
Graphical Input Peripheral
Final Project Report

9 December 2016

E155

Charlotte Robinson and Alex Ozdemir

Abstract
Graphs are useful mathematical constructs which can be used to describe
relationships. They’ve been used to model friendship networks, city streets, and
more. However, while graphs are often very visual objects, the way we input them
into computers is not very visual.

We created a system which allows a computer to read the structure of a graph that
a human has physically constructed using our peripheral device.

The system begins a physical board with nodes (screws) and edges (wires) that the
use can connect. An FPGA reads and writes to this board with the help of an ADC
and a few analog multiplexers, ultimately determining the structure of the graph.
The FPGA then sends this information to a Raspberry Pi, which displays the
constructed graph.

Introduction

In graph theory a graph is defined a set of nodes connected by edges which define
relationships between different nodes, as can be observed in the left hand picture
of Figure 1. Graphs like these can be used as powerful modeling tools for a variety
of situations. For example Facebook can be modeled as a graph where people are
nodes and friendships are edges, or the US highway system can be modeled as
graph where cities are nodes and roads are edges, allowing mathematicians and
computer science to view efficient travel as a graph algorithms problem. The
applicability graphs in such a wide variety of applications means that there is a
need for good ways to describe graphs and input them into computers. Right now
a graph is put into a computer using an adjacency matrix like the one seen in the
right panel of Figure 1, or by explicitly enumerating each edge. Although these
textual descriptions of a graph make sense to computers that are far less intuitive
for humans. In our project we aim to address this difficulty by creating a graph
input peripheral that allows a person to input a graph into a computer in a way
that is intuitive for a human.

The graphical input system is uses three main subsystems, as can be seen in the
block diagram in Figure 2: the graphical input device itself, the FPGA which reads
from and writes to the graph input device and uses this information to create an
adjacency matrix, and the Raspberry Pi, which displays the adjacency matrix as a
graph and can calculate and display the shortest distance between two nodes
inputted by the user. The graph and an A/D converter are connected using an
analog circuit. The A/D converter sends voltage information to the FPGA via SPI.
The FPGA is connected to the PI also via SPI. The SPI displays the graph through a
HDMI connection to a monitor. Each of these subsystems, as well as the analog
circuit will be described in further detail in the following sections.

New Hardware: A Graph Input Peripheral

The graph input peripheral is a hybrid mechanical and electronic device. From the
perspective of the user, the board is mechanical: It consists of 19 nodes

(represented by long screws) arranged as an isometric lattice, which can be

connected to each other via physical edges with clips on either end. That is, the
user see something like what is shown in Figure 3.

However, the graphical in peripheral is also a electronic device. The nodes are not
just screws - they are electric terminals that can have voltages written to them
and read from them. Furthermore, they are connect via pulldown resistors to
ground. The edges are not just physical edges, they are electrical connections with
some known resistance. The scanning circuit on the FPGA interacts with the
graphical input peripheral as an electronic system in order to infer which
connections exist. To detect whether some v is connected to some u, the FPGA
writes high to v, floats u, and write low to the rest of the nodes. There are two
cases: either v and u are directly connected, or they are not. Both cases are shown
in Figure 4.

First we consider the case on the left: when the two nodes are indeed connected.
Given that the “edge” resistors and the pulldown resistors have the same
resistance, the voltage V’ of the blue node is given by where n+2 is the numberV

n+2
other nodes V’ is connected to. In the case that the two nodes, are not connect, the
voltage at V’ is clearly 0.

Thus, by using a tree of analog multiplexers to connect an Analog to Digital
Converter (ADC) to the blue node, we can distinguish V/(n+2) from 0, and thus
determine whether the edge exists or not. Since we only have 19 nodes, the
maximum value of n is 18, and we need only distinguish V/20 from zero, which we
do by setting the threshold voltage to be V/32.

Schematics
The graph input peripheral is connected to the FPGA via an analog circuit. As can
be seen in the Appendix 4 this analog circuit works by tying together the write
nodes from the FPGA, which will be writing 3.3 V, ground or z to the node, to the
wires which will be being read from. This means that the read wire will be reading
the voltage that each node. These nodes are also connected to ground through 2.7
kOhm pull down resistors, which prevent an unconnected node from shorting to

the FPGA when high is being written to it. The resistance of the pulldown resistor
is the same as that of the resistive edge wires. We selected this since we calculated
that having the same resistance for our edges and pull down resistors did not
affect our ability to detect edges and allowed us to keep are resistors as small as
possible, which minimized the the time constant of our circuit without burning
out the FPGA. There are twenty nodes in total, each are connected to one write
node of the FPGA.

The twenty read wires were connected to the FPGA through an 8-channel
multiplexer tree made up of three multiplexers and an ADC. The first eight nodes,
nodes 0-7, are connected to a bottom level multiplexer whose output goes to
channel four of the top-level multiplexer, and the next eight, nodes 8-15, went to
a second bottom multiplexer whose output is connected to channel five of the top
level multiplexer. The last four nodes, node 16-19, went directly into channels
0-3 of the top level multiplexer, whose output went to a A/D converter on the
FPGA. Which node was read into the into then A/D converter is controlled by six
wires coming from the FPGA, three of which controlled the output of the top level
multiplexer, and three of which control the output of the two bottom level
multiplexers. The values of the wires are determined by the FPGA.

FPGA Design
In the graph input device system the FPGA’s main job is to write values to the
nodes of the graph input device and then take in the resulting voltage values from
the A/D converter, use this information to determine connectivity and then send
an adjacency matrix, showing accurate connectivity, to the Pi. The inputs and
outputs of the main system can be seen in Table 1.

Scanner
The modules that controls the operation of the graph input device is the scanner
module. The scanner, the modules inside of it and the modules connected to it can
be seen in Appendix 5. This scanner calls a the ADC SPI, adc_spi, to request data
and passes this information to a higher level module, to be placed in memory at an
address also specified by scanner. It also sets the values of mux_con and w_node.
Which address in memory that the data should populate and what values are
assigned to mux_con and w_node are determined by the module triple_counter,
which is called from scanner. Triple scanner also determines when values are
written to memory and when information from the ADC is requested.

Triple_counter controls three clocks. The first is a fast clock which updates at
every clock cycle and acts a delay, to guarantee that the value of the z node of the
graph is not read until we are confident that all the electrical signals have fully
propagated through the circuit. To do this the adc_read enable is connected to
this clock and does not go high until the fast counter has achieved some value,
which we set conservatively at 40,000. Fast counter is reset when the adc_read
done goes high signaling the the voltage value of the node of interest has
successfully reached the FPGA and the connectivity determination is about to be
written to memory. This guarantees that the voltages being written the nodes of
the graph input device do not change until the ADC is finished The second clock is
is updated when fast counter is reset and represents the node which z will be
written to and which will be written to. This is no is modules with number of
nodes, so it will not exceed this value. When medium counter is equal to the total
number of nodes slow, meaning that every nodes has been read, slow counter is
updated. This counter represent the node which high will be written and also will
not exceed the total number of nodes in the device. When slow counter has
reached the total number of nodes, all the connections in the graph will have been
read.

Assuming that fast counter is approximately 40,000 clock cycles long and the
graph as twenty nodes we find that to read the entire graph we must write high to
20 nodes, for each of these z must be written to 20 nodes, and each of the
combinations of z and high will be maintained for approximately 40,000 clock
cycles, so to read in the entire input periphery takes (20)*(20)*(40,000) =
16*10^6 clock cycles, and since the FPGA runs a 40 MHz clock, this is about
(16*10^6)/(40*10^6) = 0.4 sec. Which is a relatively long time, however since the
scanner runs constantly, updating memory with correct values, but the user
interface only updates when requested by the user this delay is likely to go
unnoticed. Additionally, if necessary, this delay can likely be reduced by
decreasing the amount of wait cycles before the ADC is read, since we found, using
an oscilloscope, that the time constants for out circuit are on the order of
milliseconds, well below the time allowed by the 40,000 clock cycles delay.

SPI
After values have been written to memory they can be read from memory
whenever requested, by the Pi SPI. the verilog code governing the SPI is relatively
simple since the FPGA is the slave to the PI, however some modification where
necessary to make the SPI work effectively with memory. Most notably, when the
Pi SPI is updating it locks write access the the memory, so that memory values can
not be being changed by the scanner and read simultaneously.

Input Description Bit
width

Output Description Bit
Width

adc_mi
so

Master in slave
out, coming
from the ADC

8 bits w_node 20 bits each
writing ground,
3.3 V or z to a
node on the input
device

20 bits

pi_cs chip select
coming from
the Pi

1 bit mux_co
n

Bits that control
which nodes
voltage is being
read by the ADC.

6 bits

pi_sclk Sclk coming
from the Pi

1 bit adc_cs chip select going
to the ADC

1 bit

pi_mos
i

Master out
slave in
coming from
the Pi

8 bits adc_mo
si

Master Out Slave
In going to the
ADC

8 bits

 adc_scl
k

Sclk coming from
the ADC

1 bit

 pi_miso Master in slave
out going to the
PI

8 bits

 Table 1: FPGA I/O

Microcontrollers Design
The microcontroller (Pi) runs two programs: one responsible for communication
with the FPGA, and the other responsible for controlling the Graphical User
Interface (GUI).

Communication between the Pi and FPGA

The program which interacts with the FPGA is written in C and uses memory
mapping to control the SPI0 peripheral which is wired to the FPGA. The FPGA
implements SPI and satisfies the following communication convention:

1. Both master and slave write on the falling edge and read on the rising edge.

2. CS idles high, and communication must occur which CS is low.
3. When CS is low, if the FPGA receives a 1, it will begin sending a 20x20 bit

adjacency matrix during the next cycle of the SPI clock. As the matrix
contains 400 bits, this will take 400 cycles.

a. The matrix elements are enumerated in row-major order.
b. If a another one is sent during matrix transmission, transmission

restarts.
4. Whenever a matrix is not being transmitted, the FPGA sends 0s.

The following figure illustrates an example communication sequence between the
PI and FPGA:

The C program is compiled to a standalone binary which outputs an adjacency
matrix received from the FPGA on standard output. It uses the EasyPIO.h header to
interact with the SPI0 peripheral which is wired to the FPGA. During execution the
program

1. Sets CS low.
2. Sends/receives the byte 0x01 to the FPGA, and disregards what it receives.
3. Sends/receives the byte 0x00 50 times, and stores that 400 bits it receives

as a 20x20 adjacency matrix.
4. Sets CS high.
5. Prints out the matrix with contiguous rows that are separated from one

another by newlines.
After this the program exits.

This program runs with super-user permissions, is located at
/usr/local/bin/matrix, and can be run by root and pi.

The Graphical User Interface
The Pi also runs a python program which provides a GUI using Python 3 bindings
to C++’s Qt5 library. These bindings can be installed under the apt package
“python3-qt5”.

The GUI (shown in Figure 5) features the following:

1. A “Read Graph” button which
uses the “matrix” program to
get the current graph.

2. Instructions explaining that
left-clicking a node sets it as the
start node for graph search and
right-clicking a node sets it as
the end node for graph search

3. A “Run Search” button which
starts graph search.

a. The search is a Depth First
Search which is slowed
down to explore one edge
each second.

4. A visualization of the inputted
graph, with colors which change
as the graph search is executed

The graph is drawn using Qt5’s
QPainter class, which provides an
immediate mode graphics API: an API
which allows for elements such as
lines, arcs, and polygons to be drawn
sequentially in terms of parameters
associated with them given in pixel units.

However, most application-level logic is done not in terms of pixels, but in terms
of an isometric coordinate system with coordinate vectors where points, ee1 2 e1
from node 9 to node 4, and points from node 9 to node 5. The most complexe2
logic is that which determines how much an edge should arc to avoid intersecting
nodes that are not its endpoints.

Consider nodes v and u, with isometric coordinates v and u. Let d be v - u. It can
be shown that, for a convex configuration of nodes with integral coordinates, a
straight edge between v and u would intersect other nodes if and only if the
components of d are not relatively prime. Furthermore, if they are not relatively
prime, the number of intersected nodes is given by the greatest common divisor
(GCD) minus 1. If such a straight edge would intersect another node, then the edge
is drawn as a quadratic bezier curve instead. The distance the curve arcs away
from the line between the nodes is directly proportional to the number of
intersected nodes and inversely proportional to the distance between the uv line
and the next line parallel to uv that intersects other nodes. Which direction the arc
goes is determined by the parity of the GCD.

https://www.khanacademy.org/computing/computer-science/algorithms/breadth-first-search/a/the-breadth-first-search-algorithm
https://www.khanacademy.org/computing/computer-science/algorithms/breadth-first-search/a/the-breadth-first-search-algorithm
https://doc.qt.io/qt-5/qpainter.html

As an example of this, consider nodes u=0 and v=18. d , so the GCD is 4,4, 0)= (
indicating there are 3 other nodes intersected by uv, which is drawn in red. The
next parallel line which intersects nodes is drawn in blue.

The graph search is executed by having the application do one “operation” per
second, where an operation is defined as visiting a single edge. The current state
of the search is maintained between operations as a queue of edges to visit, and
mapping from nodes and edges to their state (visited, not visited, etc.). The
operations are triggered asynchronously using a Qt5 QTimer, so that search does
not cause the GUI to become unresponsive.

Results
The manufactured system (Figure
8) is capable of correctly reading
undirected graphs on 19 vertices
with no more than 50 edges, most
of the time. While we had planned
to have 20 nodes, after clearing it
with Professor Spenser we chose to
only put 19 nodes on our board,
because the layout looked nicer.
The system is still configured for
20 nodes though, the last one just
isn’t used.

The FPGA asynchronously detects
the addition and removal of edges, taking up to 0.4 seconds to notice a change. It
reports its current idea of the current graph to the Pi when requested, with a
latency of less than 0.5 ms.

We experienced intermittent failures to detect edges in the graph, and while these
were dramatically mitigated by switching the positions of our analog multiplexers,
we do not understand their root cause. Analog issue caused the most difficulty in
our design process, particularly the multiplexers, which exhibited some
unexpected behaviour, and error with timing when the circuit did not settle before
we measured.

Future Work
During our investigations we encountered a number of questions related to circuit
analysis and algorithm design, which we believe to be open. They concern resistor

http://doc.qt.io/qt-5/qtimer.html

networks where all nodes are externally accessible, but the presence of a resistor
between two nodes cannot be directly observed. We call these resistors internal
resistors .

1. If all internal resistors have some known resistance, can the structure of the
network be computed from only the equivalent resistances between nodes?

2. Does there exist a polynomial time algorithm for computing this structure?
3. If the internal resistors have resistances from some set, what properties

must this set have for the structure of the graph to be exactly computable
from only equivalent resistances?

4. What properties must it have for there to be a polynomial time algorithm
for performing this computation?

We suspect, but do not know that the answer to the first question is “yes”. The
answer to these questions might enable graph input devices to be constructed
differently.

References
1. Qt5 C++ Documentation. Accessed 4 December 2016.
2. Breadth First Search. Khan Academy.

Parts List
1. (100, $12) iExcell Silver Tone Metal Alligator Clip Crocodile Clamps
2. (19) ¼ x20 x 4.5” Carriage screws (stockroom)
3. (57) ¼ x20 knuts
4. (38) ¼” washers
5. Raspberry Pi
6. µMudd Board with FPGA and ADC
7. (5, $6.02) Analog Multiplexer 8:1 TI, CD4051BE
8. Wires

Appendices

1. Verilog Code
//
// proj.sv
// e155 Microprocessors
// 10 November 2016

// Charlotte Robinson and Alex Ozedmir
// cwrobinson@hmc.edu, aozdemir@hmc.edu
///

///
// proj
// Top level module of proj calls the memory, the scanner,
// spi, the spi connecting to pi
///
module proj(input logic clk,

input logic adc_miso,
output logic adc_mosi,
output logic adc_sclk,
output logic adc_ncs,
output logic [19:0] w_node,
output logic [7:0] led_array,
input logic pi_mosi,
output logic pi_miso,
input logic pi_sclk,
input logic pi_en,
output logic [5:0] mux_con,
output logic adc_done,
output logic adc_enable
);

logic mem_w_en;
logic mem_lock;
logic [8:0] mem_w_addr;
logic [8:0] mem_r_addr;
logic mem_w_data;
logic mem_r_data;
logic [7:0] mem_out;

memDst memDst(.clk(clk),

.w_en(mem_w_en),

.lock(mem_lock),

.w_addr(mem_w_addr),

.r_addr(mem_r_addr),

.w_data(mem_w_data),

.r_data(mem_r_data),

.mem_out(mem_out));

scanner Scanner(.clk(clk), .adc_miso(adc_miso),

 .adc_mosi(adc_mosi), .adc_sclk(adc_sclk),
 .adc_ncs(adc_ncs), .w_node(w_node),
 .mem_w_en(mem_w_en),

.mem_w_addr(mem_w_addr),
 .mem_w_data(mem_w_data),

.mux_con(mux_con), .adc_done(adc_done), .adc_enable(adc_enable));

spi Spi(.pi_mosi(pi_mosi),
 .pi_miso(pi_miso),
 .pi_sclk(pi_sclk),
 .mem_lock(mem_lock),

 .mem_r_addr(mem_r_addr),
 .pi_en(pi_en),
 .mem_r_data(mem_r_data));

assign led_array = mem_out;

endmodule

//
// spi
// Spi to the raspberry pi
// Changes miso on posedge of sclk.
// Reads from mosi on posedge of sclk.
// So pi must write/read on negedge, and wait one bit after sending it's signal.
///
module spi(input logic pi_mosi,

input logic pi_en,
 output logic pi_miso,
 input logic pi_sclk,
 output logic mem_lock,
 input logic mem_r_data,
 output logic [8:0] mem_r_addr);

logic last_pi_mosi;
counter512sat C(.clk(pi_sclk), .counter(mem_r_addr), .reset(last_pi_mosi));
assign mem_lock = ~pi_en & (pi_mosi || (mem_r_addr < 9'd400)); // 20 * 20
always_ff@(posedge pi_sclk)

last_pi_mosi <= pi_mosi;
assign pi_miso = mem_r_data;

endmodule

// Saturating counter with reset

module counter512sat(input logic clk,
 output logic [8:0] counter,
 input logic reset);

//initial counter = 9'b111_000_000;
always_ff @ (negedge clk)

if (reset)
counter <= 0;

else if (counter < 9'b111_111_111)
counter <= counter + 1;

endmodule

///
// scanner
// controls the values being written read to from the nodes
// of the graphical interface
///
module scanner(input logic clk,

input logic adc_miso,
output logic adc_mosi,
output logic adc_sclk,
output logic adc_ncs,
output logic [19:0] w_node,
output logic mem_w_en,
output logic [8:0] mem_w_addr,
output logic mem_w_data,
output logic [5:0] mux_con,
output logic adc_done,
output logic adc_enable);

logic[4:0] high_node;
logic[4:0] read_node;
logic[31:0] write_delay;
logic counter_continue;

//logic adc_enable;
//logic adc_done;
logic [9:0] adc_data;

initial adc_done=1;

adc_read ADCR(.clk(clk), .sclk(adc_sclk),

.mosi(adc_mosi),

.miso(adc_miso),

.ncs(adc_ncs),

.data(adc_data),

.enable(adc_enable),

.done(adc_done)
);

mux_control Mux(.read_node(read_node), .mux_con(mux_con));

triple_counter Triple(.clk(clk),

.slow_counter(high_node),

.med_counter(read_node),

.fast_counter(write_delay),

.fast_counter_continue(counter_continue),

.slow_med_counter_cap(5'd20));

node_w_control Writer(.nw(w_node), .hn(high_node), .rn(read_node), .cnt(write_delay));

assign adc_enable = (write_delay >= 32'd40_000);

assign mem_w_en = adc_done & adc_enable;
assign mem_w_data = adc_data > 10'b00_0010_0000;
assign mem_w_addr = (high_node * 20) + read_node;
assign counter_continue = adc_done;

endmodule

///
// mux_control
// control the values being written to mux_con based on the value of the
// input read node
///
module mux_control(input [4:0] read_node,

output [5:0] mux_con);
assign mux_con[5:3] = read_node[2:0];
assign mux_con[2] = (read_node < 16);
assign mux_con[1] = (read_node==18) || (read_node==19);
assign mux_con[0] = (read_node == 17) || (read_node == 19) || ((read_node > 7) &

(read_node < 16));
endmodule

///
// triple_counter
// controls timing of the counter, and keeps track of high and read nodes

//
module triple_counter(input logic clk,

output logic [31:0] fast_counter,
output logic [4:0] med_counter,
output logic [4:0] slow_counter,
input logic fast_counter_continue,
input logic [4:0] slow_med_counter_cap);

logic temp;
logic [4:0] next_med;
logic [4:0] next_slow;
assign next_med = (fast_counter_continue & (fast_counter != 0)) + med_counter;
assign next_slow = (next_med == slow_med_counter_cap) + slow_counter;

initial med_counter=0;
initial slow_counter=0;
initial fast_counter=0;

always_ff @ (posedge clk)
begin

fast_counter <= (fast_counter_continue) ? 32'b0 : fast_counter + 1;
med_counter <= next_med % slow_med_counter_cap;
slow_counter <= next_slow % slow_med_counter_cap;

end

endmodule

//
// node_w_control
// sets value for the w_node, here call nw, based on the input values
// for high_node, read_node and counter. all nodes are set briefly to ground
// before writing so the the mux has time to change, fixing some observed errors
///
module node_w_control(output logic [19:0] nw, // w_node

 input logic [4:0] hn, // high_node
 input logic [4:0] rn,// read_node
 input logic [31:0] cnt);

always_comb
if (cnt > 500)
begin

nw[0] = (hn == 0) ? 1'b1 : (rn == 0) ? 1'bz : 1'b0;
nw[1] = (hn == 1) ? 1'b1 : (rn == 1) ? 1'bz : 1'b0;
nw[2] = (hn == 2) ? 1'b1 : (rn == 2) ? 1'bz : 1'b0;
nw[3] = (hn == 3) ? 1'b1 : (rn == 3) ? 1'bz : 1'b0;

nw[4] = (hn == 4) ? 1'b1 : (rn == 4) ? 1'bz : 1'b0;
nw[5] = (hn == 5) ? 1'b1 : (rn == 5) ? 1'bz : 1'b0;
nw[6] = (hn == 6) ? 1'b1 : (rn == 6) ? 1'bz : 1'b0;
nw[7] = (hn == 7) ? 1'b1 : (rn == 7) ? 1'bz : 1'b0;
nw[8] = (hn == 8) ? 1'b1 : (rn == 8) ? 1'bz : 1'b0;
nw[9] = (hn == 9) ? 1'b1 : (rn == 9) ? 1'bz : 1'b0;
nw[10] = (hn == 10) ? 1'b1 : (rn == 10) ? 1'bz : 1'b0;
nw[11] = (hn == 11) ? 1'b1 : (rn == 11) ? 1'bz : 1'b0;
nw[12] = (hn == 12) ? 1'b1 : (rn == 12) ? 1'bz : 1'b0;
nw[13] = (hn == 13) ? 1'b1 : (rn == 13) ? 1'bz : 1'b0;
nw[14] = (hn == 14) ? 1'b1 : (rn == 14) ? 1'bz : 1'b0;
nw[15] = (hn == 15) ? 1'b1 : (rn == 15) ? 1'bz : 1'b0;
nw[16] = (hn == 16) ? 1'b1 : (rn == 16) ? 1'bz : 1'b0;
nw[17] = (hn == 17) ? 1'b1 : (rn == 17) ? 1'bz : 1'b0;
nw[18] = (hn == 18) ? 1'b1 : (rn == 18) ? 1'bz : 1'b0;
nw[19] = (hn == 19) ? 1'b1 : (rn == 19) ? 1'bz : 1'b0;

end
else

nw = 20'b0;
endmodule

//
// inner_mem
// memory to which connectivity values are written to and read from
//
module inner_mem(input logic clk,

 input logic [8:0] addr,
 input logic w_data,
 output logic r_data,
 input logic w_en,
 output [7:0] mem_out);

logic mem[511:0];

assign r_data = mem[addr];

always_ff@(posedge clk) begin

if(w_en)
mem[addr] <= w_data;

end

assign mem_out[7] = mem[380];
assign mem_out[6] = mem[360];
assign mem_out[5] = mem[340];

assign mem_out[4] = mem[320];
assign mem_out[3] = mem[60];
assign mem_out[2] = mem[40];
assign mem_out[1] = mem[20];
assign mem_out[0] = mem[0];

endmodule

//
// memDst
// a wrapper around the main memory, determines which address will be written to
or read from
// and whether write is enabled, based on lock from the pi spi and w_en from scanner
///
module memDst(input logic clk,

 input logic w_en,
 input logic lock,
 input logic [8:0] w_addr,
 input logic [8:0] r_addr,
 input logic w_data,
 output logic r_data,
 output [7:0] mem_out);

logic inner_w_en;
logic [8:0] inner_addr;

assign inner_w_en = w_en & ~lock;
always_comb

case ({w_en, lock})
2'b00: inner_addr = r_addr;
2'b10: inner_addr = w_addr;
2'b01: inner_addr = r_addr;
2'b11: inner_addr = r_addr;
default: inner_addr = 9'bx;

endcase

inner_mem IM(.clk(clk),
 .addr(inner_addr),
 .w_data(w_data),
 .r_data(r_data),
 .w_en(inner_w_en),
 .mem_out(mem_out));

endmodule

///
// adc_read
// SPI control for the adc
///
module adc_read(input logic clk,
 output logic sclk,

 output logic mosi,
 output logic ncs,
 input logic miso,
 output logic [9:0] data,
 input logic enable, // edge
 output logic done); // edge

logic [31:0] counter;
logic [9:0] spi_register;
logic [9:0] next_spi_reg;
logic sclk_negedge;
logic sclk_posedge;
logic enable_posedge;
logic [31:0] next_counter;
logic [9:0] next_spi_reg2;

initial counter=0;

clock_mult CM(.clk(clk), .sclk(sclk));

neg_edge NE(.clk(clk), .wave(sclk), .pulse(sclk_negedge));
pos_edge PE(.clk(clk), .wave(sclk), .pulse(sclk_posedge));
pos_edge PE2(.clk(clk), .wave(enable), .pulse(enable_posedge));

always_ff @ (posedge clk)
begin

if (sclk_negedge)
begin

mosi <= spi_register[9];
end

counter <= next_counter;
spi_register <= next_spi_reg;

done <= enable ? ((counter >= 5'd16) ? 1'b1 : done) : 1'b0;

if (counter == 5'd16 && ~done)

data <= spi_register;

end

assign next_spi_reg2 =

 sclk_posedge ? {spi_register[8:0], miso} :
 spi_register;

assign next_spi_reg = enable ? next_spi_reg2 : {10'b0110100000};

assign next_counter = enable ? (sclk_posedge ? counter + 1 : counter) : 32'b0;

assign ncs = ~(enable&~done);

endmodule

///
//neg_edge
// a negative edge dectector that outputs a pulse when a negative
// edge is connected
//
module neg_edge(input logic clk,

 input logic wave,
 output logic pulse);

logic last_wave;

initial last_wave=0;

always_ff @ (posedge clk)
begin

last_wave = wave;
end

assign pulse = (last_wave != wave) && ~wave;

endmodule

///
//pos_edge
// a positive edge dectector that outputs a pulse when a postive

// edge is connected
//
module pos_edge(input logic clk,

 input logic wave,
 output logic pulse);

logic last_wave;

initial last_wave=0;

always_ff @ (posedge clk)
begin

last_wave <= wave;
end

assign pulse = (last_wave != wave) && wave;

endmodule

///
// counter5b
// a five bit counter
//
module counter5b(input logic clk,

 input logic reset,
 output logic [4:0] counter);

initial counter=0;

always_ff @ (posedge clk)

if (reset)
counter <= 5'b0;

else
counter <= counter + 1;

endmodule

///
// clock_mult
// a slow clock used by the adc spi
//
module clock_mult(input logic clk,

 output logic sclk);
logic [4:0] counter;

counter5b c5b(.clk(clk), .reset(1'b0), .counter(counter));

assign sclk = counter[4];

endmodule

2. Python Program (GUI)
#!/usr/bin/env python3

"""

author: Alex Ozdemir <aozdemir@hmc.edu>

date: December 2016

File: main.py

"""

import math, sys, random

from PyQt5.QtWidgets import QWidget, QApplication, QPushButton, QVBoxLayout, QHBoxLayout, QLabel

from PyQt5.QtGui import QPainter, QColor, QPen, QPainterPath, QBrush

from PyQt5.QtCore import Qt, QTimer

import itertools as it

import operator as op

import subprocess

import queue

from copy import deepcopy

It turns out that Raspian's version of Python3 (3.4) puts `gcd` in fractions

rather than math. For this reason, if `gcd` isn't in math, we put it there.

if not hasattr(math, 'gcd'):

 import fractions

 math.gcd = fractions.gcd

Various vector operations. Let V be a vector space. Let R be the reals.

def vadd(a, b):

 ''' Vector sum of `a`, `b` in V '''

 return tuple(map(op.add, a, b))

def vdiff(a, b):

 ''' Vector difference of `a`, `b` in V '''

 return tuple(map(op.sub, a, b))

def vscale(a, s):

 ''' The vector `a` in V scaled by `s` '''

 return tuple(map(lambda x: x * s, a))

def vmag(a):

 ''' The magnitude of vector `a` in R^n '''

 return math.sqrt(sum(map(lambda x: x * x, a)))

def isomag(a):

 ''' The magnitude of a vector in 2D isometric coordinate (coordinate

 vectors separated by pi/3) '''

 # Law of cosines (with the knowledge that the coordinates are at pi/3)

 return math.sqrt(a[0] *a[0] + a[1] * a[1] + a[0] * a[1])

def vrot(a, theta):

 ''' Vector `a` in R^2, rotated by `theta` radians '''

 cos = math.cos(theta)

 sin = math.sin(theta)

 return (cos * a[0] - sin * a[1], cos * a[1] + sin * a[0])

During graph search, nodes have different states. These constants encode

them. These constant also determine what color a node is.

NORMAL_NODE = 1 # Node has not been visited by search

VISITED_NODE = 2 # Node has been visited by search

SOURCE_NODE = 3 # Node is the source of the search

TARGET_NODE = 4 # Node is the target of the search

Similarly, these constants encode edge state during search

NO_EDGE = 0 # This edge does not exist in the graph

UNVISITED_EDGE = 1 # This edge has not been visited by search

PATH_EDGE = 2 # This edge has been visited, and is part of a shortest

 # path from the source to some other node

VISITED_EDGE = 3 # This edge has been visited, but is not part of a shortest

 # path

class GraphWidget(QWidget):

 def __init__(self, parent):

 super().__init__(parent)

 self.N = 19

 self.adj_mat = [[0 for i in range(self.N)] for j in range(self.N)]

 self.searching = False

 self.initCoordinates()

 self.initPensAndBrushes()

 self.initSearch()

 def initSearch(self):

 ''' Initializes some variables needed to run seach. Should only be

 called during construction '''

 self.startNode = None

 self.endNode = None

 self.resetSearch()

 def resetSearch(self):

 ''' Reset the search so that _no_ nodes or edges have been visited '''

 self.edgeStatus = deepcopy(self.adj_mat)

 self.nodeStatus = [NORMAL_NODE for i in range(self.N)]

 if self.startNode is not None:

 self.nodeStatus[self.startNode] = SOURCE_NODE

 if self.endNode is not None:

 self.nodeStatus[self.endNode] = TARGET_NODE

 self.parents = [None for i in range(self.N)]

 self.queue = queue.Queue()

 self.queue.put((None, self.startNode))

 self.enqueued = set()

 def step(self):

 ''' Runs a single step in the search algorithm -- exploring just one

 edge. Uses a breadth-first-search algorithm '''

 if self.queue.qsize() == 0:

 self.searching = False

 else:

 (start, end) = self.queue.get()

 if self.nodeStatus[end] == TARGET_NODE:

 self.parents[end] = start

 for (i, j) in it.product(range(self.N), repeat=2):

 if self.edgeStatus[i][j] == PATH_EDGE:

 self.edgeStatus[i][j] = VISITED_EDGE

 cursor = end

 while cursor != self.startNode:

 p = self.parents[cursor]

 self.edgeStatus[cursor][p] = self.edgeStatus[p][cursor] = PATH_EDGE

 cursor = p

 self.searching = False

 elif self.nodeStatus[end] in [NORMAL_NODE, SOURCE_NODE]:

 if start is not None: # Aka if this isn't the first step of the search

 self.edgeStatus[end][start] = self.edgeStatus[start][end] = PATH_EDGE

 self.nodeStatus[end] = VISITED_NODE

 self.parents[end] = start

 for n in range(self.N):

 if end != n and \

 self.edgeStatus[end][n] in [UNVISITED_EDGE, TARGET_NODE] and \

 (end, n) not in self.enqueued:

 self.enqueued.add((end, n))

 self.enqueued.add((n, end))

 self.queue.put((end, n))

 elif self.nodeStatus[end] == VISITED_NODE:

 self.edgeStatus[end][start] = self.edgeStatus[start][end] = VISITED_EDGE

 else:

 raise Exception("NODE STATE IS UNKNOWN")

 def initCoordinates(self):

 ''' Initializes all variables related to:

 * mapping nodes indexes [0, 18] to isometric coordinates

 * mapping isometric coordinates to pixel coordinate

 See the paper for more information on the isometric coordinate system

 and its use. '''

 # Maps node indices to isometric coordinates

 self.node_i_to_coord = [

 (2, 0),

 (2, -1),

 (2, -2),

 (1, 1),

 (1, 0),

 (1, -1),

 (1, -2),

 (0, 2),

 (0, 1),

 (0, 0),

 (0, -1),

 (0, -2),

 (-1, 2),

 (-1, 1),

 (-1, 0),

 (-1, -1),

 (-2, 2),

 (-2, 1),

 (-2, 0)]

 assert len(self.node_i_to_coord) == self.N

 # The pixel projections of the isometric coordinate vectors

 self.LEN_SCALE = 100

 self.e1 = vrot((self.LEN_SCALE, 0), 3 * math.pi / 6)

 self.e2 = vrot((self.LEN_SCALE, 0), 5 * math.pi / 6)

 # The pixel-space center of the graph

 self.c = (int(self.LEN_SCALE * 2.5), int(self.LEN_SCALE * 2.5))

 def initPensAndBrushes(self):

 ''' Initializes all the pens and brushes which control how nodes and

 edges of different types are drawn '''

 self.EDGE_BORDER = 1.

 self.EDGE_WIDTH = 4.

 self.NODE_R = 10

 self.NODE_BORDER = 2.5

 # Nodes

 # The border for all nodes

 self.nodePen = QPen(Qt.black)

 self.nodePen.setWidthF(self.NODE_BORDER)

 # Diferent interiors

 self.nodeBrush = QBrush(Qt.darkGreen)

 self.startNodeBrush = QBrush(Qt.red)

 self.endNodeBrush = QBrush(Qt.blue)

 self.visitedNodeBrush = QBrush(Qt.yellow)

 # Edges

 # The border for all nodes

 self.edgePenBorder = QPen(Qt.black)

 self.edgePenBorder.setWidthF(self.EDGE_WIDTH + 2 * self.EDGE_BORDER)

 # Different interiors

 self.edgePen = QPen(Qt.cyan)

 self.edgePen.setWidthF(self.EDGE_WIDTH)

 self.visitedEdgePen = QPen(Qt.yellow)

 self.visitedEdgePen.setWidthF(self.EDGE_WIDTH)

 self.pathEdgePen = QPen(Qt.darkRed)

 self.pathEdgePen.setWidthF(self.EDGE_WIDTH)

 def setGraph(self, adj_mat):

 ''' Changes the graph (& resets search)'''

 self.adj_mat = adj_mat

 self.resetSearch()

 def toPixels(self, coords):

 ''' Scales `coords` into pixel units '''

 return vadd(vscale(self.e1, coords[0]), vscale(self.e2, coords[1]))

 def getPixel(self, coords):

 ''' Turns `coords` into a vector indicating a pixel location on the

 screen '''

 return vadd(self.toPixels(coords), self.c)

 def drawEdges(self, qp):

 ''' Draws all edges '''

 for (i, j) in it.combinations(range(self.N), 2):

 if self.adj_mat[i][j] == 1:

 self.drawEdge(qp, i, j)

 def drawEdgeLine(self, qp, ix, iy, jx, jy, pen):

 ''' Draws a line from `(ix, iy)` to `(jx, jy)` using the default edge

 border, and `pen` for the interior of the edge '''

 qp.setPen(self.edgePenBorder)

 qp.drawLine(ix, iy, jx, jy)

 qp.setPen(pen)

 qp.drawLine(ix, iy, jx, jy)

 def drawEdgeQuad(self, qp, ix, iy, cx, cy, jx, jy, pen):

 ''' Draws a quadratic bezier curve from `(ix, iy)` to `(jx, jy)`

 controlled by `(cx, cy)` using the default edge border and `pen` for

 the interior of the edge '''

 qp.setPen(self.edgePenBorder)

 path = QPainterPath()

 path.moveTo(ix, iy)

 path.quadTo(cx, cy, jx, jy)

 qp.drawPath(path)

 qp.setPen(pen)

 path = QPainterPath()

 path.moveTo(ix, iy)

 path.quadTo(cx, cy, jx, jy)

 qp.drawPath(path)

 def getEdgePen(self, i, j):

 ''' Determines the correct pen (color) for the edge from `i` to `j` '''

 if self.edgeStatus[i][j] == UNVISITED_EDGE:

 return self.edgePen

 elif self.edgeStatus[i][j] == PATH_EDGE:

 return self.pathEdgePen

 elif self.edgeStatus[i][j] == VISITED_EDGE:

 return self.visitedEdgePen

 else:

 raise Exception('EDGE CODE IS UNKNOWN')

 def drawEdge(self, qp, i, j):

 ''' Draws an edge from `i` to `j` using painter `qp` '''

 # See the Final Report for a discussion of how we determine how much an edge

should be curved.

 self.assert_is_node(i)

 self.assert_is_node(j)

 icoord = self.node_i_to_coord[i]

 jcoord = self.node_i_to_coord[j]

 (ix, iy) = self.getPixel(icoord)

 (jx, jy) = self.getPixel(jcoord)

 diff = vdiff(jcoord, icoord)

 gcd = abs(math.gcd(diff[0], diff[1]))

 pen = self.getEdgePen(i, j)

 if gcd == 1:

 # Draw a straight edge

 self.drawEdgeLine(qp, ix, iy, jx, jy, pen)

 else:

 # Draw a curved edge

 half = vscale(diff, 0.5)

 control_l = float(gcd) / (isomag(diff) * math.sqrt(3))

 mult = control_l * (1 if gcd % 2 == 1 else -1)

 control_diff = vrot(self.toPixels(vscale(diff, mult * control_l)), math.pi/2)

 (cx, cy) = vadd(self.getPixel(vadd(icoord, half)), control_diff)

 self.drawEdgeQuad(qp, ix, iy, cx, cy, jx, jy, pen)

 def assert_is_node(self, i):

 assert type(i) == int and i >= 0 and i < self.N

 def getNodeBrush(self, i):

 ''' Determines the correct pen (color) for the node `i` '''

 if self.nodeStatus[i] == NORMAL_NODE:

 return self.nodeBrush

 elif self.nodeStatus[i] == SOURCE_NODE:

 return self.startNodeBrush

 elif self.nodeStatus[i] == TARGET_NODE:

 return self.endNodeBrush

 elif self.nodeStatus[i] == VISITED_NODE:

 return self.visitedNodeBrush

 else:

 raise Exception('NODE CODE IS UNKNOWN')

 def drawNode(self, qp, i):

 ''' Draw the node `i` '''

 self.assert_is_node(i)

 qp.setBrush(self.getNodeBrush(i))

 (x, y) = self.getPixel(self.node_i_to_coord[i])

 qp.drawEllipse(x - self.NODE_R, y - self.NODE_R, 2 * self.NODE_R, 2 * self.NODE_R)

 qp.drawText(x + self.NODE_R, y, str(i))

 def drawNodes(self, qp):

 ''' Draws all nodes '''

 qp.setPen(self.nodePen)

 for i in range(self.N):

 self.drawNode(qp, i)

 def click_node_i(self, event):

 ''' Returns which node was click (the node's indexed) if any. Otherwise

 returns `None` '''

 ecoord = (event.x(), event.y())

 for i in range(self.N):

 d = vmag(vdiff(self.getPixel(self.node_i_to_coord[i]), ecoord))

 if d < 11:

 return i

 return None

class Window(QWidget):

 def __init__(self):

 super().__init__()

 self.initUI()

 self.timer = QTimer()

 self.timer.timeout.connect(lambda: self.doSearchStep())

 self.timer.start(1000)

 def paintEvent(self, e):

 ''' Repaints the GUI '''

 # HACK:

 # For some reason I don't yet understand, `paintEvent` only seems to

 # run for the main window, not sub-widgets. To get around this, this

 # window's paint event creates a painter that it then passes to the

 # GraphWidget. The GraphWidget uses this painter to draw the graph in

 # the coordinate system of the main window (rather than its own

 # coordinate system). If the graph is moved out of the upper-left hand

 # corner, this will stop working.

 qp = QPainter()

 qp.begin(self)

 self.graphWidget.drawEdges(qp)

 self.graphWidget.drawNodes(qp)

 qp.end()

 def setStartNode(self, i):

 ''' Sets `i` to the start node for search, if possible '''

 if self.graphWidget.endNode != i:

 self.startNode = i

 self.graphWidget.startNode = i

 self.graphWidget.resetSearch()

 self.repaint()

 def setEndNode(self, i):

 ''' Sets `i` to the end node for search, if possible '''

 if self.graphWidget.startNode != i:

 self.endNode = i

 self.graphWidget.endNode = i

 self.graphWidget.resetSearch()

 self.repaint()

 def mousePressEvent(self, event):

 ''' On mouse presses that occur on a node, left clicks cause that node

 to become the source and right clicks cause that node to become the

 target '''

 node_i = self.graphWidget.click_node_i(event)

 if node_i is not None:

 if event.button() == Qt.LeftButton:

 self.setStartNode(node_i)

 elif event.button() == Qt.RightButton:

 self.setEndNode(node_i)

 super().mousePressEvent(event)

 def initUI(self):

 self.setGeometry(100, 100, 600, 600)

 self.setWindowTitle('Graph Input')

 self.graphWidget = GraphWidget(self)

 self.readGraphButton = QPushButton('Read Graph')

 self.readGraphButton.clicked.connect(self.readMatrix)

 self.runSearchButton = QPushButton('Run Search')

 self.runSearchButton.clicked.connect(self.startSearch)

 hbox = QHBoxLayout()

 hbox.addWidget(self.readGraphButton)

 hbox.addStretch(1)

 hbox.addWidget(QLabel('''

 Left-click to set the (red) starting node.

 Right-click to set (blue) ending node.

 Hit "Run Search" to do Djikstra's!

 '''))

 hbox.addStretch(1)

 hbox.addWidget(self.runSearchButton)

 vbox = QVBoxLayout()

 vbox.addWidget(self.graphWidget)

 vbox.addStretch(1)

 vbox.addLayout(hbox)

 self.setLayout(vbox)

 self.show()

 self.readMatrix()

 self.repaint()

 def readMatrix(self):

 ''' Gets a new adjancency matrix and repaints the graph '''

 self.graphWidget.setGraph(self.get_adjacency_matrix())

 self.repaint()

 def startSearch(self):

 ''' Starts the search (assuming the source and target have been set,

 otherwise it does nothing) '''

 print('search')

 self.graphWidget.resetSearch()

 self.graphWidget.searching = True

 def doSearchStep(self):

 ''' If search is still in progress, executes one step '''

 if self.graphWidget.searching:

 self.graphWidget.step()

 self.repaint()

 def get_adjacency_matrix(self):

 ''' Spins up a child process which runs the `matrix` program to get the

 adjacency matrix '''

 p = subprocess.Popen(['matrix'], stdout=subprocess.PIPE,

 stderr=subprocess.PIPE,

 universal_newlines=True)

 out, _ = p.communicate()

 lines = out.split('\n')

 matrix = [[int(c) for c in l] for l in lines]

 print('\n'.join(lines))

 return matrix

if __name__ == '__main__':

 app = QApplication(sys.argv)

 ex = Window()

 sys.exit(app.exec_())

3. C Program (SPI Interface from the Pi)
// Alex Ozdemir <aozdemir@hmc.edu>

// Charlotte Robinson

// matrix.c

// 4 December 2016

//

// Helpers

//

#include <stdio.h>

#include "easypio.h"

const char *byte_to_binary(char x)

{

 char z;

 int i;

 static char b[9];

 b[9] = '\0';

 for (z = 0b10000000, i = 0; z > 0; z >>= 1, i++)

 {

 b[i] = ((x & z) == z) ? '1' : '0';

 }

 return b;

}

//

// Main

//

void main(void) {

 char in[50];

 char matrix[20][21];

 int i, j, r, c, Nout;

 unsigned char k;

 Nout = 19;

 for (i = 0; i < 20; i++) {

 matrix[i][21] = '\0';

 }

 pioInit();

 spiInit(244000, 0);

 // Transfer

 SPI0CSbits.TA = 1;

 spiSendReceive(0b00000001);

 for (i = 0; i < 50; i++) {

 in[i] = spiSendReceive(0);

 }

 SPI0CSbits.TA = 0;

 // Reformat

 for (i = 0; i < 50; i++) {

 for (k = 0x80, j = 0; j < 8; j++, k >>= 1) {

 r = (i * 8 + j) / 20;

 c = (i * 8 + j) % 20;

 matrix[r][c] = (k & in[i]) ? '1' : '0';

 }

 }

 // Print

 for (i = 0; i < Nout; i++) {

 for (j = 0; j < Nout; j++) {

 printf("%c", matrix[i][j]);

 }

 printf("\n");

 }

}

4. Circuit Schematic (On the breadboard)

5. Circuit Schematic (On the FPGA)

