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Abstract: 

The goal of this project was to create an audio visualizer using an off-the-shelf LED 
array, Raspberry Pi, FPGA, microphone, and MCP3002 ADC. By playing music or other audio 
into the microphone, the user is supposed to see a frequency spectrum displayed on the array. 
The Fast Fourier Transform (FFT) that converts the microphone data from the time domain to 
the frequency domain is performed on the FPGA. Though microphone data was displayed on the 
LED array and the FFT functioned properly, the post-FFT data was not properly sorted into 
logarithmically increasing frequency bins. Furthermore, our SPI master protocol between the 
FPGA and the ADC failed to properly acquire input data, thereby producing output that did not 
significantly correspond to the audio input data. 



I. Introduction 
The motivation of this project was to create an audio visualizer on an LED array. A 

microphone collects audio input from the environment and outputs a voltage proportional to the 

amplitude of the sound. The signal is then passed to an Analog-Digital Converter (ADC) which 

the FPGA read from via SPI. The FPGA accumulates signals over time and performs a Fourier 

transform on a 32-point data set. It then shifts this data out to the Raspberry Pi via SPI. The 

Raspberry Pi interprets the raw post-FFT data and displays it on the LED array to create a 

spectrum analyzer. 

II. New Hardware 
The Electret microphone + amplifier, 32 x 32 RGB LED array, and LED array Pi HAT 

from Adafruit were the three new pieces of hardware used by the team for this project. The 

microphone + amplifier board had three pins to interface with: Vcc , Vout , and ground. The team 

supplied 3.3V to Vcc (since the supply voltage range is 2.4 - 5.5V) and read the values from the 

Vout pin to CH0 on the MCP3002 ADC [1], [2]. The MAX4466 amplifier connected to the 

microphone had a gain that could be adjusted to be any value from 25 to 125. For this project, an 

intermediate gain value was used. 

The 32 x 32 LED array was selected to provide as high of a resolution as possible for the 

output display while not going over the self-determined $100 budget of the project, $50 of which 

was reimbursed. The team designed the frequency spectrum such that every two columns of 

LEDs formed one frequency range “bin”. Thus, the 32 columns of LEDs were broken into 16 

frequency ranges, which ideally would have been spaced on a logarithmic scale to model the 

logarithmic scale of octaves. Ideally, each column would also have a specified frequency range, 



such as 20Hz - 40Hz, thus displaying the amplitude of signals falling in that frequency range for 

that audio sample.  

The Pi HAT was used to connect the Pi control signals to the LED array via a ribbon 

cable, power the array via a barrel jack power cable plugged into the HAT, and shift between the 

3.3V logic of the Pi to the 5V logic needed for the LED array [3]. Also, in order to use the 

Python library that Adafruit provided for the array, the Pi had to interface with the LED array 

through this HAT. 

III. Schematics 
A high-level block diagram of the entire system shows how each hardware component 

was connected:

 
Fig. 1: The overall data flow for the project.  

 
 

  



A block diagram for the overall FPGA logic demonstrates the function of the FPGA in 
this system: 

 
Fig. 2: High-level modules implemented on the FPGA. 

 
A block diagram of the FFT shows how this modules is controlled and operates: 

 
Fig. 3: Submodules implemented to make the FFT work. 



IV. Microcontroller Design 
The Raspberry Pi interfaces with the FPGA to receive output from the FFT and then 

drives the LED array to display that output. A HAT (Hardware Attached on Top) attaches to the 

Pi to allow for simpler interfacing between the Pi and the array. The HAT adds several features 

that make interfacing with the array easier, such as a ribbon cable output for the array signals, a 

barrel jack power input to power the array, and onboard level shifters to convert the Pi’s 3.3V 

logic to 5V logic for the array. 

Initially, the team planned to use Henner Zeller’s C/C++ library for driving the LED 

matrix because it would allow for the use of EasyPIO.h, a C header file that included pin 

mapping and SPI interfaces necessary for the Pi to run in order to communicate with the FPGA 

[4], [5]. However, shortly before the project deadline, the team realized that this library would 

use almost all of the Pi’s GPIO pins and all of the SPI pins to drive the array, leaving no quick 

method to implement an SPI interface between the Pi and the FPGA. Fortunately, Adafruit had 

forked this Github repository to create their own Python version of the same library that does not 

use the Pi SPI pins [6]. Using the classes and functions in this library, the team was able to write 

their own functions to produce spectrum patterns on the LED array that corresponded to the FFT 

output from the FPGA. Because EasyPIO.h is a C header file that remaps the Pi pins, it could not 

be used with the Python module which also had its own mapping of the pins. Thus, the SpiDev 

module was used to handle SPI signals from the Pi [7].  

 

 

 

 



V. FPGA Design 
A. General  Implementation 
The FPGA handles both signal acquisition from the microphone and signal processing via 

the FFT, and then passes the transformed signal to the Raspberry Pi. To do this, we implemented 

four high-level modules on the FPGA, as shown in Fig. 2. 

 To read signals from the microphone, the FPGA must communicate with the on-board 

MCP3002 as an SPI Master. To establish communication, we use a simple state machine to shift 

out the sixteen bits of the MCP3002’s startup sequence on the MOSI line in sync with the clock 

signal provided to the MCP3002. With each bit shifted out, we capture the incoming bit on the 

MISO line and build a 16-bit value, which is masked to 10 bits (the data width of the ADC) and 

passed to the appropriate bit-reversed memory address in the FFT’s memory block. The FSM for 

the Master SPI module is as shown: 

 
Fig. 4: Master SPI FSM 

 
The most important data processing occurs within the FFT module. The design for our 

FFT was based on G. William Slade’s The Fast Fourier Transform in Hardware: A Tutorial 

Built on an FPGA Implementation [8]. The implementation involves four key submodules: a 

two-port memory block, a butterfly unit which performs a two-point Fourier Transform, a lookup 

table for twiddle factors, and an address generation unit to specify the locations of inputs and 



outputs to the butterfly unit within the memory.We modify Slade’s implementation by 

eliminating much of the pipelining work that they do. In doing so we simplify the 

implementation significantly, but sacrifice the ability to write to the memory every clock cycle. 

Writing to the memory every other clock cycle did not significantly affect lag between matrix 

updates in our final implementation. 

After performing the Fourier transform, we must shift out data as the Pi requests it, so we 

implement an SPI slave module. The procedure to do this is extremely simple, although not a 

pure implementation of an SPI interface. We use only the clock and MISO lines, shifting out a 

single bit of the 32-bit FFT output on each positive clock edge. Two GPIO lines between the 

FPGA and Pi act as “ready” signals for each, which help ensure that the SPI module receives 

data from the correct place in memory before the Pi sends clock signals. 

Finally, we implemented a controller module which effectively segmented the sequence 

of operations performed by the FPGA, ensuring that data was captured, transformed, and shifted 

out in the correct order. The controller FSM is as shown: 

 
Fig. 5: FPGA controller state machine 



 
B. Fast Fourier Transform in Hardware 
Implementing the FFT module in hardware on the FPGA proved to be the most 

significant challenge of the project. In particular, we ran into issues with interpreting Slade’s 

implementation into a functional non-pipelined FFT. We will describe the design process of each 

submodule (shown in Fig. 3) and outline the points of confusion we faced for the benefit of 

future groups hoping to implement FFT. 

Memory: The two-port memory block we designed began as a very straightforward 

modification of the canonical form of a single-port RAM module in SystemVerilog. However, 

we chose to add another level of complexity to the memory block by providing it with a third 

address from the high-level controller module and single-bit getData and giveData signals. 

These signals allow the controller to override the FFT and read/write data to the memory during 

data acquisition and delivery. While this implementation was effective for our 32-point FFT, it 

prevented the module from being interpreted properly as a RAM block and therefore caused 

significant problems when we attempted to scale to 512-point FFT. We recommend future 

groups find another way to load values into and out of the two-port RAM without additional 

inputs and outputs. 

Twiddle ROM: The twiddle factors are stored in a hard-coded lookup table. For 

higher-order FFT, it is preferable to encode this lookup table in a text file. Our 32-point values 

were provided in Slade’s paper, while the values for our attempted 512-point FFT came from a 

MATLAB algorithm found in Curt Hillier and Maik Brett’s MPC5775K Twiddle Factor 

Generator User Guide. [9] 



Butterfly Unit: The Butterfly Unit (BFU) uses a complex multiplier to multiply a twiddle 

factor with a complex value and then performs an addition and subtraction with the result to 

generate output as described by Slade. To correctly implement the BFU, we interpret twiddle 

factors as signed fixed-point number with 15 decimal bits. We perform signed complex 

multiplication in the complex multiplier submodule (SystemVerilog requires that the values be 

specified as signed when performing the multiplication) and then left-shift the result by 15 bits to 

keep it the same order of magnitude as the input data before performing the addition and 

subtraction operations. 

Controller: To implement the controller, we implemented in hardware the C algorithm 

shown by Slade using a state machine to contain a double-nested for loop. The loop is 

incremented every other clock cycle, and the second clock cycle of each loop iteration is used to 

activate memwr, where the output of the BFU is stored in memory. Our state machine is as 

shown: 

 

Fig. 6: State machine of FFT logic in implemented in SystemVerilog HDL 

We performed our FFT on the square wave used in testing by Slade in ModelSim, and 

received the following results: 



 
Fig. 7: Square wave test input to FFT 

 

Fig. 8: Output of FFT given above square wave as input 

The y-axis scaling of the second graph is as a fraction of 32768.We see the negative values are 

inverted, but our result otherwise matches Slade’s. This value inversion is insignificant, as we 

take the total magnitude of the signal in the end. 

VI. Results 
The Pi received values from the FPGA via SPI, and after performing the magnitude 

calculation and scaling, the values did not exceed the LED array’s upper limit of 31. When a 



constant tone was played at a specified frequency, the LED array was expected to display a spike 

in the frequency “bin” that the specified frequency corresponded to. However, these values did 

not appear to correspond with the sound input to the microphone. Even when a constant tone was 

played about a centimeter away from the microphone, the output of the array did not change to 

show a spike in the respective frequency “bin” corresponding to the tone’s frequency.  

The failure to display output corresponding to the input from the microphone was due to 

two main problems. First, we failed to process the data correctly on the Pi. We allocated the 

“bins” (the bars of the graph) linearly with the frequency list output by the FFT, while we had 

intended to do so logarithmically. More importantly, we believe our SPI master module 

connected to the microphone failed to acquire data correctly. We saw all bins on the matrix fill to 

about halfway for most of the matrix’s operation, which would suggest that all frequencies 

analyzed were present in roughly equal proportion, which is very unlikely. This strongly 

suggests that we read values from the microphone incorrectly. Upon reflection, our 

state-machine implementation of the SPI master interface was likely unnecessarily complicated 

when a simpler interface without a state machine would have sufficed. Furthermore, we sent a 

continuous clock signal to the ADC, rather than only sending it with our read signals, which 

likely confused the ADC and garbled the data we were receiving. Solving these issues with the 

SPI master would likely have greatly increased the functionality of our project, but unfortunately 

we only got the data display working very close to the final checkoff and did not have the time to 

thoroughly debug the system. 
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VIII. Parts List 

Part Source Vendor Part # Price 

32x32 RGB LED Matrix 
Panel - 5mm Pitch 

Adafruit 2026 $44.95 

Electret Microphone 
Amplifier - MAX4466 
with Adjustable Gain 

Adafruit 1063 $6.95 

Adafruit RGB Matrix 
HAT + RTC for 
Raspberry Pi - Mini Kit 

Adafruit 2345 $24.95 

5V 4A (4000mA) 
switching power supply 
- UL Listed 

Adafruit 1466 $14.95 

 



IX. Appendices 
A. Pi Code 

import spidev 
import time 
import RPi.GPIO as GPIO 
import math 
import Image 
import ImageDraw 
import time 
from rgbmatrix import Adafruit_RGBmatrix 
 

matrix = Adafruit_RGBmatrix(32, 1) 
 

#Evan Atchison & Zayra Lobo 
#December 5, 2017 
#Using rpi-rgb-led-matrix-py library, draws a spectrum on a 32x32 array 
#given a 32 bit array of values between 0 and 31 
 

def drawSpectrum(amp): 
 

# Bitmap example w/graphics prims 
image = Image.new("RGB", (32, 32)) 
draw  = ImageDraw.Draw(image)   # Declare Draw instance before prims 
 

count = 0 
i = 0 
matrix.Clear() 

 

#Use draw.line in library to draw the spectrum with amp values 
draw.line((0, 0, 0, amp[0]), fill = "#FF0000") 
draw.line((1, 0, 1, amp[0]), fill = "#FF0000") 
 

draw.line((2, 0, 2, amp[1]), fill = "#FF8000") 
draw.line((3, 0, 3, amp[1]), fill = "#FF8000") 

 

draw.line((4, 0, 4, amp[2]), fill = "#FFFF00") 
draw.line((5, 0, 5, amp[2]), fill = "#FFFF00") 
 

draw.line((6, 0, 6, amp[3]), fill = "#80FF00") 
draw.line((7, 0, 7, amp[3]), fill = "#80FF00") 

 

draw.line((8, 0, 8, amp[4]), fill = "#00FF00") 
draw.line((9, 0, 9, amp[4]), fill = "#00FF00") 
 



draw.line((10, 0, 10, amp[5]), fill = "#00FF80") 
draw.line((11, 0, 11, amp[5]), fill = "#00FF80") 

 

draw.line((12, 0, 12, amp[6]), fill = "#00FFFF") 
draw.line((13, 0, 13, amp[6]), fill = "#00FFFF") 
 

draw.line((14, 0, 14, amp[7]), fill = "#0080FF") 
draw.line((15, 0, 15, amp[7]), fill = "#0080FF") 

 

draw.line((16, 0, 16, amp[8]), fill = "#0000FF") 
draw.line((17, 0, 17, amp[8]), fill = "#0000FF") 
 

draw.line((18, 0, 18, amp[9]), fill = "#7F00FF") 
draw.line((19, 0, 19, amp[9]), fill = "#7F00FF") 

 

draw.line((20, 0, 20, amp[10]), fill = "#FF00FF") 
draw.line((21, 0, 21, amp[10]), fill = "#FF00FF") 
 

draw.line((22, 0, 22, amp[11]), fill = "#FF007F") 
draw.line((23, 0, 23, amp[11]), fill = "#FF007F") 

 

draw.line((24, 0, 24, amp[12]), fill = "#FF0000") 
draw.line((25, 0, 25, amp[12]), fill = "#FF0000") 
 

draw.line((26, 0, 26, amp[13]), fill = "#FF8000") 
draw.line((27, 0, 27, amp[13]), fill = "#FF8000") 

 

draw.line((28, 0, 28, amp[14]), fill = "#FFFF00") 
draw.line((29, 0, 29, amp[14]), fill = "#FFFF00") 
 

draw.line((30, 0, 30, amp[15]), fill = "#80FF00") 
draw.line((31, 0, 31, amp[15]), fill = "#80FF00") 

 

matrix.SetImage(image.im.id, 0, 0) 
 

#Start SPI communication 
spi = spidev.SpiDev() 
spi.open(0,1) 

spi.bits_per_word = 8 
spi.max_speed_hz = 100000 

 

#Initialize GPIO pins & variables 
GPIO.setmode(GPIO.BCM) 

GPIO.setup(24, GPIO.IN) 
GPIO.setup(25, GPIO.OUT, initial = GPIO.HIGH) 



 

j = 0 
maxAmp = 0 
amp = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
 

#SPI communication & calling drawSpectrum to display values 
while(1): 

for k in range(0,16): 
while(j < 2): 

piSpiEn = GPIO.input(24)  
if(piSpiEn): #when the FPGA is done with FFT 

realData1 = spi.xfer([0x00]) 
realData2 = spi.xfer([0x00]) 
imagData1 = spi.xfer([0x00]) 
imagData2 = spi.xfer([0x00]) 
 

realDataNum1 = realData1[0] 
realDataNum2 = realData2[0] 
imagDataNum1 = imagData1[0] 
imagDataNum2 = imagData2[0] 
 

#Convert data from signed to unsigned values 
 

if(realDataNum2 > 127): 
actualRealData2 = (realDataNum2 - 256) * 128 

else: 

actualRealData2 = realDataNum2 * 128 
 

actualRealData = realDataNum1 + actualRealData2 
 

if(imagDataNum2 > 127): 
actualImagData2 = (imagDataNum2 - 256) * 128 

else: 

actualImagData2 = imagDataNum2 * 128 
 

actualImagData = imagDataNum1 + actualImagData2 
 

#Tell FPGA the Pi is busy 
GPIO.output(25, GPIO.LOW) 
#Compute amplitudes 
temp = math.sqrt(actualRealData**2 +  
actualImagData**2) 

temp = temp/1024 
if(maxAmp < temp): 

maxAmp = temp 



 

#Tell FPGA the Pi can receive more data 
GPIO.output(25, GPIO.HIGH) 
j += 1 
 

j = 0 
#Cast to an int before writing into array 
amp[k] = int(maxAmp) 
maxAmp = 0 
print amp[k] 

#Draw spectrum with the current int data in amp 
drawSpectrum(amp) 

spi.close() 

 

B. FPGA Code 
module finalproject(input logic clk, 

input logic piReady, 
input logic sdi, 
input logic micMISO, 
input logic piclk, 
output logic piSpiEn, 
output logic sdo, 
output logic micMOSI, 
output logic micCS, 
output logic sclk, 
output logic [7:0] leds); 

//signals for the controller 
logic micSpiDone, fftDone, getData, giveData, fftStart, micSpiEn,  
fftDoneHold; 

logic [4:0] adrData; 
 

//signals for spiMic 
logic [15:0] micData; 
 

//signals for spiPi, fft 
logic [31:0] fftOut; 
 

//debugging 

logic [3:0] stateNumber; 
logic [1:0] spiStateNumber; 
 

slowclk final_slowclk(clk, sclk); 
controller final_controller(sclk, micSpiDone, fftDone, piReady,  
getData, giveData, fftStart, micSpiEn, piSpiEn, fftDoneHold, 
adrData, stateNumber); 
 



spiMic final_spiMic(micSpiEn, sclk, micMISO, micMOSI, micCS,  
micData, micSpiDone, spiStateNumber); 
spiPi final_spiPi(piclk, fftOut, sdo); 
minifft final_fft(sclk, fftStart, getData, giveData, adrData, 
micData, fftDone, fftOut); 
 

logic fftWasDone, piSpiEnWas, micSpiDoneWas; 
always_ff @(posedge clk) 

begin 

if(fftDone) fftWasDone <= fftDone; 
else fftWasDone <= fftWasDone; 
 

if(piSpiEn) piSpiEnWas <= piSpiEn; 
else piSpiEnWas <= piSpiEnWas; 
 

if(micSpiDone) micSpiDoneWas <= micSpiDone; 
else micSpiDoneWas <= micSpiDoneWas; 

end 

 

 //debugging leds 
assign leds[1:0] = spiStateNumber; 
assign leds[2] = piReady; 
assign leds[3] = piSpiEn; 
assign leds[7:4] = stateNumber; 
 

endmodule 

 

//Make a slow clock to access from other modules 
module slowclk(input logic clk, 

output logic sclk); 
 

logic [31:0] sclkCount = 32'b0; 
logic [31:0] sclkDelay = 32'd1000; //clock divider sets sampling rate

 

 

always_ff @(posedge clk) 
if (sclkCount > sclkDelay) 

begin 

sclk <= ~sclk; 
sclkCount <= 0; 

end 

else sclkCount <= sclkCount + 1; 
endmodule 

 

//master controller for all FPGA logic 
module controller(input logic clk, 

input logic micSpiDone, 
input logic fftDone, 



input logic piReady, 
output logic getData, 
output logic giveData, 
output logic fftStart, 
output logic micSpiEn, 
output logic piSpiEn, 
output logic fftDoneHold, 
output logic [4:0] adrData, 
output logic [3:0] stateNumber); 

logic nextGetData, nextGiveData, nextFftStart, nextMicSpiEn,  
nextPiSpiEn, nextFftDoneHold; 
logic [4:0] nextAdrData; 
logic [3:0] nextStateNumber; 
 

typedef enum logic [3:0] {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9}  
statetype; 

statetype state, nextstate; 
 

always_ff @(posedge clk) 
begin 

state <= nextstate; 
getData <= nextGetData; 
giveData <= nextGiveData; 
fftStart <= nextFftStart; 
micSpiEn <= nextMicSpiEn; 
piSpiEn <= nextPiSpiEn; 
fftDoneHold <= nextFftDoneHold; 
adrData <= nextAdrData; 
stateNumber <= nextStateNumber; 

end 

 

always_comb 

begin 

nextAdrData = 0; 
nextstate = S0; 
case(state) 

S0: //initialize mic SPI 
begin 

nextstate = S1; 
nextGetData = 0; 
nextGiveData = 0; 
nextFftStart = 0; 
nextMicSpiEn = 1; 
nextPiSpiEn = 0; 
nextFftDoneHold = 0; 
nextAdrData = adrData; 
nextStateNumber = 4'b0000; 

end 



S1: //wait for spi value to fill 
begin 

if(micSpiDone) nextstate = S2; 
else nextstate = S1; 
nextGetData = 0; 
nextGiveData = 0; 
nextFftStart = 0; 
nextMicSpiEn = 1; 
nextPiSpiEn = 0; 
nextFftDoneHold = 0; 
nextAdrData = adrData; 
nextStateNumber = 4'b0001; 

end 

S2: //put spi value in memory and loop or finish 
begin 

if(adrData<31) nextstate = S0; 
else nextstate = S3; 
nextGetData = 1; 
nextGiveData = 0; 
nextFftStart = 0; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = 0; 
nextAdrData = adrData+5'b00001; 
nextStateNumber = 4'b0010; 

end 

S3: //initialize fft 
begin 

nextstate = S4; 
nextGetData = 0; 
nextGiveData = 0; 
nextFftStart = 1; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = 0; 
nextAdrData = 0; 
nextStateNumber = 4'b0011; 

end 

S4: //hold fftstart for one more clock cycle 
begin 

nextstate = S5; 
nextGetData = 0; 
nextGiveData = 0; 
nextFftStart = 1; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = 0; 
nextAdrData = 0; 



nextStateNumber = 4'b0100; 
end 

S5: //wait for fft to be done 
begin 

if(fftDone) nextstate = S6; 
else nextstate = S5; 
nextGetData = 0; 
nextGiveData = 0; 
nextFftStart = 0; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = 0; 
nextAdrData = 0; 
nextStateNumber = 4'b0101; 

end 

S6: //configure memory to give data, check to  
    //make sure pi is ready 
begin 

if(piReady) nextstate = S7; 
else nextstate = S0; 
nextGetData = 0; 
nextGiveData = 1; 
nextFftStart = 0; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = 1; 
nextAdrData = 0; 
nextStateNumber = 4'b0110; 

end 

S7: //enable spi, wait for pi to get data 
begin 

if(piReady) nextstate = S7; 
else nextstate = S8; 
nextGetData = 0; 
nextGiveData = giveData; 
nextFftStart = 0; 
nextMicSpiEn = 0; 
nextPiSpiEn = 1; 
nextFftDoneHold = fftDoneHold; 
nextAdrData = adrData; 
nextStateNumber = 4'b0111; 

end 

S8: //increment address counter 
begin 

if(adrData<31) nextstate = S9; 
else nextstate = S0; 
nextGetData = 0; 
nextGiveData = giveData; 



nextFftStart = 0; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = fftDoneHold; 
nextAdrData = adrData+5'b00001; 
nextStateNumber = 4'b1000; 

end 

S9: //wait for pi to be ready again 
begin 

if(piReady) nextstate = S7; 
else nextstate = S9; 
nextGetData = 0; 
nextGiveData = giveData; 
nextFftStart = 0; 
nextMicSpiEn = 0; 
nextPiSpiEn = 0; 
nextFftDoneHold = fftDoneHold; 
nextAdrData = adrData; 
nextStateNumber = 4'b1001; 

end 

endcase 

end 

endmodule 

 

//Enables SPI communication between the ADC and FPGA 
module spiMic(input logic micSpiEn, 

input logic clk, 
input micMISO,  
output logic micMOSI, 
output logic micCS, 
output logic [15:0] micData, 
output logic micSpiDone, 
output logic [1:0] spiStateNumber); 
 

 

//instantiate variables for timing and decoder logic 
logic [31:0] count = 32'b0; 
logic [31:0] nextCount = 32'b0; 
logic [15:0] startSequence = 16'b1101000000000000; 
logic [15:0] amask = 16'b0000001111111111; 
 

logic [15:0] amp, nextAmp; 
 

logic [1:0] nextSpiStateNumber; 
 

//state definitions 
typedef enum logic [1:0] {S0, S1, S2} statetype; 
 



statetype state, nextstate; 
 

//state advancing logic 
always_ff @(negedge clk) 

begin 

state <= nextstate; 
amp <= nextAmp; 
count <= nextCount; 
if(micSpiDone) micData <= (amp&amask);//-16'd512; 
else micData <= micData; 
spiStateNumber <= nextSpiStateNumber; 

end 

 

//combinational logic for states 
always_comb 

begin 

nextstate = S0; 
case(state) 

S0: //starter state, wait for enable 
begin 

nextSpiStateNumber = 2'b00; 
micCS = 1; 
micSpiDone = 0; 
micMOSI = 1'b0; 
nextAmp = amp; 
nextCount = 0; 
if(micSpiEn) nextstate = S1; 
else nextstate = S0; 

end 

S1: //send start sequence 
begin  

nextSpiStateNumber = 2'b01; 
micCS = 0; 
micSpiDone = 0; 
micMOSI = startSequence[15-count]; 
nextAmp = amp; 
nextAmp[15-count] = micMISO; 
nextCount = count + 1; 
if (count>32'd14) nextstate = S2; 
else nextstate = S1; 

end 

S2: //finished state, assert done 
begin 

nextSpiStateNumber = 2'b11; 
micCS = 1; 
micSpiDone = 1; 
micMOSI = 1'b0; 
nextAmp = amp; 



nextCount = 0; 
nextstate = S0; 

end 

endcase 

end 

endmodule 

 

//simply shifts out data on clock edges - GPIO pins piReady and piSpiEn handle 
when this occurs 
module spiPi(input logic clk, 

input logic [31:0] fftOut, 
output logic sdo); 

 

logic [4:0] count = 5'b0; 
 

always_ff @(posedge clk) 
begin 

sdo <= fftOut[count]; 
if(count == 5'd31) count <= 5'b0;  
else count <= count + 5'b00001; 

end 

endmodule 

 

module minifft(input logic clk, 
input logic fftStart, 
input logic getData, 
input logic giveData, 
input logic [4:0] adrData, 
input logic [15:0] micData, 
output logic fftDone, 
output logic [31:0] fftOut); 
 

//inputs/outputs for the controller 
logic [4:0] adrA, adrB; 
logic memwr, sclk; 
logic [3:0] twiddleAdr; 
 

//inputs/outputs for twiddleROM 
logic [15:0] twiddleFactor1, twiddleFactor2; 
 

//inputs/outputs for BFU 
logic [15:0] BFUdataAreal, BFUdataBreal, BFUdataAimag, BFUdataBimag; 
logic [15:0] memDataAreal, memDataBreal, memDataAimag, memDataBimag; 
 

minicontroller minifft_controller(clk, fftStart, fftDone, adrA, adrB, 
memwr, twiddleAdr); 

 



minitwiddleROM minifft_twiddleROM(clk, twiddleAdr, twiddleFactor1, 
twiddleFactor2); 

 

minibutterfly minifft_butterfly(clk, twiddleFactor1, twiddleFactor2,  
BFUdataAreal,BFUdataBreal, BFUdataAimag, BFUdataBimag, memDataAreal, 

memDataBreal, memDataAimag, memDataBimag); 
 

minimem minifft_mem(clk, memwr, getData, giveData, micData, adrData, 
adrA, adrB, memDataAreal, memDataBreal, memDataAimag, memDataBimag, 

BFUdataAreal, BFUdataBreal, BFUdataAimag, BFUdataBimag, fftOut); 
endmodule 

 

 //need to generate control signals for the fft 
module minicontroller(input logic clk, 

input logic fftStart, 
output logic fftDone, 
output logic [4:0] adrA, 
output logic [4:0] adrB, 
output logic memwr, 
output logic [3:0] twiddleAdr); 

 

logic [31:0] ja, jb, nextja, nextjb; 
logic [31:0] twiddle, nextTwiddle; 
logic nextmemwr, nextfftDone; 
logic [31:0] jcount, icount, nextjcount, nexticount; 
logic [31:0] N = 16'd16; //for 10 bit address: N = 16'd512 
logic [31:0] levels = 16'd5; //for 10 bit address: levels = 16'd10 
 

assign adrA = ja[4:0]; 
assign adrB = jb[4:0]; 
assign twiddleAdr = twiddle[3:0]; 

 

typedef enum logic [2:0] {S0, S1, S2, S3, S4} statetype; 
statetype state, nextstate; 
 

//state advancing logic 
always_ff @(posedge clk) 

begin 

state <= nextstate; 
ja <= nextja; 
jb <= nextjb; 
twiddle <= nextTwiddle; 
jcount <= nextjcount; 
icount <= nexticount; 
memwr <= nextmemwr; 
fftDone <= nextfftDone; 

end 

 



always_comb 

begin 

nextstate = S0; 
case(state) 

S0: //wait for fftStart signal 
begin 

if(fftStart) nextstate = S1; 
else nextstate = S0; 
nextja = 32'b0; 
nextjb = 32'b0; 
nextTwiddle = 32'b0; 
nexticount = 32'b0; 
nextjcount = 32'b0; 
nextmemwr = 1'b0; 
nextfftDone = 1'b0; 

end 

S1: //j-incrementing for loop to generate addresses 
begin 

nextstate = S2; 
nextja = jcount<<1; 
nextjb = nextja+1; 
nextja = 

((nextja<<icount)|(nextja>>(levels-icount)))&32'h1f; //10 bit mask: 3ff 
nextjb = 

((nextjb<<icount)|(nextjb>>(levels-icount)))&32'h1f; //10 bit mask: 3ff 
nextTwiddle = 

((32'hfffffff0>>icount)&32'hf)&jcount; 

nexticount = icount; 
nextjcount = jcount+32'b1; 
nextmemwr = 1'b0; 
nextfftDone = 1'b0; 

end 

S2: //write to mem from newly generated addresses 
begin 

if(jcount <(N)) nextstate = S1; 
else nextstate = S3; 
nextja = ja; 
nextjb = jb; 
nextTwiddle = twiddle; 
nexticount = icount; 
nextjcount = jcount; 
nextmemwr = 1'b1; 
nextfftDone = 1'b0; 

end 

S3: //i incrementing for loop 
begin 

if (icount<(levels-1)) nextstate = S1; 
else nextstate = S4; 



nextja = ja; 
nextjb = jb; 
nextTwiddle = twiddle; 
nexticount = icount+32'b1; 
nextjcount = 0; 
nextmemwr = 1'b0; 
nextfftDone = 1'b0; 

end 

S4: //finished state to assert fftDone 
begin 

nextstate = S0; 
nextja = 32'b0; 
nextjb = 32'b0; 
nextTwiddle = 32'b0; 
nexticount = 32'b0; 
nextjcount = 32'b0; 
nextmemwr = 1'b0; 
nextfftDone = 1'b1; 

end 

endcase 

end 

endmodule 

 

//lookup table for twiddle addresses 
module minitwiddleROM(input logic clk, 

input logic [3:0] twiddleAdr, 
output logic [15:0] twiddleFactor1, 
output logic [15:0] twiddleFactor2); 

always_comb 

case(twiddleAdr) 

4'b0000: 

begin 

twiddleFactor1 = 16'h7fff; 
twiddleFactor2 = 16'h0000; 

end 

4'b0001: 

begin 

twiddleFactor1 = 16'h7d89; 
twiddleFactor2 = 16'h18f9; 

end 

4'b0010: 

begin 

twiddleFactor1 = 16'h7641; 
twiddleFactor2 = 16'h30fb; 

end 

4'b0011: 

begin 

twiddleFactor1 = 16'h6a6d; 



twiddleFactor2 = 16'h471c; 
end 

4'b0100: 

begin 

twiddleFactor1 = 16'h5a82; 
twiddleFactor2 = 16'h5a82; 

end 

4'b0101: 

begin 

twiddleFactor1 = 16'h471c; 
twiddleFactor2 = 16'h6a6d; 

end 

4'b0110: 

begin 

twiddleFactor1 = 16'h30fb; 
twiddleFactor2 = 16'h7641; 

end 

4'b0111: 

begin 

twiddleFactor1 = 16'h18f9; 
twiddleFactor2 = 16'h7d89; 

end 

4'b1000: 

begin 

twiddleFactor1 = 16'h0000; 
twiddleFactor2 = 16'h7fff; 

end 

4'b1001: 

begin 

twiddleFactor1 = 16'he707; 
twiddleFactor2 = 16'h7d89; 

end 

4'b1010: 

begin 

twiddleFactor1 = 16'hcf05; 
twiddleFactor2 = 16'h7641; 

end 

4'b1011: 

begin 

twiddleFactor1 = 16'hb8e4; 
twiddleFactor2 = 16'h6a6d; 

end 

4'b1100: 

begin 

twiddleFactor1 = 16'ha57e; 
twiddleFactor2 = 16'h5a82; 

end 

4'b1101: 



begin 

twiddleFactor1 = 16'h9593; 
twiddleFactor2 = 16'h471c; 

end 

4'b1110: 

begin 

twiddleFactor1 = 16'h89bf; 
twiddleFactor2 = 16'h30fb; 

end 

4'b1111: 

begin 

twiddleFactor1 = 16'h8277; 
twiddleFactor2 = 16'h18f9; 

end 

endcase  

endmodule 

 

//does all of the butterfly operation 
module minibutterfly(input logic clk, 

input logic [15:0] twiddleFactor1, 
input logic [15:0] twiddleFactor2, 
input logic [15:0] BFUdataAreal, 
input logic [15:0] BFUdataBreal, 
input logic [15:0] BFUdataAimag, 
input logic [15:0] BFUdataBimag, 
output logic [15:0] memDataAreal, 
output logic [15:0] memDataBreal, 
output logic [15:0] memDataAimag, 
output logic [15:0] memDataBimag); 

logic [31:0] BrealPostMult, BimagPostMult; 
 

complexMult bfu_cmult(twiddleFactor1, twiddleFactor2, BFUdataBreal,  
BFUdataBimag, 

BrealPostMult, BimagPostMult); 
 

assign memDataAreal = (BFUdataAreal + BrealPostMult[30:15]); //bitshift 
by 15 for twiddle floating point 

assign memDataAimag = (BFUdataAimag + BimagPostMult[30:15]); 
assign memDataBreal = (BFUdataAreal - BrealPostMult[30:15]); 
assign memDataBimag = (BFUdataAimag - BimagPostMult[30:15]);

 

endmodule 

 

 

//multiplying two complex numbers 
module complexMult(input logic [15:0] twiddleFactor1, 

input logic [15:0] twiddleFactor2, 
input logic [15:0] BFUdataBreal, 



input logic [15:0] BFUdataBimag, 
output logic [31:0] BrealPostMult, 
output logic [31:0] BimagPostMult); 

logic signed [15:0] stwiddleFactor1, stwiddleFactor2; //MUST DO SIGNED 
MULTIPLICATION!! 

logic signed [15:0] sBFUdataBreal, sBFUdataBimag; 
logic signed [31:0] sBrealPostMult, sBimagPostMult; 
assign stwiddleFactor1 = twiddleFactor1; 
assign stwiddleFactor2 = twiddleFactor2; 
assign sBFUdataBreal = BFUdataBreal; 
assign sBFUdataBimag = BFUdataBimag; 
assign sBrealPostMult = sBFUdataBreal*stwiddleFactor1 - 

sBFUdataBimag*stwiddleFactor2; //real part 
assign sBimagPostMult = sBFUdataBreal*stwiddleFactor2 + 

sBFUdataBimag*stwiddleFactor1; //imaginary part 
assign BrealPostMult = sBrealPostMult; 
assign BimagPostMult = sBimagPostMult; 

endmodule 

 

//double-addressed memory block 
module minimem(input logic clk, 

input logic memwr, 
input logic getData, 
input logic giveData, 
input logic [15:0] micData, 
input logic [4:0] adrData, 
input logic [4:0] adrA, 
input logic [4:0] adrB, 
input logic [15:0] memDataAreal, 
input logic [15:0] memDataBreal, 
input logic [15:0] memDataAimag, 
input logic [15:0] memDataBimag, 
output logic [15:0] BFUdataAreal, 
output logic [15:0] BFUdataBreal, 
output logic [15:0] BFUdataAimag, 
output logic [15:0] BFUdataBimag, 
output logic [31:0] fftOut); 

logic [31:0] mem[31:0]; //bits 0-15 are real, 16-31 are imaginary 
logic [4:0] adrDatarev; 
assign adrDatarev = {adrData[0], adrData[1], adrData[2], adrData[3], 

adrData[4]}; 

always @(posedge clk) 
begin 

if(getData) //loading values into memory 
begin 

mem[adrDatarev][15:0] <= micData; 
mem[adrDatarev][31:16] <= 16'b0; 
fftOut <= 31'b0; 



BFUdataAreal <= 16'b0; 
BFUdataAimag <= 16'b0; 
BFUdataBreal <= 16'b0; 
BFUdataBimag <= 16'b0; 

end 

else if(giveData) //loading values out of memory 
begin 

fftOut <= mem[adrData]; 
BFUdataAreal <= 16'b0; 
BFUdataAimag <= 16'b0; 
BFUdataBreal <= 16'b0; 
BFUdataBimag <= 16'b0; 

end 

else //using memory for fft 
begin 

fftOut <= 31'b0; 
BFUdataAreal <= mem[adrA][15:0]; 
BFUdataAimag <= mem[adrA][31:16]; 
BFUdataBreal <= mem[adrB][15:0]; 
BFUdataBimag <= mem[adrB][31:16]; 
if(memwr) 

begin 

mem[adrA][15:0] <= memDataAreal; 
mem[adrA][31:16] <= memDataAimag; 
 

mem[adrB][15:0] <= memDataBreal; 
mem[adrB][31:16] <= memDataBimag; 

end 

end 

end 

endmodule 

 


