An LED Array Audio Visualizer

Final Project Report
December 8th, 2017
E155

Evan Atchison and Zayra Lobo

Abstract:

The goal of this project was to create an audio visualizer using an off-the-shelf LED
array, Raspberry Pi, FPGA, microphone, and MCP3002 ADC. By playing music or other audio
into the microphone, the user is supposed to see a frequency spectrum displayed on the array.
The Fast Fourier Transform (FFT) that converts the microphone data from the time domain to
the frequency domain is performed on the FPGA. Though microphone data was displayed on the
LED array and the FFT functioned properly, the post-FFT data was not properly sorted into
logarithmically increasing frequency bins. Furthermore, our SPI master protocol between the
FPGA and the ADC failed to properly acquire input data, thereby producing output that did not
significantly correspond to the audio input data.

I. Introduction
The motivation of this project was to create an audio visualizer on an LED array. A

microphone collects audio input from the environment and outputs a voltage proportional to the
amplitude of the sound. The signal is then passed to an Analog-Digital Converter (ADC) which
the FPGA read from via SPI. The FPGA accumulates signals over time and performs a Fourier
transform on a 32-point data set. It then shifts this data out to the Raspberry Pi via SPI. The
Raspberry Pi interprets the raw post-FFT data and displays it on the LED array to create a

spectrum analyzer.

II. New Hardware
The Electret microphone + amplifier, 32 x 32 RGB LED array, and LED array Pi HAT

from Adafruit were the three new pieces of hardware used by the team for this project. The
\Y

microphone + amplifier board had three pins to interface with: V and ground. The team

cc? out

supplied 3.3V to V. (since the supply voltage range is 2.4 - 5.5V) and read the values from the
V.. pin to CHO on the MCP3002 ADC [1], [2]. The MAX4466 amplifier connected to the
microphone had a gain that could be adjusted to be any value from 25 to 125. For this project, an
intermediate gain value was used.

The 32 x 32 LED array was selected to provide as high of a resolution as possible for the
output display while not going over the self-determined $100 budget of the project, $50 of which
was reimbursed. The team designed the frequency spectrum such that every two columns of
LEDs formed one frequency range “bin”. Thus, the 32 columns of LEDs were broken into 16
frequency ranges, which ideally would have been spaced on a logarithmic scale to model the

logarithmic scale of octaves. Ideally, each column would also have a specified frequency range,

such as 20Hz - 40Hz, thus displaying the amplitude of signals falling in that frequency range for
that audio sample.

The Pi HAT was used to connect the Pi control signals to the LED array via a ribbon
cable, power the array via a barrel jack power cable plugged into the HAT, and shift between the
3.3V logic of the Pi to the 5V logic needed for the LED array [3]. Also, in order to use the
Python library that Adafruit provided for the array, the Pi had to interface with the LED array

through this HAT.

III. Schematics

A high-level block diagram of the entire system shows how each hardware component
was connected:

5V

Raspberry Pi

MCP3002

FPGA
ADC

SPI Master, MAX4466 mic
except RX, S5PI Master SPI Slave, ClK =54 and amplifier

T, 18,24, CLK=23 L Cs=55 Slave GND
ZaaMOst) EMBOS AL GO0 MOSI = 58 CcHO Output
MISO, piReady = MISO = 59 Pt

SCLK, CEO, —
CE1,19 pispiEn - Vext

GND GND

Fig. 1: The overall data flow for the project.

A block diagram for the overall FPGA logic demonstrates the function of the FPGA in

this system:

piReady

Controller

datafugr [4:0]
giveData

spiMicDone

SPI
Master dataln [15:0] fourax15:0]

To

ADC
To

Raspberry
Pi

Fig. 2: High-level modules implemented on the FPGA.

A block diagram of the FFT shows how this modules is controlled and operates:

getData giveData

clk fftStart fftDone

adra [9:0]
dataln[15:0]
Address adrB [5:0]
dataAdr(50]

Generation
Unit

dataOut 2x[15:0]

Twiddle ROM

twiddleFactar 2x[15:0]
memDataA 2x[15:0]
Pl s

memDataB 2x[15:0]

Butterfly Unit

BFUdataA 2x[15:0]
e e

BFUdataB 2x[15:0]

Fig. 3: Submodules implemented to make the FFT work.

IV. Microcontroller Design
The Raspberry Pi interfaces with the FPGA to receive output from the FFT and then

drives the LED array to display that output. A HAT (Hardware Attached on Top) attaches to the
Pi to allow for simpler interfacing between the Pi and the array. The HAT adds several features
that make interfacing with the array easier, such as a ribbon cable output for the array signals, a
barrel jack power input to power the array, and onboard level shifters to convert the Pi’s 3.3V
logic to 5V logic for the array.

Initially, the team planned to use Henner Zeller’s C/C++ library for driving the LED
matrix because it would allow for the use of EasyPIO.h, a C header file that included pin
mapping and SPI interfaces necessary for the Pi to run in order to communicate with the FPGA
[4], [5]. However, shortly before the project deadline, the team realized that this library would
use almost all of the Pi’s GPIO pins and all of the SPI pins to drive the array, leaving no quick
method to implement an SPI interface between the Pi and the FPGA. Fortunately, Adafruit had
forked this Github repository to create their own Python version of the same library that does not
use the Pi SPI pins [6]. Using the classes and functions in this library, the team was able to write
their own functions to produce spectrum patterns on the LED array that corresponded to the FFT
output from the FPGA. Because EasyPIO.h is a C header file that remaps the Pi pins, it could not
be used with the Python module which also had its own mapping of the pins. Thus, the SpiDev

module was used to handle SPI signals from the Pi [7].

V. FPGA Design
A. General Implementation

The FPGA handles both signal acquisition from the microphone and signal processing via

the FFT, and then passes the transformed signal to the Raspberry Pi. To do this, we implemented
four high-level modules on the FPGA, as shown in Fig. 2.

To read signals from the microphone, the FPGA must communicate with the on-board
MCP3002 as an SPI Master. To establish communication, we use a simple state machine to shift
out the sixteen bits of the MCP3002’s startup sequence on the MOSI line in sync with the clock
signal provided to the MCP3002. With each bit shifted out, we capture the incoming bit on the
MISO line and build a 16-bit value, which is masked to 10 bits (the data width of the ADC) and
passed to the appropriate bit-reversed memory address in the FFT’s memory block. The FSM for

the Master SPI module is as shown:

Fig. 4: Master SPI FSM

The most important data processing occurs within the FFT module. The design for our
FFT was based on G. William Slade’s The Fast Fourier Transform in Hardware: A Tutorial
Built on an FPGA Implementation [8]. The implementation involves four key submodules: a
two-port memory block, a butterfly unit which performs a two-point Fourier Transform, a lookup

table for twiddle factors, and an address generation unit to specify the locations of inputs and

outputs to the butterfly unit within the memory.We modify Slade’s implementation by
eliminating much of the pipelining work that they do. In doing so we simplify the
implementation significantly, but sacrifice the ability to write to the memory every clock cycle.
Writing to the memory every other clock cycle did not significantly affect lag between matrix
updates in our final implementation.

After performing the Fourier transform, we must shift out data as the Pi requests it, so we
implement an SPI slave module. The procedure to do this is extremely simple, although not a
pure implementation of an SPI interface. We use only the clock and MISO lines, shifting out a
single bit of the 32-bit FFT output on each positive clock edge. Two GPIO lines between the
FPGA and P1 act as “ready” signals for each, which help ensure that the SPI module receives
data from the correct place in memory before the Pi sends clock signals.

Finally, we implemented a controller module which effectively segmented the sequence
of operations performed by the FPGA, ensuring that data was captured, transformed, and shifted

out in the correct order. The controller FSM is as shown:

Fig. 5: FPGA controller state machine

B. Fast Fourier Transform in Hardware
Implementing the FFT module in hardware on the FPGA proved to be the most

significant challenge of the project. In particular, we ran into issues with interpreting Slade’s
implementation into a functional non-pipelined FFT. We will describe the design process of each
submodule (shown in Fig. 3) and outline the points of confusion we faced for the benefit of
future groups hoping to implement FFT.

Memory: The two-port memory block we designed began as a very straightforward
modification of the canonical form of a single-port RAM module in SystemVerilog. However,
we chose to add another level of complexity to the memory block by providing it with a third
address from the high-level controller module and single-bit getData and giveData signals.
These signals allow the controller to override the FFT and read/write data to the memory during
data acquisition and delivery. While this implementation was effective for our 32-point FFT, it
prevented the module from being interpreted properly as a RAM block and therefore caused
significant problems when we attempted to scale to 512-point FFT. We recommend future
groups find another way to load values into and out of the two-port RAM without additional
inputs and outputs.

Twiddle ROM: The twiddle factors are stored in a hard-coded lookup table. For
higher-order FFT, it is preferable to encode this lookup table in a text file. Our 32-point values
were provided in Slade’s paper, while the values for our attempted 512-point FFT came from a
MATLAB algorithm found in Curt Hillier and Maik Brett’s MPC5775K Twiddle Factor

Generator User Guide. [9]

Butterfly Unit: The Butterfly Unit (BFU) uses a complex multiplier to multiply a twiddle
factor with a complex value and then performs an addition and subtraction with the result to
generate output as described by Slade. To correctly implement the BFU, we interpret twiddle
factors as signed fixed-point number with 15 decimal bits. We perform signed complex
multiplication in the complex multiplier submodule (SystemVerilog requires that the values be
specified as signed when performing the multiplication) and then left-shift the result by 15 bits to
keep it the same order of magnitude as the input data before performing the addition and
subtraction operations.

Controller: To implement the controller, we implemented in hardware the C algorithm
shown by Slade using a state machine to contain a double-nested for loop. The loop is
incremented every other clock cycle, and the second clock cycle of each loop iteration is used to
activate memwr, where the output of the BFU is stored in memory. Our state machine is as

shown:

Fig. 6: State machine of FFT logic in implemented in SystemVerilog HDL

We performed our FFT on the square wave used in testing by Slade in ModelSim, and

received the following results:

Input Square Wave

'_'_'_"_"_Tl e
a5
0
0.5
_1 A JLM-‘-.M
Fig. 7: Square wave test input to FFT
FFT - Real and Imaginary Amplitudes vs. Frequency
o 30000
=
=
=1
£ 20000
w
g
(=4
@ 10000
A=)
$ A
@
g o A\
=
E
el
g ~10000
o
w
E
= -20000
g
]
o

-30000

Frequency
Fig. 8: Output of FFT given above square wave as input
The y-axis scaling of the second graph is as a fraction of 32768.We see the negative values are
inverted, but our result otherwise matches Slade’s. This value inversion is insignificant, as we

take the total magnitude of the signal in the end.

VI. Results
The Pi received values from the FPGA via SPI, and after performing the magnitude

calculation and scaling, the values did not exceed the LED array’s upper limit of 31. When a

constant tone was played at a specified frequency, the LED array was expected to display a spike
in the frequency “bin” that the specified frequency corresponded to. However, these values did
not appear to correspond with the sound input to the microphone. Even when a constant tone was
played about a centimeter away from the microphone, the output of the array did not change to
show a spike in the respective frequency “bin” corresponding to the tone’s frequency.

The failure to display output corresponding to the input from the microphone was due to
two main problems. First, we failed to process the data correctly on the Pi. We allocated the
“bins” (the bars of the graph) linearly with the frequency list output by the FFT, while we had
intended to do so logarithmically. More importantly, we believe our SPI master module
connected to the microphone failed to acquire data correctly. We saw all bins on the matrix fill to
about halfway for most of the matrix’s operation, which would suggest that all frequencies
analyzed were present in roughly equal proportion, which is very unlikely. This strongly
suggests that we read values from the microphone incorrectly. Upon reflection, our
state-machine implementation of the SPI master interface was likely unnecessarily complicated
when a simpler interface without a state machine would have sufficed. Furthermore, we sent a
continuous clock signal to the ADC, rather than only sending it with our read signals, which
likely confused the ADC and garbled the data we were receiving. Solving these issues with the
SPI master would likely have greatly increased the functionality of our project, but unfortunately
we only got the data display working very close to the final checkoff and did not have the time to

thoroughly debug the system.

VII. References
[1] Maxim, “Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete

Shutdown,” MAX4466 datasheet, 2001.

[2] Microchip, “2.7V Dual Channel 10-Bit A/D Converter with SPI Serial Interface,” MCP3002
datasheet, 2011.

[3] Adafruit. “Adafruit RGB Matrix HAT + RTC for Raspberry Pi - Mini Kit.” Adafruit.com, 21
Jan. 2015, www.adafruit.com/product/2345.

[4] Zeller, Henner. “rpi-rgb-led-matrix.” GitHub, 1 Nov. 2017,
github.com/hzeller/rpi-rgb-led-matrix.

[5] Lichtman, Sarah & Vasquez, Joshua, “EasyPI10O.h,” 8 Oct. 2013.

[6] Adafruit. “adafruit/rpi-rgb-led-matrix.” GitHub, 27 Aug. 2017,
https://github.com/adafruit/rpi-rgb-led-matrix.

[7] TightDev. “SpiDev Documentation.” Tightdev.net, tightdev.net/SpiDev_Doc.pdf.

[8] Slade, George. (2013). The Fast Fourier Transform in Hardware: A Tutorial Based on an
FPGA Implementation.

[9] Hillier, Curt and Brett, Maik (2015) MPC5775K Twiddle Factor Generator User Guide.

VIII. Parts List

Part

Source

Vendor Part #

Price

32x32 RGB LED Matrix
Panel - 5mm Pitch

Adafruit

2026

$44.95

Electret Microphone
Amplifier - MAX4466
with Adjustable Gain

Adafruit

1063

$6.95

Adafruit RGB Matrix
HAT + RTC for
Raspberry Pi - Mini Kit

Adafruit

2345

$24.95

5V 4A (4000mA)
switching power supply
- UL Listed

Adafruit

1466

$14.95

IX. Appendices
A. Pi Code

import spidev

import time

import RPi.GPIO as GPIO
import math

import Image

import ImageDraw

import time

from rgbmatrix import Adafruit RGBmatrix

matrix = Adafruit RGBmatrix (32, 1)

#Evan Atchison & Zayra Lobo

#December 5, 2017

#Using rpi-rgb-led-matrix-py library, draws a spectrum on a 32x32 array
#given a 32 bit array of values between 0 and 31

def drawSpectrum (amp) :

Bitmap example w/graphics prims
image = Image.new ("RGB", (32, 32))

draw = ImageDraw.Draw (image) # Declare Draw instance before prims
count = 0
i=0

matrix.Clear ()

#Use draw.line in library to draw the spectrum with amp values

draw.line ((0, 0, 0, amp[0]), fill = "#FF0000"™)
draw.line((1, 0, 1, amp[0]), fill = "#FF000Q0")
draw.line((2, 0, 2, amp[l]), fill = "#FF8000")
draw.line((3, 0, 3, amp[l]), fill = "#FF8000")
draw.line((4, 0, 4, amp[2]), fill = "#FFFFOO0O")
draw.line((5, 0, 5, amp[2]), fill = "#FFFFOOQO")
draw.line((6, 0, 6, amp[3]), fill = "#80FFO00")
draw.line((7, 0, 7, amp[3]), fill = "#80FF00")
draw.line((8, 0, 8, amp[4]), fill = "#00FFO0Q0")

draw.line((9, 0, 9, amp[4]), fill = "#00FF0O0")

draw.

draw.

draw.
draw.

draw.
draw.

draw.
draw.

draw.
.line ((19,

draw

draw.

draw.

draw.

draw.

draw.

draw.

draw.

draw.

draw.
draw.

draw.
draw.

matrix.SetImage (image.

line ((10,
line((11,

line((12,
line ((13,

line ((14,
line ((15,

line((1o,
line((17,

line ((18,

line ((20,

line ((21,

line ((22,
line ((23,

line ((24,
line ((25,

line((260,
line ((27,

line ((28,
line ((29,

line ((30,
line ((31,

10,
11,

12,
13,

14,
15,

16,
17,

18,
19,

20,
21,

22,
23,

24,
25,

26,
27,

28,
29,

30,
31,

#Start SPI communication

spi =

spidev.SpiDev ()

spi.open(0,1)

spi.bits per word =

spi.max speed hz =

100000

#Initialize GPIO pins & variables
GPIO.setmode (GPIO.BCM)

GPIO.setup (24,
GPIO.setup (25,

GPIO.IN)
GPIO.OUT,

amp[5]), fill "#00FF80")
amp[5]), fill "#00FF80")
amp[6]), fill "#00FFFE")
amp[6]), fill "#00FFFE")
amp[7]), fill "#0080FF")
amp[7]), fill "#0080FF")
amp[8]), fill "#0000FEF")
amp[8]), fill "#0000FEF")
amp[9]), fill "#7F00FE")
amp[9]), fill "#7F00FE")
amp[10]), fill "#FFOOFE")
amp[10]), fill "#FEFOOFE")
amp[11]1), fill "#EFFOOTE")
amp[11]), fill "#FEFOO0TE")
amp[12]), fill "#FEF0000™)
amp[12]), fill "#FF0000™)
amp[13]), fill "#FES000™)
amp[13]), fill "#FF8000™)
amp[14]), fill "#FEFEOO™)
amp[14]), fill "#FFEFFOOM)
amp[15]), fill "#80FF00™)
amp[15]), fill "#80FF00")
im.id, 0, 0)
initial = GPIO.HIGH)

J =20
maxAmp = 0
amp = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

#SPI communication & calling drawSpectrum to display values
while (1) :
for k in range(0,16):
while(j < 2):
pPiSpiEn = GPIO.input (24)
if (piSpiEn) : #when the FPGA is done with FFT

realDatal = spi.xfer ([0x00])
realData2 = spi.xfer ([0x00])
imagDatal = spi.xfer ([0x00])
imagData2 = spi.xfer ([0x00])
realDataNuml = realDatal[0]
realDataNum2 = realData2[0]
imagDataNuml = imagDatal[O0]

imagDataNum2 = imagData2[0]

#Convert data from signed to unsigned values

if (realDataNum2 > 127):

actualRealData?2 = (realDataNum2 - 256) * 128
else:

actualRealData?2 = realDataNum2 * 128

actualRealData = realDataNuml + actualRealData?

if (imagDataNum2 > 127):

actualImagbData? = (imagDataNum2 - 256) * 128
else:

actualImagData? = imagDataNum2 * 128

actualImagbData = imagDataNuml + actualImagData?2

#Tell FPGA the Pi is busy
GPIO.output (25, GPIO.LOW)
#Compute amplitudes
temp = math.sqgrt (actualRealData**2 +
actualImagData**2)
temp = temp/1024
if (maxAmp < temp) :
maxAmp = temp

#Tell FPGA the Pi can receive more data
GPIO.output (25, GPIO.HIGH)

j +=1
3 =0
#Cast to an int before writing into array
amp[k] = int (maxAmp)
maxAmp = 0

print amp[k]
#Draw spectrum with the current int data in amp
drawSpectrum (amp)
spi.close()

B. FPGA Code

module finalproject (input logic clk,
input logic piReady,
input logic sdi,
input logic micMISO,
input logic piclk,
output logic piSpiEn,
output logic sdo,
output logic micMOSTI,
output logic micCS,
output logic sclk,
output logic [7:0] leds);
//signals for the controller
logic micSpiDone, fftDone, getData, giveData, fftStart, micSpiEn,
fftDoneHold;
logic [4:0] adrData;

//signals for spiMic
logic [15:0] micData;

//signals for spiPi, fft
logic [31:0] fftOut;

//debugging
logic [3:0] stateNumber;
logic [1:0] spiStateNumber;

slowclk final slowclk(clk, sclk);

controller final controller (sclk, micSpiDone, fftDone, piReady,
getData, giveData, fftStart, micSpiEn, piSpiEn, fftDoneHold,
adrData, stateNumber);

spiMic final spiMic (micSpiEn, sclk, micMISO, micMOSI, micCs,

micData, micSpiDone, spiStateNumber) ;
spiPi final spiPi (piclk, fftOut, sdo);

minifft final fft(sclk, fftStart, getData, giveData, adrData,

micData, fftDone, fftOut);

logic fftWasDone, piSpiEnWas, micSpiDoneWas;
always ff @ (posedge clk)
begin
if (fftDone) fftWasDone <= fftDone;
else fftWasDone <= fftWasDone;

if (piSpiEn) piSpiEnWas <= piSpiEn;
else piSpiEnWas <= piSpiEnWas;

if (micSpiDone) micSpiDoneWas <= micSpiDone;

else micSpiDoneWas <= micSpiDoneWas;
end

//debugging leds
assign leds[l:0] = spiStateNumber;

assign leds[2] = piReady;
assign leds[3] = piSpiEn;
assign leds[7:4] = stateNumber;

endmodule

//Make a slow clock to access from other modules
module slowclk (input logic clk,
output logic sclk);

logic [31:0] sclkCount
logic [31:0] sclkDelay

32'b0;
32'd1000; //clock divider sets

always ff @ (posedge clk)
if (sclkCount > sclkDelay)
begin
sclk <= ~sclk;
sclkCount <= 0;
end
else sclkCount <= sclkCount + 1;
endmodule

//master controller for all FPGA logic

module controller (input logic clk,
input logic micSpiDone,
input logic fftDone,

sampling rate

input logic piReady,
output logic getData,
output logic giveData,
output logic fftStart,
output logic micSpiEn,
output logic piSpiEn,
output logic fftDoneHold,
output logic [4:0] adrData,
output logic [3:0] stateNumber);
logic nextGetData, nextGiveData, nextFftStart, nextMicSpiEn,
nextPiSpiEn, nextFftDoneHold;
logic [4:0] nextAdrData;
logic [3:0] nextStateNumber;

typedef enum logic [3:0] {sO, s1, s2, S3, sS4, S5, S6, S7, S8, S9}
statetype;

statetype state, nextstate;

always ff @ (posedge clk)

begin
state <= nextstate;
getData <= nextGetData;
giveData <= nextGiveData;
fftStart <= nextFftStart;
micSpiEn <= nextMicSpiEn;
PiSpiEn <= nextPiSpiEn;
fftDoneHold <= nextFftDoneHold;
adrData <= nextAdrData;
stateNumber <= nextStateNumber;
end

always comb
begin
nextAdrData = 0;
nextstate = S0;
case (state)
SO0: //initialize mic SPI
begin
nextstate = S1;
nextGetData = 0;
nextGiveData = 0
nextFftStart = 0;
nextMicSpiEn 1

nextPiSpiEn = 0;

nextFftDoneHold = 0;

nextAdrData = adrData;

nextStateNumber = 4'b0000;
end

S1: //wait for spi value to fill

begin
if (micSpiDone) nextstate = S2;
else nextstate = S1;
nextGetData = 0;
nextGiveData = 0O;
nextFftStart = 0;
nextMicSpiEn = 1;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = adrData;
nextStateNumber = 4'b0001;

end

S2: //put spi value in memory and loop or finish
begin

if (adrData<3l) nextstate = S0O;
else nextstate = S3;
nextGetData = 1
nextGiveData =
nextFftStart
nextMicSpiEn

’

’

Il
o O O ~

nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = adrData+5'b00001;
nextStateNumber = 4'b0010;

end
S3: //initialize fft

begin
nextstate = S4;
nextGetData = 0;
nextGiveData = 0;
nextFftStart = 1;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = 0;
nextStateNumber = 4'b0011;

end

S4: //hold fftstart for one more clock cycle
begin
nextstate = S5;
nextGetData = 0
nextGiveData
nextFftStart
nextMicSpiEn

’

’

I
O~ O -~

nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = 0;

nextStateNumber = 4'b0100;

end

S5: //wait for fft to be done

begin
if (fftDone) nextstate = S6;
else nextstate = S5;
nextGetData = 0;
nextGiveData = 0;
nextFftStart
nextMicSpiEn =

I
o

’

(@)

nextPiSpiEn = 0;
nextFftDoneHold
nextAdrData = 0;
nextStateNumber = 4'b0101;

0;

end
S6: //configure memory to give data, check to
//make sure pi is ready

begin
if (piReady) nextstate = S7;
else nextstate = S0;
nextGetData = 0;
nextGiveData = 1;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 1;
nextAdrData = 0;
nextStateNumber = 4'b0110;

end

S7: //enable spi, wait for pi to get data

begin
if (piReady) nextstate = S7;
else nextstate = S8;
nextGetData = 0;
nextGiveData = giveData;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 1;
nextFftDoneHold = fftDoneHold;
nextAdrData = adrData;
nextStateNumber = 4'b0111;

end

S8: //increment address counter
begin
if (adrData<31l) nextstate = S9;
else nextstate = S0;
nextGetData = 0;
nextGiveData = giveData;

nextFftStart =
nextMicSpiEn =

0;

0;
nextPiSpiEn = 0;
nextFftDoneHold = fftDoneHold;
nextAdrData = adrData+5'b00001;
nextStateNumber = 4'b1000;

end

S9: //wait for pi to be ready again

begin
if (piReady) nextstate = S7;
else nextstate = S9;
nextGetData = 0;
nextGiveData = giveData;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = fftDoneHold;
nextAdrData = adrData;
nextStateNumber = 4'b1001;

end

endcase
end
endmodule

//Enables SPI communication between the ADC and FPGA
module spiMic (input logic micSpiEn,
input logic clk,
input micMISO,
output logic micMOSTI,
output logic micCSs,
output logic [15:0] micData,
output logic micSpiDone,
output logic [1:0] spiStateNumber) ;

//instantiate variables for timing and decoder logic
logic [31:0] count = 32'bO;

logic [31:0] nextCount = 32'b0;

logic [15:0] startSequence = 16'b1101000000000000;
logic [15:0] amask = 16'b0000001111111111;

logic [15:0] amp, nextAmp;

logic [1:0] nextSpiStateNumber;

//state definitions
typedef enum logic [1:0] {SO, S1, S2} statetype;

statetype state, nextstate;

//state advancing logic
always ff @ (negedge clk)
begin
state <= nextstate;
amp <= nextAmp;
count <= nextCount;
if (micSpiDone) micData <= (amp&amask);//-16'd512;
else micData <= micData;
spiStateNumber <= nextSpiStateNumber;
end

//combinational logic for states
always comb
begin
nextstate = S0;
case (state)
S0: //starter state, wait for enable
begin
nextSpiStateNumber = 2'b00;
micCs = 1;
micSpiDone = 0;
micMOSI = 1'b0;
nextAmp = amp;
nextCount = 0;
if (micSpiEn) nextstate = S1;
else nextstate = S0;
end
S1: //send start sequence
begin
nextSpiStateNumber = 2'b01;
micCS = 0;
micSpiDone = O;
micMOSI = startSequence[l5-count];
nextAmp = amp;
nextAmp[1l5-count] = micMISO;
nextCount = count + 1;
if (count>32'dl4) nextstate = S2;
else nextstate = S1;
end
S2: //finished state, assert done

begin
nextSpiStateNumber = 2'bll;
micCs = 1;
micSpiDone = 1;

micMOSI = 1'b0;
nextAmp = amp;

Il
o
~

nextCount
nextstate = S0;
end
endcase
end
endmodule

//simply shifts out data on clock edges - GPIO pins piReady and piSpiEn handle
when this occurs
module spiPi (input logic clk,

input logic [31:0] fftOut,

output logic sdo);

logic [4:0] count = 5'b0;

always ff @ (posedge clk)

begin
sdo <= fftOut[count];
if (count == 5'd31) count <= 5'b0;
else count <= count + 5'b00001;
end

endmodule

module minifft (input logic clk,

input logic fftStart,

input logic getData,

input logic giveData,

input logic [4:0] adrData,
input logic [15:0] micData,
output logic fftDone,

output logic [31:0] fftOut);

//inputs/outputs for the controller
logic [4:0] adrA, adrB;

logic memwr, sclk;

logic [3:0] twiddleAdr;

//inputs/outputs for twiddleROM
logic [15:0] twiddleFactorl, twiddleFactor2;

//inputs/outputs for BFU
logic [15:0] BFUdataAreal, BFUdataBreal, BFUdataAimag, BFUdataBimag;
logic [15:0] memDataAreal, memDataBreal, memDataAimag, memDataBimag;

minicontroller minifft controller (clk, fftStart, fftDone, adrA, adrB,
memwr, twiddleAdr) ;

minitwiddleROM minifft twiddleROM(clk, twiddleAdr, twiddleFactorl,

twiddleFactor?2) ;

minibutterfly minifft butterfly(clk, twiddleFactorl, twiddleFactor2,

BFUdataAreal, BFUdataBreal,
memDataBreal, memDataAimag, memDataBimag) ;

BFUdataAimag,

BFUdataBimag, memDataAreal,

minimem minifft mem(clk, memwr, getData, giveData, micData, adrData,

adrA,
BFUdataAreal,
endmodule

adrB, memDataAreal, memDataBreal, memDataAimag, memDataBimag,
BFUdataBreal, BFUdataAimag,

BFUdataBimag, fftOut);

//need to generate control signals for the fft

module minicontroller (input logic clk,

input logic fftStart,

output logic fftDone,

output logic [4:0] adrA,

output logic [4:0] adrB,

output logic memwr,

output logic [3:0] twiddleAdr);
logic [31:0] ja, jb, nextja, nextijb;
logic [31:0] twiddle, nextTwiddle;
logic nextmemwr, nextfftDone;
logic [31:0] jcount, icount, nextjcount, nexticount;
logic [31:0] N = 16'dl6; //for 10 bit address: N = 16'd512
logic [31:0] levels = 16'd5; //for 10 bit address: levels = 16'dl0
assign adrA = jal4:0];
assign adrB = jb[4:0];

assign twiddleAdr = twiddle[3:0];

[2:0] {soO,
nextstate;

typedef enum logic S1,

statetype state,

//state advancing logic
always ff @ (posedge clk)
begin

state <= nextstate;
ja <= nextja;
jb <= nextjb;
twiddle <= nextTwiddle;
jcount <= nextjcount;
icount <= nexticount;
memwr <= nextmemwr;
fftDone <= nextfftDone;

end

s2,

S3, S4} statetype;

always comb

begin
nextstate = S0;
case (state)
S0: //wait for fftStart signal
begin
if (fftStart) nextstate = S1;
else nextstate = S0;
nextja = 32'b0;
nextjb = 32'b0;
nextTwiddle = 32'b0;
nexticount = 32'b0;
nextjcount = 32'bO0O;
nextmemwr = 1'b0;
nextfftDone = 1'b0O;
end
S1: //j-incrementing for loop to generate addresses
begin
nextstate = S2;
nextja = jcount<<l;
nextjb = nextja+l;
nextja =
((nextja<<icount) | (nextja>> (levels-icount)))&32'hlf; //10 bit mask: 3ff
nextjb =
((nextjb<<icount) | (nextjb>>(levels-icount)))&32'hlf; //10 bit mask: 3ff
nextTwiddle =
((32'hfffffff0>>icount) &32'hf) &jcount;
nexticount = icount;
nextjcount = jcount+32'bl;
nextmemwr = 1'b0;
nextfftDone = 1'b0O;
end

S2: //write to mem from newly generated addresses

begin
if (jcount <(N)) nextstate = S1;
else nextstate = S3;
nextja = ja;
nextjb = jb;
nextTwiddle = twiddle;
nexticount = icount;
nextjcount = jcount;
nextmemwr = 1'bl;
nextfftDone = 1'b0O;
end

S3: //i incrementing for loop
begin
if (icount<(levels-1)) nextstate = S1;
else nextstate = S4;

nextja ja;

nextjb = jb;
nextTwiddle = twiddle;
nexticount = icount+32'bl;
nextjcount = 0;
nextmemwr = 1'b0;
nextfftDone = 1'b0;

end

S4: //finished state to assert fftDone

begin
nextstate = S0;
nextja = 32'b0;
nextjb = 32'b0;
nextTwiddle = 32'b0;
nexticount = 32'b0;
nextjcount = 32'b0;
nextmemwr = 1'b0;
nextfftDone = 1'bl;

end

endcase
end
endmodule

//lookup table for twiddle addresses
module minitwiddleROM (input logic clk,
input logic [3:0] twiddleAdr,
output logic [15:0] twiddleFactorl,
output logic [15:0] twiddleFactor?2);
always comb
case (twiddleAdr)

4'b0000:
begin
twiddleFactorl = 16'h7fff;
twiddleFactor2 = 16'h0000;
end
4'b0001:
begin
twiddleFactorl = 16'h7d89;
twiddleFactor2 = 16'h18f9;
end
4'0010:
begin
twiddleFactorl = 16'h7641;
twiddleFactor2 = 16'h30fb;
end
4'b0011:
begin

twiddleFactorl = 16'h6ao6d;

end

4'b0100:

begin

end

4'b0101:

begin

end

4'b0110:

begin

end

4'b0111:

begin

end

4'b1000:

begin

end

4'pb1001:

begin

end

4'b1010:

begin

end

4'b1011:

begin

end

4'b1100:

begin

end

4'p1101:

twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

twiddleFactorl
twiddleFactor?2

16'hd71c;

16'h5a82;
16'hb5a82;

16'hd71c;
16'h6abd;

16'h30£fb;
16'h7641;

16'h18£9;
16'h7d89;

16'h0000;
l6'h7fff;

16'he707;
16'h7d89;

16'hcf05;
16'h7641;

16'hb8e4;
16'h6a6d;

16'hab57e;
16'hb5a82;

begin

twiddleFactorl =
twiddleFactor2 =
end
4'b1110:
begin
twiddleFactorl =
twiddleFactor2 =
end
4'b1111:
begin
twiddleFactorl =
twiddleFactor2 =
end
endcase
endmodule
//does all of the butterfly operation
module minibutterfly (input logic clk,
input logic
input logic
input logic
input logic
input logic
input logic
output logi
output logi
output logi
output logi

logic [31:0] BrealPostMult, BimagPostMult;

complexMult bfu cmult (twiddleFactorl,

BrealPostMult, BimagPostMult);

assign memDataAreal = (BFUdataAreal +
by 15 for twiddle floating point

assign memDataAimag = (BFUdataAimag +

assign memDataBreal = (BFUdataAreal -

assign memDataBimag = (BFUdataAimag -
endmodule

//multiplying two complex numbers

16'h9593;
16'hd71c;

16'h89bf;
16'h30fb;

16'h8277;
16'h18£9;

twiddleFactorl,
twiddleFactor?2,
BFUdataAreal,
BFUdataBreal,
BFUdataAimag,
BFUdataBimag,

O O O O O O

memDataAreal,

]
]
]
]
]
]
c [15:0]
c [15:0] memDataBreal,
c [1 O] memDataAimag,
[15:0]

c memDataBimag) ;

twiddleFactor2, BFUdataBreal,

BFUdataBimag,

BrealPostMult[30:15]); //bitshift

BimagPostMult [30:15]) ;
BrealPostMult[30:15]);
BimagPostMult[30:15]);

module complexMult (input logic [15:0] twiddleFactorl,

input logic

input logic

[15:0] twiddleFactor2,
[15:0] BFUdataBreal,

input logic [15:0] BFUdataBimag,
output logic [31:0] BrealPostMult,
output logic [31:0] BimagPostMult) ;
logic signed [15:0] stwiddleFactorl, stwiddleFactor2; //MUST DO SIGNED
MULTIPLICATION!!
logic signed [15:0] sBFUdataBreal, sBFUdataBimag;
logic signed [31:0] sBrealPostMult, sBimagPostMult;
assign stwiddleFactorl twiddleFactorl;
assign stwiddleFactor?2 twiddleFactor2;
assign sBFUdataBreal = BFUdataBreal;
assign sBFUdataBimag = BFUdataBimag;
assign sBrealPostMult = sBFUdataBreal*stwiddleFactorl -
sBFUdataBimag*stwiddleFactor2; //real part
assign sBimagPostMult = sBFUdataBreal*stwiddleFactor2 +
sBFUdataBimag*stwiddleFactorl; //imaginary part
assign BrealPostMult = sBrealPostMult;
assign BimagPostMult = sBimagPostMult;
endmodule

//double-addressed memory block

module minimem (input logic clk,
input logic memwr,
input logic getData,
input logic giveData,

input logic [15:0] micData,

[
input logic [4:0] adrData,
input logic [4: O] adrA,
input logic [4:0] adrB,
input logic [15 0] memDataAreal,
input logic [15:0] memDataBreal,
input logic [15:0] memDataAimag,
input logic [15:0] memDataBimag,
output logic [15:0] BFUdataAreal,
output logic [15:0] BFUdataBreal,
output logic [15:0] BFUdataAimag,
output logic [15:0] BFUdataBimag,

[

output logic [31:0] fftOut);
logic [31:0] mem([31:0]; //bits 0-15 are real, 16-31 are imaginary
logic [4:0] adrDatarev;
assign adrDatarev = {adrData[0], adrDatal[l], adrData[2], adrDatal[3],
adrData(4]};
always @ (posedge clk)
begin
f (getData) //loading values into memory
begin
mem[adrDatarev] [15:0] <= micData;
mem[adrDatarev] [31:16] <= 16'b0;
fftout <= 31'b0;

BFUdataAreal <= 16'b0;
BFUdataAimag <= 16'b0;
BFUdataBreal <= 16'b0;
BFUdataBimag <= 16'b0;

end

else if (giveData) //loading values out of memory

begin
fftOut <= mem[adrData]
BFUdataAreal <= 16'b0;
BFUdataAimag <= 16'b0;
BFUdataBreal <= 16'b0;
BFUdataBimag <= 16'b0;

~.

end
else //using memory for fft

begin
fftout <= 31'b0;
BFUdataAreal <= mem[adrA] [15:0];
BFUdataAimag <= mem[adrA] [31:16];
BFUdataBreal <= mem[adrB][15:0];

[1031

BFUdataBimag <= mem[adrB :167;
if (memwr)
begin
mem[adrA] [15:0] <= memDataAreal;
mem[adrA] [31:16] <= memDatalAimag;
mem[adrB] [15:0] <= memDataBreal;
mem[adrB] [31:16] <= memDataBimag;
end

end
end
endmodule

