pitches, notes become closer together with smaller differences in
frequency. To capture these smaller differences, a higher resolution FFT calculation would be
required, likely a 1024-point FFT. To keep the project within our scope, we continued with our
32-point FFT calculation and elected to output the frequency bin instead of the note. At lower
frequencies, two notes can occupy the same bin. However, at higher frequencies, it is usually one
note per bin. As such, the desired effect of the LEDs changing with the music is still achieved.
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Parts List

Name Quantity Part # Manufacturer|Price per unit| Total Price

Standard DC Motor 3 1528-1150-ND| Adafrut 1.95 5.85

Speaker 4 668-1525-ND | PUI Audio 2.68 10.72

Dancers 1 (Set of 3) N/A N/A 1171 11.71

LED's 16 N/A Chanzon N/A 6.89

1/4" Wood N/A N/A N/A 0 0
TOTAL 35.17
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Appendix A: FPGA Verilog

L1117 777777 7777707777777777777777777777777777777777777177
//

// ENGR155 Final Project

// fft.sv

//

// Created by:

// Kitty Belling kbelling@hmc.edu

// Andy Zhang axzhang@hmc.edu
// Date created: November 29, 2017
//

// Reads a square wave from an input pin and calculates the
// frequency using a hardware fast Fourier transform. Outputs
// the most likely frequency bin through 16 LEDs.

/7

L1117 777 7077777777 77777777777777777777777777771777777777777

module final KBAZ (input logic clk, reset, data,
input logic [3:0] rows,
output logic done,

output logic [15:0] leds,
output logic [3:0] cols,
output logic [2:0] song);

// Create the 4.9 kHz clock for sampling and FFT
logic slowclk;
clkdiv div(clk, reset, slowclk);

// FFT module
fftcontroller control (slowclk, reset, data, done, leds);

// Keypad scanner module
keypad keypad(rows, clk, reset, cols, song);

endmodule

L1177 777 77777777 77777777777777777777777777777777777777777
//

// FAST FOURIER TRANSFORM CONTROLLER

//

// Created by:

// Andy Zhang axzhang@hmc.edu

// Date created: November 29, 2017

//

// Samples the input data pin at approximately 4.9 kHz, and
// triggers FFT when sample data is completely loaded. Once
// FFT is done, calculates the maximum energy frequency bin
// and decodes the bin into a one-hot encoding.

//

L1177 7777777 777777777777777777777777777777777777777777777

module fftcontroller (input logic clk, reset, data,
output logic done,
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output logic [15:0] leds);

// Declare FFT signals

logic start, loadwrite;
logic [4:0] loadadr, maxadr, adr;
logic [5:0] count;

logic signed [15:0] datar, datai, gr, gi, hr, hi;

// Count up to 32 samples
always ff @ (posedge clk, posedge reset)

if (reset) count <= 0;
else if (done) count <= 0;
else if (count < 33) count <= count + 1;

// Transform single bit input to 16 bit real data
always ff @ (posedge clk)
if (data) datar <= 16'h03ff; // HIGH is 1023
else datar <= 16'hfc0l; // LOW is -1024

// Imaginary data is always O
assign datai = 16'h0000;

// Write into FFT memory for 32 cycles, then pulse start
assign loadwrite = (count < 32);
assign loadadr = count[4:0];

assign start (count == 32);

// FFT module

fft fft(clk, reset, start, loadwrite, datar, datai, loadadr,
gr, gi, hr, hi, maxadr);

// Maximum frequency bin register
always ff @ (posedge clk, posedge reset)
if (reset) adr <= 4'd0;
else if (done) adr <= maxadr;

// Decode frequency into one-hot encoding for LEDs
decoder dec (adr, leds):;

endmodule

[1/7177 777777777777 7777777777777777777777777777777777777777
//

// HARDWARE FAST FOURIER TRANSFORM

//

// Created by:

// Kitty Belling kbelling@hmc.edu

// Andy Zhang axzhang@hmc.edu
// Date created: November 11, 2017
/7

// Implements the Decimation-in-Time 32-point Fast Fourier
// Transform (FFT) using the Cooley-Tukey Radix-2 algorithm
// described in George Slade "The Fast Fourier Transform in
// Hardware: A Tutorial Based on an FPGA Implementation"

// (2013). Our implementation uses a two-cycle process to
// calculate the complex butterfly operation, as well as

13
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//
//
//
//
//
//

Link to paper:

to read and write to a ping-pong memory module.

L1107 7000077777777 77777 070777777777777777777777777777777

module fft (input logic

logic signed [15:0]

[4:0]

input
input logic
output logic

[15:0]

[4:0]

output logic signed

output logic
for FFT

x1i,

// Declare signals

logic signed [15:0] xr, vr,

memBim;

logic [4:0] adra, adrb,

logic write,

// Address generator unit

agu agu(clk, reset, start, adra,

// Ping-pong memory write signals

assign bankOwrite

assign banklwrite

// Data memory unit
mem mem (clk, loadwrite,

loadadr, adra, adrb,

datar, datai, memAre,
// Twiddle ROM

twiddle twid(twiddleAdr, wre,
// Butterfly Unit

bfu bfu(gr, gi, hr, hi, wre,

// On the last cycle of FFT,

assign memAre = peaken ? 16'd0
assign memAim = peaken ? 16'd0
assign memBre = peaken ? 16'd0
assign memBim = peaken ? 16'd0

vi,

bankOwrite,
adra,

memAim,

wim,

clk,
datar,

reset, start,
datai,
loadadr,
done,
gr, 9i,
maxadr) ;

hr, hi,

wre, wim, Are, Aim,

twiddleAdr;
bankOwrite,

banklwrite,

adrb, write, done,

banksel & write;
~banksel & write;

banklwrite,
adrb,

banksel,

memBre, memBim,

wim) ;

Are, Aim, Bre, Bim);

Are;
Aim;
Bre;
Bim;

// Calculate the most likely frequency bin

peakfind peak(clk, reset,

endmodule

peaken,

clear, adra, Are, Aim,

L1710 7707 7700770777070 77 77777777777 77777777771777777777

//

// BUTTERFLY UNIT

//

// Created by:

// Kitty Belling kbelling@hmc.edu

14

banksel,

clear,

grl

https://www.researchgate.net/publication/235995761 The Fast Fourier
Transform in Hardware A Tutorial Based on_an FPGA Implementation

loadwrite,

Bre, Bim, memAre, memAim, memBre,

peaken, clear;

twiddleAdr, banksel, peaken);

gi, hr, hi);

clear memory bank for next FFT calculation

maxadr) ;



// Andy Zhang axzhang@hmc.edu

// Date created: November 11, 2017

/7

// Computes the butterfly operation on two complex inputs
// and a complex twiddle factor.

//

L1177 7777 777777777777 77777777777777777777777777777777777

module bfu(input logic signed [15:0] are, aim, bre, bim, wre,
output logic signed [15:0] Are, Aim, Bre, Bim);

// Temporary multiplication results
logic signed [35:0] muloutre, muloutim;

assign muloutre = bre * wre - bim * wim;

assign muloutim = bim * wre + bre * wim;

// Take only bits 30:15, as specified in Slade 2013

assign Are = are + muloutre[30:15];

assign Aim = aim + muloutim[30:15];

assign Bre = are - muloutre[30:15];

assign Bim = aim - muloutim[30:15];
endmodule

L1177 0777777777 70777777777777777777777777777777777777777
//

// TWIDDLE LOOKUP TABLE

//

// Created by:

// Kitty Belling kbelling@hmc.edu

// Date created: November 13, 2017

//

// Reads from a text file containing the twiddle factors,
// with the real components addressed first and the

// imaginary components addressed 16 bits offset.

//

L1171 7777 777777777777 77777777777777777777777777777777777

module twiddle (input logic [4:0] adr,
output logic signed [15:0] wre, wim);

logic [4:0] adrIm;
logic signed [15:0] twiddleTable[0:31];

initial Sreadmemh ("twiddleTable.txt", twiddleTable) ;

// Calculate imaginary component offset
assign adrIm = adr + 5'dlé6;

assign wre = twiddleTable[adr];
assign wim = twiddleTable[adrIm];
endmodule

15
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[ITLD77 7000777777007 77 7700777777777 777770777777777777

//
//
//
//
//
//
//
//
//
//
//
//
//

DATA MEMORY

Created by:
Kitty Belling kbelling@hmc.edu

Andy Zhang axzhang@hmc.edu

Date created: November 18, 2017

Implements the data memory module described in the Slade
2013 hardware implementation of FFT.

Uses a ping-pong memory scheme to do efficient read-write

operations, and supports loading of real-time data.

L1107 7000077777777 777777 070777777777777777777777777777777

module mem (input

logic clk, loadwrite, bankOwrite, banklwrite,

[4:0] loadadr,
[15:0]

[15:0]

input logic readgadr, readhadr, writegadr,

datai, yr, yi,

hr, hi);

input logic signed datar, xi,

gr, 9i,

xr,
output logic signed
// Declare addresses, data,

bankOawrite,

and write signals

banklawrite;
adrb0, adrbl,

dataini, gOr,

logic
[4:0]
[15:0]

logic adra0, adral, flippedadr;

logic signed datainr, g0i, glr, gli, hOr, hOi, hlr,

// Write to BankOA if loading data,
assign bankOawrite =

or if writing to that block directly
loadwrite | bankOwrite;
assign banklawrite = banklwrite;

// Function for reversing the number of bits in a parallel bus.
// See https://electronics.stackexchange.com/a/191125

[4:0]
[4:0]

bitreverse (
data

function
input
)i
integer i;
begin
(i=0;
bitreverse[4-1] =

for i < 5; i=i+1) begin

datal[i];

reverse

end
end
endfunction

// Load data in bit-reversed order

assign flippedadr = bitreverse (loadadr);

banksel,
writehadr,

hli;

// Multiplexers to choose the RAM address

assign adral =
adrb0 =
adral =

adrbl =

assign
assign
assign

loadwrite ? flippedadr
bankOwrite ? writehadr
banklwrite ? writegadr
banklwrite ? writehadr

(bankOwrite ? writegadr
readhadr;
readgadr;
readhadr;

readgadr) ;

// Multiplexer
assign datainr =

to choose BFU output or loading data
loadwrite ? datar Xr;

assign dataini = loadwrite ? datai xi;

// Ping-pong memory banks

16



ram ramOr (clk, datainr
dataini
yrf

vi,

ram ramOi (clk,

ram ramlr (clk, xr,

ram ramli(clk, xi,
// Output
assign gr

multiplexer
banksel
banksel
banksel
banksel

?
assign gi ?
assign hr ?

assign hi ?

endmodule

L1177 7007077777177777777

//

// TWO-PORT RANDOM ACCESS

//

// Adapted from Altera sof
// True Dual-Port RAM with
//

// Link to web page:

// https://www.altera.com/
// design-software/verilog
//

L1177 1007007777 7777777777

module ram(input logic
input logic si
input logic
input logic
output logic si
// Declare the RAM var
logic [15:0] ram [0:31
// Port A
always @ (posedge clk)
if (we_a) begin
ram[addr_a] <=
g a <=
end
else begin
q a <=
end
end
// Port B
always @ (posedge clk)
if (we_b) begin
ram[addr b] <=
g b <=
end
else begin
g b <=

end
end

adra0, adrboO,
adra0, adrboO,
adrbl,

adrbl,

yr, bankOawrite, bankOwrite, gOr,
vi,

adral,

’

bankOawrite, bankOwrite,

’ g01i,
hlr);

hli);

banklawrite, banklwrite, glr,

adral, banklawrite, banklwrite, gli,

based on current FFT level from bankselect signal

glr gOr;
gli g0i;
hlr hOr;
hli hoi;

L1177 777 70077 77777717777777777777

MEMORY

tware web page, "Verilog HDL:

a Single Clock".

support/support-resources/design-examples/
/ver-true-dual-port-ram-sclk.html

L1007 7 777700007 777777777

clk,
gned [15:0] data_a, data_b,
[4:0] addr_a, addr_b,
we_a, we_b,
gned [15:0] g a, g b);
iable
1;
begin
data_a;
data_a;

ram[addr_a]l;

begin
data b;

data b;

ram[addr_b];
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endmodule

L1177 7000777777 77777777777777777777777777771777777777777

//
//
//
//
//
//
//
//
//
//
//
//
//
//

ADDRESS GENERATING UNIT

Created by:

Kitty Belling kbelling@hmc.edu
Andy Zhang axzhang@hmc.edu
Date created: November 16, 2017

Implements the address generating unit described in Slade
2013 hardware implementation of FFT.

Uses a finite state machine to iterate through the FFT
levels and calculate the address pairs,
when to write to which memory block.

L1707 7700070777070 77 777777777777 7777777771777777777

module agu (input

logic clk,

adra,

reset,
adrb,
done,

start,

output logic [4:0]

write, clear,
twiddleAdr,

banksel,

output logic

output logic [4:0]

output logic peaken) ;
// Declare states for FSM
[3:0] {WAIT,

nextstate;

typedef enum logic CLEAR, READ, WRITE, DONE}

statetype state,

// 1 is outer loop index,
[2:0]
[4:0]

j is inner loop index
il

j!

logic next 1i;

logic next j, j shift;

// Next state register

always ff @ (posedge clk, posedge reset)
if (reset)

state <=

begin
WAIT;
0;

0;

i <=

J <=
end
else if

(clear) begin

state <= nextstate;
0;

0;

i <=
j <=
end
else begin
state <=
i <=

nextstate;
next i;

b <= next j;
end

// Next state logic
always_comb
case (state)
WAIT: if nextstate =

(start) CLEAR;
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else nextstate = WAIT;

CLEAR: nextstate = READ;

READ: nextstate = WRITE;

WRITE: if (i == 4 && j == 15) nextstate = DONE;

else nextstate = READ;

DONE: nextstate = WAIT;
endcase

// Increment logic
always comb
case (state)
WRITE: // Only increment in WRITE state

begin
if (j == 15) begin
next j = 0;
next i =1 + 1;
end

else begin
next 3 = 3 + 1;

next i = i;

end

end

default:

begin
next i = 1i;
next j = 3j;

end

endcase

// Calculate addresses using algorithm outlined in paper

assign j_shift = 3j << 1;

assign adra = (j_shift << 1) | (j_shift >> (5 - 1));

assign adrb (j_shift + 1) << i) | ((j_shift + 1) >> (5 - 1));
32'"hffff£f££f0 >> 1) & j;

(
assign twiddleAdr = (

// Output signals based on state

assign write = (state == WRITE);
assign done = (state == DONE) ;
assign clear = (state == CLEAR);

// Enable max finding on the last cycle of FFT
assign peaken = (state == WRITE && i == 4);

// Switch read and write banks every cycle for ping-pong memory
assign banksel = i[0];

endmodule

N NN

//
// PEAK FINDING MODULE

//

// Created by:

// Andy Zhang axzhang@hmc.edu
// Date created: November 24, 2017
//
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// Iterates through the results of the last block of FFT and
// calculates the bin with the highest energy. This bin is
// the most likely frequency range.

//

[117177 777777777777 7777777777777777777777777777777777777777

module peakfind(input logic clk, reset, enable, clear,
input logic [4:0] adr,
input logic signed [15:0] re, im,
output logic [4:0] maxadr);

// Declare local maximum and intermediate result
logic signed [31:0] maxresult, result;

// Update the maximum value
always_ ff @ (posedge clk, posedge reset, posedge clear)

if (reset | clear) begin
maxadr <= 4'd0;
maxresult <= 32'd0;
end

else if (enable && ~clear && result > maxresult) begin
maxadr <= adr;
maxresult <= result;

end

// Calculate the intermediate result
assign result = re*re + im*im;

endmodule

[/ 7077777777 777777777777777777777777777777777777777777777
//

// ADDRESS DECODER

//

// Created by:

// Andy Zhang axzhang@hmc.edu

// Date created: November 27, 2017

//

// Transforms a 5-bit address from the FFT module into a

// 16-bit one-hot encoding to send to LEDs on the board.

//

[1/7177 777777777777 7777777777777777777777777777777777777777

module decoder (input logic [4:0] a,
output logic [15:0] vy);

// Only use addresses less than 16
assign y = (a < 16) ? (1 << a) : 16'd0;

endmodule
L1170 7777 777777777777 77777777777777777777777777777777777
//

// CLOCK DIVIDER
//

20



// Created by:

// Andy Zhang axzhang@hmc.edu
// Date created: November 27, 2017
//

// Uses the FPGA onboard clock of 40 MHz to create a slower
// clock for a samplng rate of 4.9 kHz for FFT.

//
[1710777707777777777777777777777777777777777777777777777777

module clkdiv (input logic clk, reset,
output logic slowclk);

logic [13:0] g

always ff @ (posedge clk, posedge reset)
if (reset) g <= 0;
else g <=qg + 1;

assign slowclk = g[l1l3];

endmodule

[0 777777777 7777777777777777777777777777777777777777177
//

// KEYPAD MODULE

//

// Created by:

// Kitty Belling kbelling@hmc.edu

// Date created: November 27, 2017

//

// Implements a scanner for a 4x4 keypad.

//

L1177 077777 777777777777777777777777777777777777777777777

module keypad(input logic [3:0] R,
input logic clk, reset,
output logic [3:0] C,
output logic [2:0] song);

// Create a new clock that will run the rest of the code.
// This slower clock allows for values to stabilize before
// the clock edges.

logic nclk;

freqChange newClk(clk, reset, nclk);

// Find out which button is being pressed.
logic [4:0] numbPressed;
whichButtonPressed setNum (R, nclk, reset, C, numbPressed);

// Hold number in a register; only change the number if
// a new key is pressed.
logic [4:0] oldNum;

always ff @ (posedge nclk, posedge reset)
if (reset) begin
0ldNum <= numbPressed;
end

21



else if (oldNum !== numbPressed) begin
o0ldNum = numbPressed;

end

else begin
oldNum <= oldNum;

end

always_comb

case (oldNum[3:0])
4'p1110: song = 3'b000; //reset if * is played
4'b0001: song = 3'b001; //song 1
4'p0010: song = 3'b010; //song 2
4'b0011: song = 3'b100; //song 3
default: song = 3'b000; //nothing

endcase

endmodule

L1117 777 7077777777 77777777777777777777777777771777777777777

//

// BUTTON DECODER

//

// Created by:

// Kitty Belling kbelling@hmc.edu

// Date created: November 27, 2017

/7

// Takes in the values of the rows, clock and reset and outputs
// and outputs the last number that has been pressed by setting
// the columns.

//

L1777 7707777770777 77777777777 77777777777777777

module whichButtonPressed (input 1logic [3:0] R,
input logic clk, reset,
output logic [3:0] C,
output logic [4:0] numberPressed);

logic [3:0] state, nextstate;
assign C = state;
logic [7:0] tracked, ntracked;

always ff @ (posedge clk, posedge reset)
if (reset) begin
state <= 4'b0000;
tracked <= 8'd0;
end
else begin
state <= nextstate;
tracked <= ntracked;
end

always_comb

case (state)
4'p0000: nextstate = 4'b0001;
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4'p0001: nextstate = 4'b0010;

4'p0010: nextstate = 4'b0100;

4'p0100: nextstate = 4'b1000;

4'p1000: nextstate = 4'b0000;

default: nextstate = 4'b0000;
endcase

always_comb

case (state)

4'p0001: if (|R) ntracked = {R, C};
else ntracked = tracked;
4'p0010: if (|R) ntracked = {R, C};
else ntracked = tracked;
4'b0100: if (|R) ntracked = {R, C};
else ntracked = tracked;
4'pb1000: if (|R) ntracked = {R, C};
else ntracked = tracked;
default: ntracked = tracked;
endcase

always comb
case (ntracked)

8'b10000010:
8'b00010001:
8'b00010010:
8'b00010100:
8'b00100001:
8'b00100010:
8'b00100100:
8'b01000001:
8'b01000010:
8'b01000100:
8'b00011000:
8'b00101000:
8'b01001000:
8'b10001000:
8'b10000001:
8'b10000100:

default:

endcase

endmodule

L1777 71070777777 70777777777177777777777777777717777777777777

//

// CLOCK DIVIDER

//

// Created by:
// Kitty Belling kbelling@hmc.edu

// Date created: November 27,

//

// Takes in the clock,

// about 40 MHz,

numberPressed = 5'd0;

numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed
numberPressed

2017

// a frequency of about 153 Hz.

//

[ITLD77 7000077777077 7777007777777 777777770777 777777777

5'dl;
5'd2;
5'd3;
5'd4;
5'd5;
5'de;
5'd7;
5'ds;
5'd9;
5'd10;
5'dll;
5'dl2;
5'dl3;
5'dl4;
5'dl5;
5'do;

which has a frequency of
and output a new clock that has
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module fregChange (input

logic [18:0]

logic clk, reset,

output logic newclk);

q;

always ff @ (posedge clk,

if (reset)
else

assign newclk

endmodule

g <= 0;
g <=qg + 1;
= ql18];

posedge reset)
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Appendix B: ModelSim Altera Waveforms

A sample FFT calculation. Data is loaded into FFT memory while 1oadwrite is asserted.
Once the 32 points are loaded in, the start signal is pulsed to trigger the FFT calculation.
Addresses are generated by the address generating unit, and the results of the butterfly operation
are output to the FFT memory blocks.

Not shown is the last cycle of FFT, during which peakEN is high to start calculating the
maximum energy frequency bin as well as clear the FFT memory blocks.
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Appendix C: Raspberry Pi C

L1717 777 7000777777 77777777777777777777777777777777777777777
//

// ENGR155 Final Project

// playMusic.c

!/

// DIGITAL MUSIC SYNTHESIZER

// Created by:

// Kitty Belling kbelling@hmc.edu

// Andy Zhang axzhang@hmc.edu

//

// Uses the Raspberry Pi GPIO pins to generate square

// waves at a given frequency. Reads in from a music

// header file and plays three independent parts specified
// by their note and duration.

//

// Uses the pigpio library to generate independent hardware
// clock and PWM signals on the pins. Compile using

//

// gcc -g -pthread -o playMusic playMusic.c -lpigpio -lrt -lwiringPi -lpthread
//

// Also uses the provided EasyPIO library, which can be found
// at http://pages.hmc.edu/harris/class/el55/EasyPIO.h

//

L1171 7 0077777777777 77777777777 7777777777777777777777777

#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

// Raspberry Pi libraries
#include <pigpio.h>
#include <wiringPi.h>
#include <softPwm.h>
#include "EasyPIO.h"

// Contains type definitions
#include "note.h"

// Contains the music data to be played
#include "bach.h"

#include "canon.h"

#include "sleigh.h"

#include "pirate.h"

#include "test.h"

// Plays a single note at a given frequency for
// a given duration
void playNote (int freq, int dur) {
if (freqg > 0) {
// Calculate number of cycles and time
// between peaks

int cycles = (dur*freq)/1000;
int delayTime = 500000 / fregq;
int i;
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//
//
//
//
//

for (i = 0; 1 < cycles; i++) {
// Write a HIGH
myDigitalWrite (4, 1)
delayMicros (delayTime) ;
// Write a LOW
myDigitalWrite (4, 0);
delayMicros (delayTime) ;

}
else {
delayMicros (dur*1000) ;

Plays a single chord for 25 ms

To get around issues with simultaneous clocks
and PWM frequencies, we chunk the frequencies
into 25 ms chunks and play every chord for

25 ms.

void playChord(int fregl, int freqg2, int freqg3) {

//

gpioHardwarePWM (13, fregl, 500000);
softToneWrite (23, freqg?2);
playNote (freq3, 25);

Define a rest note, which is played when no song is selected
Const note t rest = {R, W};

int main(void) {

// Initialize the Raspberry Pi for EasyPIO
pioInit();
// Initialize pigpio

if (gpioInitialise() < 0) printf ("pigpio initialization error\n");

// Initialize wiringPi
wiringPiSetupGpio () ;

// GPIO pin 4 is systimer tone generator
myPinMode (4, OUTPUT) ;

// Software PWM from wiringPi
if (softToneCreate(23) != 0) printf ("wiringPi

// Reading from keypad
myPinMode (17, INPUT) ;
myPinMode (27, INPUT) ;

myPinMode (22, INPUT) ;
myPinMode (5, INPUT) ;
myPinMode (6, INPUT) ;

// Wait for input

int in0O = 0;
int inl = 0;
int in2 = 0;
int in3 = 0;
int ind4 = 0;

while (!in0 && !inl && !'in2 && !in3 && !ind4)
in0 = myDigitalRead (17);
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inl = myDigitalRead (27);
in2 = myDigitalRead (22);
in3 = myDigitalRead(5);
in4 = myDigitalRead(6);

// Initialize our counters to the arrays
int 10 = 0;
int 11 = 0;
int 12 = 0;

// Determine which piece to start with
note t* note0;
note t* notel;
note_ t* note2;

if (in0) {
note0 = &bach0[i0];
notel = &bachl[il];
note2 = &bach2[i2];

}

else 1if (inl) {
note0 = &canon0[1i0];
notel = &canonl[il];
note2 = &canon2([i2];

}

else if (in2) {
note0 = &sleighO0[i0];
notel = &sleighl[il];
note2 = &sleigh2[i2];

}

else if (in3) {
note0 = &piratel0[iO];
notel = &piratel[il];
note2 = g&pirate2[i2];

}

else 1f (in4d) {
note0 = &test0[10];
notel = &testl[il];
note2 = &test2[i2];

// Initialize running average

int num0 = note0->d;

int numl = 0;

int num2 = 0;

double running dur = 0.0;

double pwm_duty = 0.0;

// Create note copies

note t copy0 = {note0->p, notel->d};
note t copyl = {notel->p, notel->d};
note t copy2 = {note2->p, note2->d};

printf ("Playing...\n");

// Continue playing forever

while (1) {



int freqg0 = copy0.p;
int dur0 = copy0.d;
int freqgl = copyl.p;
int durl = copyl.d;
int freg2 = copy2.p;
int dur2 = copy2.d;

// Calculate new duration by subtracting 25 ms,
// keeping at DONE if reached the end

copy0.d = (durO != DONE) ? durO - 25 : DONE;
copyl.d = (durl != DONE) ? durl - 25 : DONE;
copy2.d = (dur2 != DONE) ? dur2 - 25 : DONE;

// Calculate running average of durations
if (i0 == 0) {

running_dur = (double) numO;
}
else if (i0 == 1) {
running dur = (double) (numO + numl) / 2;
}
else {
running dur = (double) (num0 + numl + num2) / 3;

// Transform average to a PWM duty cycle
pwm duty = (-0.03111 * running dur + 102.33) * 10000;
gpioHardwarePWM (18, 120, pwm duty);

printf ("Note 0: %d, %d, %d\n", 10, freqO, dur0);
printf ("Note 1: %d, %d, %d\n", il, freql, durl);
printf ("Note 2: %d, %d, %d\n", 12, freq2, dur2);

// Play a discrete chord
playChord (freq0, freql, freqg2);

// Advance if duration is 25 and note is finished
if (dur0 == 25) {
I0++;

// Logic for handling running average
if (10 == 1) {
if (in0) {
numl = bach0[i0].d;
}
else 1if (inl) {
numl = canon0[i0].d;
}
else 1if (in2) {
numl = sleighO[i0].d;
}
else if (in3) {
numl = pirateO0[i0].d;
}
else 1if (in4) {

numl = test0[10].d;
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}
else if (10 == 2) {
if (in0) {
num2 = bach0[i0].d;
}
else 1if (inl) {
num?2 = canonO0[i0].d;
}
else 1if (in2) {
num?2 = sleighO[i0].d;
}
else if (in3) {
num2 = pirateO0[i0].d;
}
else 1if (in4) {
num2 = test0[i0].d;

}

else {
num0 = numl;
numl = num?2;
if (in0) {

num2 = bach0[i0].d;
}
else if (inl) {
num2 = canonO0[i0].d;
}
else if (in2) {
num2 = sleighO[i0].d;
}
else if (in3) {
num2 = pirate0[i0].d;
}
else if (in4) {
num2 = test0[10].d;

// Logic to handle advancing to next note
if (in0) {
note0 = &bach0[i0];
}
else if (inl) {
note0 = &canon0[i0];
}
else if (in2) {
note0 = &sleighO0[i0];
}
else if (in3) {
note0 = &piratel0[i0];
}
else 1f (in4d) {
note0 = &test0[10];
}
else {
i0 = 0;
note0 = &rest;
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copy0.p note0->p;

copy0.d = notelO->d;

// Advance to next note for second part
if (durl == 25) {

il++;
if (in0) {

notel = &bachl[il];
}
else 1f (inl) {

notel = &canonl[il];
}
else if (in2) {

notel = &sleighl[il];
}
else if (in3) {

notel = g&piratel[il];
}
else 1if (ind4d) {
notel = &testl[il];

}
else {

il = 0;

notel = &rest;
}
copyl.p = notel->p;
copyl.d = notel->d;

// Advance to next note for third part

if (dur2 == 25) {
12++;
if (in0) {

note2 = &bach2([1i2];
}
else if (inl) {

note2 = &canon2([i2];
}
else if (in2) {

note2 = &sleigh2[i2];
}
else if (in3) {

note2 = g&pirate2[i2];
}
else if (in4) {
note2 = &test2[i2];

}
else {

i2 = 0;

note2 = g&rest;
}
copy2.p = note2->p;
copy2.d = note2->d;
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// Read GPIO pins

int newinO = myDigitalRead (17);
int newinl = myDigitalRead(27);
int newin2 = myDigitalRead(22);
int newin3 = myDigitalRead(5);
int newin4 = myDigitalRead (6);

// If input has changed
if ((in0O != newinO) || (inl !'= newinl) || (in2 != newin2) || (in3 != newin3) || (in4
= newind)) {
// Reset pointers to arrays

i0 = 0;
il = 0;
i2 = 0;

// Choose new song to play

if (newinO) {
note0 = &bach0[i0];
notel = &bachl[il];
note2 = &bach2([1i2];

}

else if (newinl) {

note0 = &canon0[i0];
notel = g&canonl[il];
note2 = g&canon2[i2];

}
else if (newin2) {
note0 = &sleighO0[i0];
notel = &sleighl[il];
note2 = &sleigh2[i2];
}
else if (newin3) {
note0 = &pirateO0[iO];
notel = g&piratel[il];
note2 = g&pirate2[i2];
}
else 1f (newind) {
note0 = &test0[1i0];
notel = &testl[il];
note2 = &test2[i2];
}

else {
note0 = &rest;
notel = g&rest;
note2 = &rest;
}
copy0.p = notel->p;
copy0.d = notel0->d;
copyl.p = notel->p;
copyl.d = notel->d;
copy2.p = note2->p;
copy2.d = note2->d;

// Reset running duration
running_dur = 0;

numO = noteO0->d;
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numl = 0;

I
o

num2

// Update input

in0 = newin0;
inl = newinl;
in2 = newin2;
in3 = newin3;
ind4d = newiné4;

// Gracefully exit
playChord (0, 0, 0);

printf ("Done.\n");

return 0;
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Appendix D: Sample Music Header File
// bach.h

// Concerto for Two Violins, BMV 2043

// J.S. Bach

note_t bachO[] = {

{R, W},
{R, W},
(R, W},
{R,W},

/1171777 7777777777
// A
[11177771771717777

{Ad4,E},
{B4,E},
{C4,E},
{D4,E},
{E4,E},
{R,/E},

{A5,E},
(R,E},

{sG4,E},
(R,/E},
{E4,E},
{R,/E},
{B4,E},
{(R,E},
{D4,E},
(R,E},

{sC4,E},
(R,/E},
{A4,E},
{R,/E},
{G4,H},

// ... Omitted ...
}i

note t bachl[] = {
// ... Omitted ...
}i

note_t bach2[]
// ... Omitted ...
}i

Il
—~
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