

An LED Array Audio Visualizer

Final Project Report
December 8th, 2017

E155

Evan Atchison and Zayra Lobo

Abstract:

The goal of this project was to create an audio visualizer using an off-the-shelf LED
array, Raspberry Pi, FPGA, microphone, and MCP3002 ADC. By playing music or other audio
into the microphone, the user is supposed to see a frequency spectrum displayed on the array.
The Fast Fourier Transform (FFT) that converts the microphone data from the time domain to
the frequency domain is performed on the FPGA. Though microphone data was displayed on the
LED array and the FFT functioned properly, the post-FFT data was not properly sorted into
logarithmically increasing frequency bins. Furthermore, our SPI master protocol between the
FPGA and the ADC failed to properly acquire input data, thereby producing output that did not
significantly correspond to the audio input data.

I. Introduction
The motivation of this project was to create an audio visualizer on an LED array. A

microphone collects audio input from the environment and outputs a voltage proportional to the

amplitude of the sound. The signal is then passed to an Analog-Digital Converter (ADC) which

the FPGA read from via SPI. The FPGA accumulates signals over time and performs a Fourier

transform on a 32-point data set. It then shifts this data out to the Raspberry Pi via SPI. The

Raspberry Pi interprets the raw post-FFT data and displays it on the LED array to create a

spectrum analyzer.

II. New Hardware
The Electret microphone + amplifier, 32 x 32 RGB LED array, and LED array Pi HAT

from Adafruit were the three new pieces of hardware used by the team for this project. The

microphone + amplifier board had three pins to interface with: Vcc , Vout , and ground. The team

supplied 3.3V to Vcc (since the supply voltage range is 2.4 - 5.5V) and read the values from the

Vout pin to CH0 on the MCP3002 ADC [1], [2]. The MAX4466 amplifier connected to the

microphone had a gain that could be adjusted to be any value from 25 to 125. For this project, an

intermediate gain value was used.

The 32 x 32 LED array was selected to provide as high of a resolution as possible for the

output display while not going over the self-determined $100 budget of the project, $50 of which

was reimbursed. The team designed the frequency spectrum such that every two columns of

LEDs formed one frequency range “bin”. Thus, the 32 columns of LEDs were broken into 16

frequency ranges, which ideally would have been spaced on a logarithmic scale to model the

logarithmic scale of octaves. Ideally, each column would also have a specified frequency range,

such as 20Hz - 40Hz, thus displaying the amplitude of signals falling in that frequency range for

that audio sample.

The Pi HAT was used to connect the Pi control signals to the LED array via a ribbon

cable, power the array via a barrel jack power cable plugged into the HAT, and shift between the

3.3V logic of the Pi to the 5V logic needed for the LED array [3]. Also, in order to use the

Python library that Adafruit provided for the array, the Pi had to interface with the LED array

through this HAT.

III. Schematics
A high-level block diagram of the entire system shows how each hardware component

was connected:

Fig. 1: The overall data flow for the project.

A block diagram for the overall FPGA logic demonstrates the function of the FPGA in
this system:

Fig. 2: High-level modules implemented on the FPGA.

A block diagram of the FFT shows how this modules is controlled and operates:

Fig. 3: Submodules implemented to make the FFT work.

IV. Microcontroller Design
The Raspberry Pi interfaces with the FPGA to receive output from the FFT and then

drives the LED array to display that output. A HAT (Hardware Attached on Top) attaches to the

Pi to allow for simpler interfacing between the Pi and the array. The HAT adds several features

that make interfacing with the array easier, such as a ribbon cable output for the array signals, a

barrel jack power input to power the array, and onboard level shifters to convert the Pi’s 3.3V

logic to 5V logic for the array.

Initially, the team planned to use Henner Zeller’s C/C++ library for driving the LED

matrix because it would allow for the use of EasyPIO.h, a C header file that included pin

mapping and SPI interfaces necessary for the Pi to run in order to communicate with the FPGA

[4], [5]. However, shortly before the project deadline, the team realized that this library would

use almost all of the Pi’s GPIO pins and all of the SPI pins to drive the array, leaving no quick

method to implement an SPI interface between the Pi and the FPGA. Fortunately, Adafruit had

forked this Github repository to create their own Python version of the same library that does not

use the Pi SPI pins [6]. Using the classes and functions in this library, the team was able to write

their own functions to produce spectrum patterns on the LED array that corresponded to the FFT

output from the FPGA. Because EasyPIO.h is a C header file that remaps the Pi pins, it could not

be used with the Python module which also had its own mapping of the pins. Thus, the SpiDev

module was used to handle SPI signals from the Pi [7].

V. FPGA Design
A. General Implementation
The FPGA handles both signal acquisition from the microphone and signal processing via

the FFT, and then passes the transformed signal to the Raspberry Pi. To do this, we implemented

four high-level modules on the FPGA, as shown in Fig. 2.

 To read signals from the microphone, the FPGA must communicate with the on-board

MCP3002 as an SPI Master. To establish communication, we use a simple state machine to shift

out the sixteen bits of the MCP3002’s startup sequence on the MOSI line in sync with the clock

signal provided to the MCP3002. With each bit shifted out, we capture the incoming bit on the

MISO line and build a 16-bit value, which is masked to 10 bits (the data width of the ADC) and

passed to the appropriate bit-reversed memory address in the FFT’s memory block. The FSM for

the Master SPI module is as shown:

Fig. 4: Master SPI FSM

The most important data processing occurs within the FFT module. The design for our

FFT was based on G. William Slade’s The Fast Fourier Transform in Hardware: A Tutorial

Built on an FPGA Implementation [8]. The implementation involves four key submodules: a

two-port memory block, a butterfly unit which performs a two-point Fourier Transform, a lookup

table for twiddle factors, and an address generation unit to specify the locations of inputs and

outputs to the butterfly unit within the memory.We modify Slade’s implementation by

eliminating much of the pipelining work that they do. In doing so we simplify the

implementation significantly, but sacrifice the ability to write to the memory every clock cycle.

Writing to the memory every other clock cycle did not significantly affect lag between matrix

updates in our final implementation.

After performing the Fourier transform, we must shift out data as the Pi requests it, so we

implement an SPI slave module. The procedure to do this is extremely simple, although not a

pure implementation of an SPI interface. We use only the clock and MISO lines, shifting out a

single bit of the 32-bit FFT output on each positive clock edge. Two GPIO lines between the

FPGA and Pi act as “ready” signals for each, which help ensure that the SPI module receives

data from the correct place in memory before the Pi sends clock signals.

Finally, we implemented a controller module which effectively segmented the sequence

of operations performed by the FPGA, ensuring that data was captured, transformed, and shifted

out in the correct order. The controller FSM is as shown:

Fig. 5: FPGA controller state machine

B. Fast Fourier Transform in Hardware
Implementing the FFT module in hardware on the FPGA proved to be the most

significant challenge of the project. In particular, we ran into issues with interpreting Slade’s

implementation into a functional non-pipelined FFT. We will describe the design process of each

submodule (shown in Fig. 3) and outline the points of confusion we faced for the benefit of

future groups hoping to implement FFT.

Memory: The two-port memory block we designed began as a very straightforward

modification of the canonical form of a single-port RAM module in SystemVerilog. However,

we chose to add another level of complexity to the memory block by providing it with a third

address from the high-level controller module and single-bit getData and giveData signals.

These signals allow the controller to override the FFT and read/write data to the memory during

data acquisition and delivery. While this implementation was effective for our 32-point FFT, it

prevented the module from being interpreted properly as a RAM block and therefore caused

significant problems when we attempted to scale to 512-point FFT. We recommend future

groups find another way to load values into and out of the two-port RAM without additional

inputs and outputs.

Twiddle ROM: The twiddle factors are stored in a hard-coded lookup table. For

higher-order FFT, it is preferable to encode this lookup table in a text file. Our 32-point values

were provided in Slade’s paper, while the values for our attempted 512-point FFT came from a

MATLAB algorithm found in Curt Hillier and Maik Brett’s MPC5775K Twiddle Factor

Generator User Guide. [9]

Butterfly Unit: The Butterfly Unit (BFU) uses a complex multiplier to multiply a twiddle

factor with a complex value and then performs an addition and subtraction with the result to

generate output as described by Slade. To correctly implement the BFU, we interpret twiddle

factors as signed fixed-point number with 15 decimal bits. We perform signed complex

multiplication in the complex multiplier submodule (SystemVerilog requires that the values be

specified as signed when performing the multiplication) and then left-shift the result by 15 bits to

keep it the same order of magnitude as the input data before performing the addition and

subtraction operations.

Controller: To implement the controller, we implemented in hardware the C algorithm

shown by Slade using a state machine to contain a double-nested for loop. The loop is

incremented every other clock cycle, and the second clock cycle of each loop iteration is used to

activate memwr, where the output of the BFU is stored in memory. Our state machine is as

shown:

Fig. 6: State machine of FFT logic in implemented in SystemVerilog HDL

We performed our FFT on the square wave used in testing by Slade in ModelSim, and

received the following results:

Fig. 7: Square wave test input to FFT

Fig. 8: Output of FFT given above square wave as input

The y-axis scaling of the second graph is as a fraction of 32768.We see the negative values are

inverted, but our result otherwise matches Slade’s. This value inversion is insignificant, as we

take the total magnitude of the signal in the end.

VI. Results
The Pi received values from the FPGA via SPI, and after performing the magnitude

calculation and scaling, the values did not exceed the LED array’s upper limit of 31. When a

constant tone was played at a specified frequency, the LED array was expected to display a spike

in the frequency “bin” that the specified frequency corresponded to. However, these values did

not appear to correspond with the sound input to the microphone. Even when a constant tone was

played about a centimeter away from the microphone, the output of the array did not change to

show a spike in the respective frequency “bin” corresponding to the tone’s frequency.

The failure to display output corresponding to the input from the microphone was due to

two main problems. First, we failed to process the data correctly on the Pi. We allocated the

“bins” (the bars of the graph) linearly with the frequency list output by the FFT, while we had

intended to do so logarithmically. More importantly, we believe our SPI master module

connected to the microphone failed to acquire data correctly. We saw all bins on the matrix fill to

about halfway for most of the matrix’s operation, which would suggest that all frequencies

analyzed were present in roughly equal proportion, which is very unlikely. This strongly

suggests that we read values from the microphone incorrectly. Upon reflection, our

state-machine implementation of the SPI master interface was likely unnecessarily complicated

when a simpler interface without a state machine would have sufficed. Furthermore, we sent a

continuous clock signal to the ADC, rather than only sending it with our read signals, which

likely confused the ADC and garbled the data we were receiving. Solving these issues with the

SPI master would likely have greatly increased the functionality of our project, but unfortunately

we only got the data display working very close to the final checkoff and did not have the time to

thoroughly debug the system.

VII. References
[1] Maxim, “Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete

Shutdown,” MAX4466 datasheet, 2001.

[2] Microchip, “2.7V Dual Channel 10-Bit A/D Converter with SPI Serial Interface,” MCP3002

datasheet, 2011.

[3] Adafruit. “Adafruit RGB Matrix HAT + RTC for Raspberry Pi - Mini Kit.” Adafruit.com, 21

Jan. 2015, www.adafruit.com/product/2345.

[4] Zeller, Henner. “rpi-rgb-led-matrix.” GitHub, 1 Nov. 2017,

github.com/hzeller/rpi-rgb-led-matrix.

[5] Lichtman, Sarah & Vasquez, Joshua, “EasyPIO.h,” 8 Oct. 2013.

[6] Adafruit. “adafruit/rpi-rgb-led-matrix.” GitHub, 27 Aug. 2017,

https://github.com/adafruit/rpi-rgb-led-matrix.

[7] TightDev. “SpiDev Documentation.” Tightdev.net, tightdev.net/SpiDev_Doc.pdf.

[8] Slade, George. (2013). The Fast Fourier Transform in Hardware: A Tutorial Based on an

FPGA Implementation.

[9] Hillier, Curt and Brett, Maik (2015) MPC5775K Twiddle Factor Generator User Guide.

VIII. Parts List

Part Source Vendor Part # Price

32x32 RGB LED Matrix
Panel - 5mm Pitch

Adafruit 2026 $44.95

Electret Microphone
Amplifier - MAX4466
with Adjustable Gain

Adafruit 1063 $6.95

Adafruit RGB Matrix
HAT + RTC for
Raspberry Pi - Mini Kit

Adafruit 2345 $24.95

5V 4A (4000mA)
switching power supply
- UL Listed

Adafruit 1466 $14.95

IX. Appendices
A. Pi Code

import spidev
import time
import RPi.GPIO as GPIO
import math
import Image
import ImageDraw
import time
from rgbmatrix import Adafruit_RGBmatrix

matrix = Adafruit_RGBmatrix(32, 1)

#Evan Atchison & Zayra Lobo
#December 5, 2017
#Using rpi-rgb-led-matrix-py library, draws a spectrum on a 32x32 array
#given a 32 bit array of values between 0 and 31

def drawSpectrum(amp):

Bitmap example w/graphics prims
image = Image.new("RGB", (32, 32))
draw = ImageDraw.Draw(image) # Declare Draw instance before prims

count = 0
i = 0
matrix.Clear()

#Use draw.line in library to draw the spectrum with amp values
draw.line((0, 0, 0, amp[0]), fill = "#FF0000")
draw.line((1, 0, 1, amp[0]), fill = "#FF0000")

draw.line((2, 0, 2, amp[1]), fill = "#FF8000")
draw.line((3, 0, 3, amp[1]), fill = "#FF8000")

draw.line((4, 0, 4, amp[2]), fill = "#FFFF00")
draw.line((5, 0, 5, amp[2]), fill = "#FFFF00")

draw.line((6, 0, 6, amp[3]), fill = "#80FF00")
draw.line((7, 0, 7, amp[3]), fill = "#80FF00")

draw.line((8, 0, 8, amp[4]), fill = "#00FF00")
draw.line((9, 0, 9, amp[4]), fill = "#00FF00")

draw.line((10, 0, 10, amp[5]), fill = "#00FF80")
draw.line((11, 0, 11, amp[5]), fill = "#00FF80")

draw.line((12, 0, 12, amp[6]), fill = "#00FFFF")
draw.line((13, 0, 13, amp[6]), fill = "#00FFFF")

draw.line((14, 0, 14, amp[7]), fill = "#0080FF")
draw.line((15, 0, 15, amp[7]), fill = "#0080FF")

draw.line((16, 0, 16, amp[8]), fill = "#0000FF")
draw.line((17, 0, 17, amp[8]), fill = "#0000FF")

draw.line((18, 0, 18, amp[9]), fill = "#7F00FF")
draw.line((19, 0, 19, amp[9]), fill = "#7F00FF")

draw.line((20, 0, 20, amp[10]), fill = "#FF00FF")
draw.line((21, 0, 21, amp[10]), fill = "#FF00FF")

draw.line((22, 0, 22, amp[11]), fill = "#FF007F")
draw.line((23, 0, 23, amp[11]), fill = "#FF007F")

draw.line((24, 0, 24, amp[12]), fill = "#FF0000")
draw.line((25, 0, 25, amp[12]), fill = "#FF0000")

draw.line((26, 0, 26, amp[13]), fill = "#FF8000")
draw.line((27, 0, 27, amp[13]), fill = "#FF8000")

draw.line((28, 0, 28, amp[14]), fill = "#FFFF00")
draw.line((29, 0, 29, amp[14]), fill = "#FFFF00")

draw.line((30, 0, 30, amp[15]), fill = "#80FF00")
draw.line((31, 0, 31, amp[15]), fill = "#80FF00")

matrix.SetImage(image.im.id, 0, 0)

#Start SPI communication
spi = spidev.SpiDev()
spi.open(0,1)

spi.bits_per_word = 8
spi.max_speed_hz = 100000

#Initialize GPIO pins & variables
GPIO.setmode(GPIO.BCM)

GPIO.setup(24, GPIO.IN)
GPIO.setup(25, GPIO.OUT, initial = GPIO.HIGH)

j = 0
maxAmp = 0
amp = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

#SPI communication & calling drawSpectrum to display values
while(1):

for k in range(0,16):
while(j < 2):

piSpiEn = GPIO.input(24)
if(piSpiEn): #when the FPGA is done with FFT

realData1 = spi.xfer([0x00])
realData2 = spi.xfer([0x00])
imagData1 = spi.xfer([0x00])
imagData2 = spi.xfer([0x00])

realDataNum1 = realData1[0]
realDataNum2 = realData2[0]
imagDataNum1 = imagData1[0]
imagDataNum2 = imagData2[0]

#Convert data from signed to unsigned values

if(realDataNum2 > 127):
actualRealData2 = (realDataNum2 - 256) * 128

else:

actualRealData2 = realDataNum2 * 128

actualRealData = realDataNum1 + actualRealData2

if(imagDataNum2 > 127):
actualImagData2 = (imagDataNum2 - 256) * 128

else:

actualImagData2 = imagDataNum2 * 128

actualImagData = imagDataNum1 + actualImagData2

#Tell FPGA the Pi is busy
GPIO.output(25, GPIO.LOW)
#Compute amplitudes
temp = math.sqrt(actualRealData**2 +
actualImagData**2)

temp = temp/1024
if(maxAmp < temp):

maxAmp = temp

#Tell FPGA the Pi can receive more data
GPIO.output(25, GPIO.HIGH)
j += 1

j = 0
#Cast to an int before writing into array
amp[k] = int(maxAmp)
maxAmp = 0
print amp[k]

#Draw spectrum with the current int data in amp
drawSpectrum(amp)

spi.close()

B. FPGA Code
module finalproject(input logic clk,

input logic piReady,
input logic sdi,
input logic micMISO,
input logic piclk,
output logic piSpiEn,
output logic sdo,
output logic micMOSI,
output logic micCS,
output logic sclk,
output logic [7:0] leds);

//signals for the controller
logic micSpiDone, fftDone, getData, giveData, fftStart, micSpiEn,
fftDoneHold;

logic [4:0] adrData;

//signals for spiMic
logic [15:0] micData;

//signals for spiPi, fft
logic [31:0] fftOut;

//debugging

logic [3:0] stateNumber;
logic [1:0] spiStateNumber;

slowclk final_slowclk(clk, sclk);
controller final_controller(sclk, micSpiDone, fftDone, piReady,
getData, giveData, fftStart, micSpiEn, piSpiEn, fftDoneHold,
adrData, stateNumber);

spiMic final_spiMic(micSpiEn, sclk, micMISO, micMOSI, micCS,
micData, micSpiDone, spiStateNumber);
spiPi final_spiPi(piclk, fftOut, sdo);
minifft final_fft(sclk, fftStart, getData, giveData, adrData,
micData, fftDone, fftOut);

logic fftWasDone, piSpiEnWas, micSpiDoneWas;
always_ff @(posedge clk)

begin

if(fftDone) fftWasDone <= fftDone;
else fftWasDone <= fftWasDone;

if(piSpiEn) piSpiEnWas <= piSpiEn;
else piSpiEnWas <= piSpiEnWas;

if(micSpiDone) micSpiDoneWas <= micSpiDone;
else micSpiDoneWas <= micSpiDoneWas;

end

 //debugging leds
assign leds[1:0] = spiStateNumber;
assign leds[2] = piReady;
assign leds[3] = piSpiEn;
assign leds[7:4] = stateNumber;

endmodule

//Make a slow clock to access from other modules
module slowclk(input logic clk,

output logic sclk);

logic [31:0] sclkCount = 32'b0;
logic [31:0] sclkDelay = 32'd1000; //clock divider sets sampling rate

always_ff @(posedge clk)
if (sclkCount > sclkDelay)

begin

sclk <= ~sclk;
sclkCount <= 0;

end

else sclkCount <= sclkCount + 1;
endmodule

//master controller for all FPGA logic
module controller(input logic clk,

input logic micSpiDone,
input logic fftDone,

input logic piReady,
output logic getData,
output logic giveData,
output logic fftStart,
output logic micSpiEn,
output logic piSpiEn,
output logic fftDoneHold,
output logic [4:0] adrData,
output logic [3:0] stateNumber);

logic nextGetData, nextGiveData, nextFftStart, nextMicSpiEn,
nextPiSpiEn, nextFftDoneHold;
logic [4:0] nextAdrData;
logic [3:0] nextStateNumber;

typedef enum logic [3:0] {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9}
statetype;

statetype state, nextstate;

always_ff @(posedge clk)
begin

state <= nextstate;
getData <= nextGetData;
giveData <= nextGiveData;
fftStart <= nextFftStart;
micSpiEn <= nextMicSpiEn;
piSpiEn <= nextPiSpiEn;
fftDoneHold <= nextFftDoneHold;
adrData <= nextAdrData;
stateNumber <= nextStateNumber;

end

always_comb

begin

nextAdrData = 0;
nextstate = S0;
case(state)

S0: //initialize mic SPI
begin

nextstate = S1;
nextGetData = 0;
nextGiveData = 0;
nextFftStart = 0;
nextMicSpiEn = 1;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = adrData;
nextStateNumber = 4'b0000;

end

S1: //wait for spi value to fill
begin

if(micSpiDone) nextstate = S2;
else nextstate = S1;
nextGetData = 0;
nextGiveData = 0;
nextFftStart = 0;
nextMicSpiEn = 1;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = adrData;
nextStateNumber = 4'b0001;

end

S2: //put spi value in memory and loop or finish
begin

if(adrData<31) nextstate = S0;
else nextstate = S3;
nextGetData = 1;
nextGiveData = 0;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = adrData+5'b00001;
nextStateNumber = 4'b0010;

end

S3: //initialize fft
begin

nextstate = S4;
nextGetData = 0;
nextGiveData = 0;
nextFftStart = 1;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = 0;
nextStateNumber = 4'b0011;

end

S4: //hold fftstart for one more clock cycle
begin

nextstate = S5;
nextGetData = 0;
nextGiveData = 0;
nextFftStart = 1;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = 0;

nextStateNumber = 4'b0100;
end

S5: //wait for fft to be done
begin

if(fftDone) nextstate = S6;
else nextstate = S5;
nextGetData = 0;
nextGiveData = 0;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 0;
nextAdrData = 0;
nextStateNumber = 4'b0101;

end

S6: //configure memory to give data, check to
 //make sure pi is ready
begin

if(piReady) nextstate = S7;
else nextstate = S0;
nextGetData = 0;
nextGiveData = 1;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = 1;
nextAdrData = 0;
nextStateNumber = 4'b0110;

end

S7: //enable spi, wait for pi to get data
begin

if(piReady) nextstate = S7;
else nextstate = S8;
nextGetData = 0;
nextGiveData = giveData;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 1;
nextFftDoneHold = fftDoneHold;
nextAdrData = adrData;
nextStateNumber = 4'b0111;

end

S8: //increment address counter
begin

if(adrData<31) nextstate = S9;
else nextstate = S0;
nextGetData = 0;
nextGiveData = giveData;

nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = fftDoneHold;
nextAdrData = adrData+5'b00001;
nextStateNumber = 4'b1000;

end

S9: //wait for pi to be ready again
begin

if(piReady) nextstate = S7;
else nextstate = S9;
nextGetData = 0;
nextGiveData = giveData;
nextFftStart = 0;
nextMicSpiEn = 0;
nextPiSpiEn = 0;
nextFftDoneHold = fftDoneHold;
nextAdrData = adrData;
nextStateNumber = 4'b1001;

end

endcase

end

endmodule

//Enables SPI communication between the ADC and FPGA
module spiMic(input logic micSpiEn,

input logic clk,
input micMISO,
output logic micMOSI,
output logic micCS,
output logic [15:0] micData,
output logic micSpiDone,
output logic [1:0] spiStateNumber);

//instantiate variables for timing and decoder logic
logic [31:0] count = 32'b0;
logic [31:0] nextCount = 32'b0;
logic [15:0] startSequence = 16'b1101000000000000;
logic [15:0] amask = 16'b0000001111111111;

logic [15:0] amp, nextAmp;

logic [1:0] nextSpiStateNumber;

//state definitions
typedef enum logic [1:0] {S0, S1, S2} statetype;

statetype state, nextstate;

//state advancing logic
always_ff @(negedge clk)

begin

state <= nextstate;
amp <= nextAmp;
count <= nextCount;
if(micSpiDone) micData <= (amp&amask);//-16'd512;
else micData <= micData;
spiStateNumber <= nextSpiStateNumber;

end

//combinational logic for states
always_comb

begin

nextstate = S0;
case(state)

S0: //starter state, wait for enable
begin

nextSpiStateNumber = 2'b00;
micCS = 1;
micSpiDone = 0;
micMOSI = 1'b0;
nextAmp = amp;
nextCount = 0;
if(micSpiEn) nextstate = S1;
else nextstate = S0;

end

S1: //send start sequence
begin

nextSpiStateNumber = 2'b01;
micCS = 0;
micSpiDone = 0;
micMOSI = startSequence[15-count];
nextAmp = amp;
nextAmp[15-count] = micMISO;
nextCount = count + 1;
if (count>32'd14) nextstate = S2;
else nextstate = S1;

end

S2: //finished state, assert done
begin

nextSpiStateNumber = 2'b11;
micCS = 1;
micSpiDone = 1;
micMOSI = 1'b0;
nextAmp = amp;

nextCount = 0;
nextstate = S0;

end

endcase

end

endmodule

//simply shifts out data on clock edges - GPIO pins piReady and piSpiEn handle
when this occurs
module spiPi(input logic clk,

input logic [31:0] fftOut,
output logic sdo);

logic [4:0] count = 5'b0;

always_ff @(posedge clk)
begin

sdo <= fftOut[count];
if(count == 5'd31) count <= 5'b0;
else count <= count + 5'b00001;

end

endmodule

module minifft(input logic clk,
input logic fftStart,
input logic getData,
input logic giveData,
input logic [4:0] adrData,
input logic [15:0] micData,
output logic fftDone,
output logic [31:0] fftOut);

//inputs/outputs for the controller
logic [4:0] adrA, adrB;
logic memwr, sclk;
logic [3:0] twiddleAdr;

//inputs/outputs for twiddleROM
logic [15:0] twiddleFactor1, twiddleFactor2;

//inputs/outputs for BFU
logic [15:0] BFUdataAreal, BFUdataBreal, BFUdataAimag, BFUdataBimag;
logic [15:0] memDataAreal, memDataBreal, memDataAimag, memDataBimag;

minicontroller minifft_controller(clk, fftStart, fftDone, adrA, adrB,
memwr, twiddleAdr);

minitwiddleROM minifft_twiddleROM(clk, twiddleAdr, twiddleFactor1,
twiddleFactor2);

minibutterfly minifft_butterfly(clk, twiddleFactor1, twiddleFactor2,
BFUdataAreal,BFUdataBreal, BFUdataAimag, BFUdataBimag, memDataAreal,

memDataBreal, memDataAimag, memDataBimag);

minimem minifft_mem(clk, memwr, getData, giveData, micData, adrData,
adrA, adrB, memDataAreal, memDataBreal, memDataAimag, memDataBimag,

BFUdataAreal, BFUdataBreal, BFUdataAimag, BFUdataBimag, fftOut);
endmodule

 //need to generate control signals for the fft
module minicontroller(input logic clk,

input logic fftStart,
output logic fftDone,
output logic [4:0] adrA,
output logic [4:0] adrB,
output logic memwr,
output logic [3:0] twiddleAdr);

logic [31:0] ja, jb, nextja, nextjb;
logic [31:0] twiddle, nextTwiddle;
logic nextmemwr, nextfftDone;
logic [31:0] jcount, icount, nextjcount, nexticount;
logic [31:0] N = 16'd16; //for 10 bit address: N = 16'd512
logic [31:0] levels = 16'd5; //for 10 bit address: levels = 16'd10

assign adrA = ja[4:0];
assign adrB = jb[4:0];
assign twiddleAdr = twiddle[3:0];

typedef enum logic [2:0] {S0, S1, S2, S3, S4} statetype;
statetype state, nextstate;

//state advancing logic
always_ff @(posedge clk)

begin

state <= nextstate;
ja <= nextja;
jb <= nextjb;
twiddle <= nextTwiddle;
jcount <= nextjcount;
icount <= nexticount;
memwr <= nextmemwr;
fftDone <= nextfftDone;

end

always_comb

begin

nextstate = S0;
case(state)

S0: //wait for fftStart signal
begin

if(fftStart) nextstate = S1;
else nextstate = S0;
nextja = 32'b0;
nextjb = 32'b0;
nextTwiddle = 32'b0;
nexticount = 32'b0;
nextjcount = 32'b0;
nextmemwr = 1'b0;
nextfftDone = 1'b0;

end

S1: //j-incrementing for loop to generate addresses
begin

nextstate = S2;
nextja = jcount<<1;
nextjb = nextja+1;
nextja =

((nextja<<icount)|(nextja>>(levels-icount)))&32'h1f; //10 bit mask: 3ff
nextjb =

((nextjb<<icount)|(nextjb>>(levels-icount)))&32'h1f; //10 bit mask: 3ff
nextTwiddle =

((32'hfffffff0>>icount)&32'hf)&jcount;

nexticount = icount;
nextjcount = jcount+32'b1;
nextmemwr = 1'b0;
nextfftDone = 1'b0;

end

S2: //write to mem from newly generated addresses
begin

if(jcount <(N)) nextstate = S1;
else nextstate = S3;
nextja = ja;
nextjb = jb;
nextTwiddle = twiddle;
nexticount = icount;
nextjcount = jcount;
nextmemwr = 1'b1;
nextfftDone = 1'b0;

end

S3: //i incrementing for loop
begin

if (icount<(levels-1)) nextstate = S1;
else nextstate = S4;

nextja = ja;
nextjb = jb;
nextTwiddle = twiddle;
nexticount = icount+32'b1;
nextjcount = 0;
nextmemwr = 1'b0;
nextfftDone = 1'b0;

end

S4: //finished state to assert fftDone
begin

nextstate = S0;
nextja = 32'b0;
nextjb = 32'b0;
nextTwiddle = 32'b0;
nexticount = 32'b0;
nextjcount = 32'b0;
nextmemwr = 1'b0;
nextfftDone = 1'b1;

end

endcase

end

endmodule

//lookup table for twiddle addresses
module minitwiddleROM(input logic clk,

input logic [3:0] twiddleAdr,
output logic [15:0] twiddleFactor1,
output logic [15:0] twiddleFactor2);

always_comb

case(twiddleAdr)

4'b0000:

begin

twiddleFactor1 = 16'h7fff;
twiddleFactor2 = 16'h0000;

end

4'b0001:

begin

twiddleFactor1 = 16'h7d89;
twiddleFactor2 = 16'h18f9;

end

4'b0010:

begin

twiddleFactor1 = 16'h7641;
twiddleFactor2 = 16'h30fb;

end

4'b0011:

begin

twiddleFactor1 = 16'h6a6d;

twiddleFactor2 = 16'h471c;
end

4'b0100:

begin

twiddleFactor1 = 16'h5a82;
twiddleFactor2 = 16'h5a82;

end

4'b0101:

begin

twiddleFactor1 = 16'h471c;
twiddleFactor2 = 16'h6a6d;

end

4'b0110:

begin

twiddleFactor1 = 16'h30fb;
twiddleFactor2 = 16'h7641;

end

4'b0111:

begin

twiddleFactor1 = 16'h18f9;
twiddleFactor2 = 16'h7d89;

end

4'b1000:

begin

twiddleFactor1 = 16'h0000;
twiddleFactor2 = 16'h7fff;

end

4'b1001:

begin

twiddleFactor1 = 16'he707;
twiddleFactor2 = 16'h7d89;

end

4'b1010:

begin

twiddleFactor1 = 16'hcf05;
twiddleFactor2 = 16'h7641;

end

4'b1011:

begin

twiddleFactor1 = 16'hb8e4;
twiddleFactor2 = 16'h6a6d;

end

4'b1100:

begin

twiddleFactor1 = 16'ha57e;
twiddleFactor2 = 16'h5a82;

end

4'b1101:

begin

twiddleFactor1 = 16'h9593;
twiddleFactor2 = 16'h471c;

end

4'b1110:

begin

twiddleFactor1 = 16'h89bf;
twiddleFactor2 = 16'h30fb;

end

4'b1111:

begin

twiddleFactor1 = 16'h8277;
twiddleFactor2 = 16'h18f9;

end

endcase

endmodule

//does all of the butterfly operation
module minibutterfly(input logic clk,

input logic [15:0] twiddleFactor1,
input logic [15:0] twiddleFactor2,
input logic [15:0] BFUdataAreal,
input logic [15:0] BFUdataBreal,
input logic [15:0] BFUdataAimag,
input logic [15:0] BFUdataBimag,
output logic [15:0] memDataAreal,
output logic [15:0] memDataBreal,
output logic [15:0] memDataAimag,
output logic [15:0] memDataBimag);

logic [31:0] BrealPostMult, BimagPostMult;

complexMult bfu_cmult(twiddleFactor1, twiddleFactor2, BFUdataBreal,
BFUdataBimag,

BrealPostMult, BimagPostMult);

assign memDataAreal = (BFUdataAreal + BrealPostMult[30:15]); //bitshift
by 15 for twiddle floating point

assign memDataAimag = (BFUdataAimag + BimagPostMult[30:15]);
assign memDataBreal = (BFUdataAreal - BrealPostMult[30:15]);
assign memDataBimag = (BFUdataAimag - BimagPostMult[30:15]);

endmodule

//multiplying two complex numbers
module complexMult(input logic [15:0] twiddleFactor1,

input logic [15:0] twiddleFactor2,
input logic [15:0] BFUdataBreal,

input logic [15:0] BFUdataBimag,
output logic [31:0] BrealPostMult,
output logic [31:0] BimagPostMult);

logic signed [15:0] stwiddleFactor1, stwiddleFactor2; //MUST DO SIGNED
MULTIPLICATION!!

logic signed [15:0] sBFUdataBreal, sBFUdataBimag;
logic signed [31:0] sBrealPostMult, sBimagPostMult;
assign stwiddleFactor1 = twiddleFactor1;
assign stwiddleFactor2 = twiddleFactor2;
assign sBFUdataBreal = BFUdataBreal;
assign sBFUdataBimag = BFUdataBimag;
assign sBrealPostMult = sBFUdataBreal*stwiddleFactor1 -

sBFUdataBimag*stwiddleFactor2; //real part
assign sBimagPostMult = sBFUdataBreal*stwiddleFactor2 +

sBFUdataBimag*stwiddleFactor1; //imaginary part
assign BrealPostMult = sBrealPostMult;
assign BimagPostMult = sBimagPostMult;

endmodule

//double-addressed memory block
module minimem(input logic clk,

input logic memwr,
input logic getData,
input logic giveData,
input logic [15:0] micData,
input logic [4:0] adrData,
input logic [4:0] adrA,
input logic [4:0] adrB,
input logic [15:0] memDataAreal,
input logic [15:0] memDataBreal,
input logic [15:0] memDataAimag,
input logic [15:0] memDataBimag,
output logic [15:0] BFUdataAreal,
output logic [15:0] BFUdataBreal,
output logic [15:0] BFUdataAimag,
output logic [15:0] BFUdataBimag,
output logic [31:0] fftOut);

logic [31:0] mem[31:0]; //bits 0-15 are real, 16-31 are imaginary
logic [4:0] adrDatarev;
assign adrDatarev = {adrData[0], adrData[1], adrData[2], adrData[3],

adrData[4]};

always @(posedge clk)
begin

if(getData) //loading values into memory
begin

mem[adrDatarev][15:0] <= micData;
mem[adrDatarev][31:16] <= 16'b0;
fftOut <= 31'b0;

BFUdataAreal <= 16'b0;
BFUdataAimag <= 16'b0;
BFUdataBreal <= 16'b0;
BFUdataBimag <= 16'b0;

end

else if(giveData) //loading values out of memory
begin

fftOut <= mem[adrData];
BFUdataAreal <= 16'b0;
BFUdataAimag <= 16'b0;
BFUdataBreal <= 16'b0;
BFUdataBimag <= 16'b0;

end

else //using memory for fft
begin

fftOut <= 31'b0;
BFUdataAreal <= mem[adrA][15:0];
BFUdataAimag <= mem[adrA][31:16];
BFUdataBreal <= mem[adrB][15:0];
BFUdataBimag <= mem[adrB][31:16];
if(memwr)

begin

mem[adrA][15:0] <= memDataAreal;
mem[adrA][31:16] <= memDataAimag;

mem[adrB][15:0] <= memDataBreal;
mem[adrB][31:16] <= memDataBimag;

end

end

end

endmodule

