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Abstract: Multi-robot control system requires accurate position tracking and path planning for each robot.              
This project prototypes a closed-loop robot control system using Raspberry Pi and a small-scale              
differential-drive robot using FPGA. Communication is established between the station and the robot             
using XBee RF transceivers. Destination input is acquired from the user using a web server with a html                  
page, and the robot’s state is observed using a webcam. Prototyping results are successful, and the control                 
system successfully moves the robot to a given waypoint destination. 
 
  

 



Introduction 
Robot control systems come in vastly varying shapes, sizes, and designs. Some involve just a 

single, independent robot, while others may involve many acting independently. A setup that is useful for 
multi-robot control systems involves a central control system that controls many small and simple robots 
at the same time. Such a system requires accurate position tracking and path planning for each robot. This 
project aims to prototype a single robot version of this system, using a Raspberry Pi to make a waypoint 
planner for a differential-drive robot controlled by an FPGA board. 
 

 
Figure 1. System block diagram with control station on the left and robot on the right. 

 
The project has two main systems: the control station and the robot. The primary function of the 

control station is to accept user input from the web server and extract video stream from the overhead 
camera to determine how the robot should move. Then, the control station encodes and sends the 
corresponding instructions to the robot using an XBee transmitter. Power is supplied to the servo and 
FPGA on robot using two 3.7-volt lithium polymer (LiPo) batteries connected in series. The primary 
functions of the FPGA on the robot are to receive the data using a UART peripheral interface, to decode 
the received data, and to generate PWM signals. The PWM signals then control the servo rotations. 
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Figure 2. The differential drive robot with two color tags (green and blue patches) on the top. These color 

tags are used by the camera to find the position of the robot.  

New Hardware 
A pair of XBee wireless communicators is used in this project to establish communication 

between the Raspberry Pi and FPGA board. The XBee wireless communicators use Radio Frequency 
(RF) to established a point-to-point communication with ZigBee wireless protocol.  

In addition, XBee has a RS232 serial interface, and is therefore compatible with standard UART 
protocol. In this project, an XBee is deployed at the control station, and the other XBee is mounted on the 
breadboard on a differential drive robot. Each XBee requires 3.3V supply voltage, and the current draw is 
approximately 40mA.  
 

 
Figure 3. Front (left) and back (middle) of an XBee module. USB adapter board (right) for XBee. 

 
The XBee adapter board is necessary to use XBee because the pitch of an XBee pin is 0.079 

inches, which is different than the pitch of a standard breadboard (0.1 inch). Two adapter board is used in 
this project. The first adapter board has a USB to UART converter in order to plug into Raspberry Pi’s 
USB port. The second adapter board is used to plug into the standard breadboard. On the robot, the 
DOUT pin of XBee is used as TX line in UART. Thus, DOUT is connected to the RX pin on the FPGA 
board.  

The XBee needs to be configured properly using the provided software XCTU. Within XCTU, 
both XBees need to be configured to have the same PAN ID in order to establish network connection.  

Two FS90R continuous servos are used to move the robot. The servo is capable of turning with a 
max speed of 120 rotations per minute (RPM).  

A standard 20 ms PWM is used for servo control. The servo is normally at rest, which 
corresponds to a pulse of 1.5 ms. The servo turns forward when the pulse is longer than 1.5 ms, and turns 
backward when the pulse is shorter than 1.5 ms. Figure _ shows the pulse and angle relationship for a 
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standard servo. For a continuous speed controlled servo, the angle in the diagram can be substituted with a 
rotation direction (90 degrees corresponds to rest, 180 to forward, 0 to backward). 

 

 
Figure 4. Servo control signals 

Schematics 
The schematic of the robot’s circuit design is shown in Figure 5.  
 

 
Figure 5. Schematic for the differential-drive robot. The electrical part of the robot consists of two servos, a voltage 

regulator, an XBee, and a MuddPi FPGA board.  
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Microcontroller Design 
The microcontroller (Raspberry Pi) is responsible for the following tasks: (1) read data from the 

overhead camera for image processing, (2) host a web server and a html page for user input and video 
display, and (3) calculate robot position and send servo control signal. The following subcomponents are 
written in C and C++ to achieve the above tasks.  

Image Processing:​ The Raspberry Pi is connected to a Logitech C615 Webcam used as an 
overhead camera. The OpenCV Library is used to read, store, and process the image feed from the 
webcam. First, the video feed is read into the program in a series of RGB (Red, Green, Blue) images. 
Every RGB image is then converted to an HSV image (Hue, Saturation, and Value) for thresholding. 
Meanwhile, a mouse click callback method is used to record the HSV values of any clicked pixel, which 
are then used as the thresholding baseline. A delta value of 30 is subtracted from and added to the 
baseline HSV values to obtain a low bound and a high bound. These two bounds are used to threshold the 
image such that all the other colors will be filtered except the color close to the color of the clicked pixel. 
Then, the biggest contour of the thresholded image is found, and the centroid of the biggest contour is 
recorded as the position of a specific color tag. Two different color tags on the robot are used to construct 
the robot vector that represents the position and orientation of the robot.  

Web Interface:​ The web interface is constructed using the Apache2 web server and a html page. 
There are two web forms on the page that allow the user to enter the x and y pixel coordinate, ranging 
from 0-639 for x and 0-479 for y. A CGI based C script is used to process the user input. This user input 
is passed into the robot controller program using a TCP socket established between two processes. In 
addition, an live camera feed is displayed onto the webpage using a temporary jpeg file created by 
OpenCV and a library called MJPG-Streamer. In addition, when user’s mouse hovering over the image, 
the coordinate of the image is displayed in real-time onto the webpage using a JavaScript program 
embedded in the html.  

USB Driver: ​A C program is constructed using the termios library to write bytes into the XBee 
through USB serial port. A termios struct is filled to set the serial writing to 1 start bit, 1 stop bit, no 
parity, 8 bit per packet, and 9600 Hz baud rate. 

Data Encoder: ​The left wheel and right wheel state is encoded in the 8-bit signal transfer from 
the Raspberry Pi to FPGA. For each 8-bit data packet, the left wheel movement is encoded in the 5th and 
6th bit, and the right wheel movement is encoded in the 3rd and the 4th bit. The data encoding is shown in 
the table below. Noted that the right servo is installed in the flipped orientation of the left servo, and as a 
result the forward and backward controls are the opposite of the left servo control. A byte of char type 
data with the corresponding values for each instruction will be used to represent the data and sent to the 
USB driver.  
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Left Wheel Movement Stationary Forward Backward 

Binary 11 01 10 

 

Robot Movement Binary Decimal ASCII HEX 

Stationary 00 11 11 00 60 ‘<’ 3C 

Turning right 00 01 01 00 20 ‘DC4’ 14 

Turning left 00 10 10 00 40 ‘(‘ 28 

Move forward 00 01 10 00 24 ‘CAN’ 18 

Table 1. Data encoding for each 8-bit data signal controlling two servos.  
 
Robot Controller:​ When a user enters a coordinate on the web page, the robot controller will 

receive the input from the established TCP socket from the CGI C script. Then, the controller constructs a 
path vector from the point of robot’s current position and the point of destination. The robot controller 
calculates the angle between the robot vector obtained from the two color tags and the path vector. In 
addition, the robot controller calculated the length of path vector to obtain the distance between robot and 
destination. Then, the controller sends controls signals to robot to turn left/right to keep the angle between 
two vectors within and . If the angle is within the range, the robot controller will send the5 7 ° 05 1 °  
moving forward signal to robot. Finally, when the robot controller detected that the length of path vector 
is less than 30 pixels, it sends a stop signal to robot to notify that the robot has reached the destination.  

FPGA Design 
The FPGA's hardware is designed to accomplish the following tasks: (1) receive data from the 

XBee transmitter using UART protocol, (2) decode the data into control signals for the servos, and (3) 
generate two pulse width modulation signals to drive the servos. It accomplishes this using 3 different 
modules: a clock generator, a UART receiver, and a motor driver. 

Before the rest of the FPGA system can be designed, an appropriate clock rate must be chosen 
and generated using the FPGA's native 40 MHz clock. There are two main timings that need to be 
considered when picking a clock rate: the 9600 baud UART receiver and the 20 ms PWM cycle. A clock 
rate 16 times faster than the 9600 baud rate would allow the UART receiver to sample the signal 16 times 
per bit transferred, as well as time the PWM cycle almost exactly. Thus, a clock rate of 153.6 kHz was 
chosen. The clock is implemented using an 18-bit counter that counts by decimal 63 each cycle of the 
native 40 MHz clock, resulting in a 153.6 kHz clock in the 14th bit of the counter. This clock signal is 
then used to drive the UART receiving module and PWM signal generating module. It should be noted 
that the true clock rate generated using this approach does not come out to exactly 153.6 kHz, but differs 
by about 0.0085% per cycle. This is an error that is tolerable in both UART and PWM. 
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Figure 6. State transition diagram of the UART receiver FSM. 

 
The UART receiver reads in data from an asynchronous data wire coming into an FPGA input pin 

from the XBee transmitting pin. It decodes the received packets and outputs each received 8-bit data 
packet to the motor driver. The set data format for this UART transmission is 1 start bit, 8 data bits, 1 stop 
bit, and no parity bit, a 10-bit packet overall. The receiver is implemented using a 4-state finite state 
machine (FSM) running on the 153.6 MHz clock. The 4 states are as follows: idle (S0), start (S1), data 
read (S2), and stop (S3). The FSM behaves as follows. It remains at S0 until the receiving line drops to 
the starting bit, at which point it immediately transitions to S1 and begins a counter. It waits until halfway 
through the start bit, where it transitions to S2. From here, it samples the data line halfway between each 
bit transition, minimizing risk of sampling the data line on a transition edge. After 8 samples, it transitions 
to S3 and waits for the full data packet to finish transitioning before it outputs the complete data packet to 
the storage register and returns to idle, S0. Note that the data is stored in a register to prevent incomplete 
data from being output. 
 

 
Figure _. Example simulation of UART receiver. 

 
Lastly, each of the two motor drivers accomplishes the task of decoding the data and forming the 

PWM signal. The 8-bit packet is made of two 2-bit confirmation markers on the ends of the packet, and 
two 2-bit instructions on the inner bits. The 3rd and 4th bits go to the right servo, while the 5th and 6th 
bits go the left servo. Each instruction pair takes on one of three possible values: 11 for stop, 10 for 
clockwise rotation, and 01 for counterclockwise. After grabbing the correct pair, a new FSM is used to 
generate the PWM signal. This FSM simply "bounces" in between two states S0 and S1, output high and 
output low, respectively. The FSM begins on S0 (transmitting high), and waits for the right amount of 
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time before transitioning to S1 (transmitting low). Depending on the instruction, this period can be 1.0, 
1.5, or 2.0 ms long (respectively CCW, stop, and CW). The FSM then transitions to S1 and finishes out 
the 20 ms period before returning to S0. A full 20 ms cycle is exactly 3072 cycles on the 153.6 kHz clock. 
Further, if a new instruction must be read, it will not read until the timed pulse is over and the state is S1, 
to prevent contamination of the current instruction data. Two of these signals are output from FPGA 
output pins to the data wire of the two servos. 

Overall, a clock generator, UART receiver, and two motor driver modules are used to receive and 
decode data from the XBee, and then use the data to drive two servos, thus wirelessly moving the robot 
according to specific instructions. 
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Results 
The system is performing as expected. When a user input a coordinate from the web interface, the 

robot will move towards the input position. Although the robot sometimes deviate from the designated 
path due to servo difference, the controller will quickly correct the robot orientation.  

The most difficult FPGA module to design was the UART peripheral interface. While simply 
implementing a receiver that runs on a 9600 Hz clock is relatively simple, making the data acquisition 
robust and consistent required some more work. The trouble with simply running the FSM at the same 
speed as the data transfer and sampling each clock cycle is that there’s a very certain possibly that the 
receiver will sample on a transition of the data transmission line. Thus, in order to prevent that, we 
decided to create an FSM with the ability to time its samples at the middle of each bit received. This 
involved overhauling the original, simple FSM to use a clock 16 times faster than the original, and 
creating new FSM control signals that were more timing specific compared to the older design. While the 
new signals took a significant amount of time to design and work out, we were eventually successful in 
creating a UART sampler that receives data with much more integrity than before. 

One of the difficulty encountered during the microcontroller design was the controller for the 
differential-drive robot. Because Raspberry Pi needs to handle the computationally intensive image 
processing module, the time it takes to complete a while loop in main function varies, and sometimes 
could be as high as 200ms. This is an undesirable behavior because it implies that the time interval for 
updating the servo command varies, and sometime is high. The robot will execute the previous command 
for a long time before the next controller command is available. Since the servo runs at around 100 RPM 
with a 6.4 inch diameter wheel, instability could occur. One example of instability is that robot will rotate 
right for about 360 degree, and then the robot will rotate left for about 360 degree and repeats. The way 
we solve for the instability problem is to intentionally delay 5 ms when one signal is sent, and then send a 
stop signal. As a result, the robot only move for 5 ms, and then it stops and waits for next command.  

This project has successfully met most of the deliverables listed in the proposal. Some difference 
between the project proposal and the final reports are the SPI and input methods. The SPI peripheral 
originally proposed was changed to UART because of the XBee hardware constraints. The proposal also 
listed “a sequential waypoint queue” as the form of input; however, the actual implementation did not 
include this this part due to both the miscommunication and an unnecessary project overhead.  
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Parts List 
 

Name Source Number Price ea. Item 
Total 

XBee Zigbee Series 2 Sparkfun 2 $22.95 $45.90 

Robot Chassis Adafruit 
(Pre-purchased) 

1 $0 $0 

Raspberry Pi Provided 1 $0 $0 

FPGA (MuddPi Board) Provided 1 $0 $0 

XBee Explorer Dongle Sparkfun 
(Pre-purchased) 

1 $0 $0 

XBee Adapter Sparkfun 
(Pre-purchased) 

1 $0 $0 

FS90R Continuous Servo Sparkfun 
(Salvaged from 
old projects) 

2 $0 $0 

3.7V 1200mAh Li-Po Battery Adafruit 
(Salvaged from 
old projects) 

2 $0 $0 

DPDT Mechanical Switch  Stockroom 1 $0 $0 

Logitech C615 Webcam Borrowed from 
Prof. Dodds’s Lab 

1 $0 $0 

LM7805 5V Voltage Regulator Stockroom 1 $0 $0 

Total    $45.90 
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Appendices 
 
Microcontroller code: 
/* 
 * File Name: positionCapture.cpp 
 * Author: Yi Yang and Wenkai Qin 
 * Date: Dec. 8. 2016 
 * Intro: This file is the main program for the Robot WayPoint Planner 
 *        project. It contains the the image processing module, robot 
 *        module, and data encoder module. 
 *        Image processing part of this program uses OpenCV to read, 
 *        store, and modify the image and extract the color tags on 
 *        the robot. 
 *        The robot controller uses the position returned from 
 *        the image processing module to calculate robot's current 
 *        position, and uses the user web input to find the angle difference 
 *        and the distance between the robot and the destination. 
 *        Date encoder module will choose the correct encoded message to 
 *        send to the USB driver module.  
 */ 
 
#include "writeToUSB.hpp" 
#include <iostream> 
#include <math.h> 
#include <string> 
// This is a message queue library used for IPC 
// It builds a TCP socket between two processes 
#include <zmq.hpp> 
#include <list> 
#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/objdetect/objdetect.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
#include <opencv2/core/core.hpp> 
 
#define FACE_TOWARDS 1 
#define FACE_BACKWARDS 0 
 
using namespace cv; 
using namespace std; 
// Define color threashold global 
int lowH_b = 0; 
int highH_b = 255; 
int lowS_b = 0; 
int highS_b = 255; 
int lowV_b = 0; 
int highV_b = 255; 
 
int lowH_g = 0; 
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int highH_g = 255; 
int lowS_g = 0; 
int highS_g = 255; 
int lowV_g = 0; 
int highV_g = 255; 
 
const int deltaHSV = 30; 
// This flag is used to specify if a new coordinate has been issued and not reached 
bool newDest = false; 
// Control command 
const char STATIONARY = 60; 
const char TURN_RIGHT = 20; 
const char TURN_LEFT = 40; 
const char MOVE_FORWARD = 24; 
const char MOVE_BACKWARD = 36; 
 
struct MouseParam { 
    Mat img; 
    Point pt; 
    int color; 
}; 
 
Point findColorCenter(Mat &imgThresholded) { 
    vector< vector<Point> > contours; 
    vector<Vec4i> hierarchy; 
    // First, find the contours of this image... 
    findContours( imgThresholded, contours, hierarchy, CV_RETR_EXTERNAL, 
CV_CHAIN_APPROX_SIMPLE,Point(0, 0) ); 
 
    if (contours.size() == 0) { 
        return Point(-1, -1); 
    } 
 
    double biggestContourArea = 0; 
    vector<Point> biggestContour = *(contours.begin()); 
    // Find the biggest contours among all of them 
    for (vector< vector<Point> >::iterator it = contours.begin(); it != 
contours.end(); ++it) { 
        double area = contourArea(*it); 
        if (biggestContourArea < area) { 
            biggestContourArea = area; 
            biggestContour = *it; 
        } 
    } 
    // Draw a bounding rectangle around the biggest contour 
    Rect rec = boundingRect(biggestContour); 
    // Find the center of this rectangle 
    Point center = Point( rec.x+rec.width/2, rec.y+rec.height/2 ); 
    return center; 
} 
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Mat thresholdImage(Mat frame, int color) { 
 
    Mat frameHSV, imgThresholded; 
    cvtColor(frame, frameHSV, COLOR_BGR2HSV); 
 
    if (color == 1) { 
        inRange(frameHSV, Scalar(lowH_b, lowS_b, lowV_b), Scalar(highH_b, highS_b, 
highV_b), imgThresholded); 
    } 
    else { 
        inRange(frameHSV, Scalar(lowH_g, lowS_g, lowV_g), Scalar(highH_g, highS_g, 
highV_g), imgThresholded); 
    } 
    return imgThresholded; 
} 
 
void onMouse(int event, int x, int y, int flags, void* param) { 
 
    Mat frameHSV; 
    MouseParam* info = (MouseParam*) param; 
    int H, S, V; 
    cvtColor(info->img, frameHSV, COLOR_BGR2HSV); 
    Vec3b pixel = frameHSV.at<Vec3b>(y, x); 
    H = (int) pixel[0]; 
    S = (int) pixel[1]; 
    V = (int) pixel[2]; 
    if (event == 1) { 
        // left click: it's blue 
        lowH_b = H - deltaHSV; 
        highH_b = H + deltaHSV; 
        lowS_b = S - deltaHSV; 
        highS_b = S + deltaHSV; 
        lowV_b = V - deltaHSV; 
        highV_b = V + deltaHSV; 
        cout << "Blue: the HSV values are: H: "; 
        cout << H << " S: " << S << " V: " << V << endl; 
    } 
    else if (event == 2) { 
        // right click: it's green 
        lowH_g = H - deltaHSV; 
        highH_g = H + deltaHSV; 
        lowS_g = S - deltaHSV; 
        highS_g = S + deltaHSV; 
        lowV_g = V - deltaHSV; 
        highV_g = V + deltaHSV; 
        cout << "Green: the HSV values are: H: "; 
        cout << H << " S: " << S << " V: " << V << endl; 
    } 
} 
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struct Angle { 
    int orientation; 
    double theta; 
}; 
 
Angle findAngle(Point pt1, Point pt2, Point dest) { 
    // pt2 is green center 
    // pt1 is blue center 
    Angle ang; 
    double rVec_x = (double) pt2.x - (double) pt1.x; 
    double rVec_y = (double) pt2.y - (double) pt1.y; 
 
    Point mid = Point((pt2.x + pt1.x)/2, (pt2.y + pt1.y)/2); 
 
    double dVec_x = (double) mid.x - dest.x; 
    double dVec_y = (double) mid.y - dest.y; 
 
    double rVecAbs = sqrt(pow(rVec_x,2) + pow(rVec_y,2)); 
    double dVecAbs = sqrt(pow(dVec_x,2) + pow(dVec_y,2)); 
    if (rVecAbs == 0 || dVecAbs == 0) { 
        cout << "Divided by zero!" << endl; 
        ang.theta = 0; 
        ang.orientation = FACE_TOWARDS; 
        return ang; 
    } 
    // Find the robot angle 
    double angle = acos(((rVec_x * dVec_x) + (rVec_y * dVec_y)) / 
        (rVecAbs * dVecAbs)); 
    ang.theta = angle; 
 
    // Use cross product to find robot orientation relative to the destination 
    double crossProduct = rVec_x * dVec_y - rVec_y * dVec_x; 
    if (crossProduct >= 0) { 
        ang.orientation = FACE_BACKWARDS; 
    } 
    else { 
        ang.orientation = FACE_TOWARDS; 
    } 
    return ang; 
} 
 
double findDistance(int dst_x, int dst_y, Point robot) { 
    double sumDistSq = pow((double)robot.x - (double)dst_x, 2) + pow((double)robot.y - 
(double)dst_y, 2); 
    return sqrt(sumDistSq); 
} 
 
void turn(int fd, const char* c) { 
    // Turn for 5 ms 

14 



    writeByte(c, fd); 
    delayMillis(5); 
    // And then stop 
    writeByte(&STATIONARY, fd); 
} 
 
bool controller( Angle ang, double dist, int fd, list<bool> &thetaCheck) { 
    if (!newDest) { 
        // If no newDest is given by the web interface, just exit the controller. 
        return false; 
    } 
    double theta = ang.theta * 180 / PI; 
    // rotation control 
    char command = 60; // default to stop 
 
    if (dist < 50) { 
        newDest = false; 
        writeByte(&STATIONARY, fd); 
    cout <<"The distance is: " << dist << endl; 
    cout <<"The angle is: " << theta << endl; 
    printf("The command is: %d\n", command); 
        return false; 
    } 
 
    bool flag = false; 
    for (list<bool>::iterator it = thetaCheck.begin(); it != thetaCheck.end(); ++it) { 
        flag = *it; 
        if (!flag) { 
            break; 
        } 
    } 
 
    if (ang.orientation == FACE_TOWARDS) { 
        // if robot angle is less then 75 
        if (theta < 75) { 
            // Turn right 
            turn(fd, &TURN_RIGHT); 
        } 
        else if (theta > 105) { 
            // Turn left 
            turn(fd, &TURN_LEFT); 
        } 
        else { 
            // Move Forward 
            if (flag) { 
                writeByte(&MOVE_FORWARD, fd); 
                delayMillis(20); 
                writeByte(&STATIONARY, fd); 
            } 
            // Otherwise, don't do anything. 
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            return true; 
        } 
    } 
    else { 
        if (theta <= 90) { 
            // Turn right 
            turn(fd, &TURN_RIGHT); 
        } 
        else { 
            // Turn left 
            turn(fd, &TURN_LEFT); 
        } 
    } 
    return false; 
} 
 
int main() { 
    // Setup serial usb 
    int fd = setupUSB(); 
    if (fd < 0) { 
        cout << "Invalid USB-XBee connection" << endl; 
    } 
    // Setup camera 
    VideoCapture cap(0); 
    if (!cap.isOpened()) { 
        cout << "Cannot open the video cam" << endl; 
        return -1; 
    } 
    // Setup tcp socket to use message queue for IPC 
    zmq::context_t context(1); 
    zmq::socket_t socket(context, ZMQ_REP); 
    socket.bind("tcp://*:5555"); 
    zmq::message_t request; 
    string destPosBuf; 
    // Destionation coordinate 
    int dst_x = 0; 
    int dst_y = 0; 
 
    // Setup mouse callback and window display 
    MouseParam param; 
    Mat frame, imgThresholdedBlue, imgThresholdedGreen; 
 
    namedWindow("Video_Capture", CV_WINDOW_AUTOSIZE); 
    setMouseCallback("Video_Capture", onMouse, &param); 
 
    list<bool> thetaCheck(3, false); 
 
    while (true) { 
        // Try to receive any message sent from the client side 
        try { 
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            socket.recv(&request, ZMQ_DONTWAIT); 
            destPosBuf = string(static_cast<char*>(request.data()), request.size()); 
            zmq::message_t reply(3); 
            memcpy(reply.data(), "Rec", 3); 
            // Send reply to confirm with client 
            socket.send(reply); 
            sscanf(destPosBuf.c_str(), "x-pos=%d&y-pos=%d", &dst_x, &dst_y); 
            // Set the new destination to be true, enter the controller 
            newDest = true; 
        } 
        // If no message, deal with the error and continue 
        catch (zmq::error_t e) {} 
 
        bool frameLoaded = cap.read(frame); 
        if (!frameLoaded) { 
            cout << "Frame is not loaded correctly" << endl; 
            break; 
        } 
 
        param.img = frame; 
        imgThresholdedBlue = thresholdImage(frame, 1); 
        imgThresholdedGreen  = thresholdImage(frame, 2); 
 
        // Find the center for each color tag 
        Point blueCenter = findColorCenter(imgThresholdedBlue); 
        Point greenCenter = findColorCenter(imgThresholdedGreen); 
 
        // Find destination point and robot pos 
        Point dst = Point(dst_x, dst_y); 
        Point mid = Point((greenCenter.x + blueCenter.x)/2, (greenCenter.y + 
blueCenter.y)/2); 
        // Find distance between robot and destination 
        double dist = findDistance(dst_x, dst_y, mid); 
        // Find angle between robot vector and destination vector 
        Angle ang = findAngle(blueCenter, greenCenter, dst); 
        // Finally, time to send control signal... 
        bool angleCheck = controller(ang, dist, fd, thetaCheck); 
        thetaCheck.push_back(angleCheck); 
        thetaCheck.pop_front(); 
 
        line(frame, blueCenter, greenCenter, Scalar(165, 206, 94), 1, 8, 0); 
        if (newDest) { 
            line(frame, mid, dst, Scalar(255, 255, 0), 1, 8, 0); 
        } 
        imshow("Video_Capture", frame); 
 
        vector<int> compressionParams; 
        compressionParams.push_back(CV_IMWRITE_JPEG_QUALITY); 
        compressionParams.push_back(30); 
        // Store the temp jpg file for video streaming 
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        imwrite("/tmp/video/img.jpg", frame, compressionParams); 
 
        // If keypress is esc for >30ms, exit the program 
        if (waitKey(30) == 27) { 
            cout << "Exit the program" << endl; 
            break; 
        } 
    } 
    // Clean up.. 
    tearDownUSB(fd); 
    return 0; 
} 
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/* 
 * File Name: readInputCoordinate.c 
 * Author: Yi Yang and Wenkai Qin 
 * Date: Dec. 8. 2016 
 * Intro: This file is the CGI program for the Robot WayPoint Planner 
 *        project. It contains the the web input cgi C script to receive 
 *        and parse the user input, and then send the user input to 
 *        the positionCapture.cpp program. 
 *        It uses sscanf to parse the inputs, and later used a message queue 
 *        to send the data to the main program through a TCP socket. 
 */ 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <unistd.h> 
#include <zmq.h> 
 
int main() { 
    char *lenstr; 
    char *input = malloc(30); 
    int len, x_pos, y_pos; 
 
    void *context = zmq_ctx_new(); 
    void *requester = zmq_socket(context, ZMQ_REQ); 
    zmq_connect(requester, "tcp://localhost:5555"); 
 
    printf("%s%c%c\n","Content-Type:text/html;charset=iso-8859-1",13,10); 
    lenstr = getenv("CONTENT_LENGTH"); 
    if (lenstr == NULL || sscanf(lenstr, "%d", &len) != 1) { 
        printf("<P>Invalid input!"); 
    } 
    else { 
        fgets(input, len+1, stdin); 
        sscanf(input, "x-pos=%d&y-pos=%d", &x_pos, &y_pos); 
        printf("<p> X: %d, Y: %d\n\n", x_pos, y_pos); 
    } 
    char buffer[3]; 
    zmq_send(requester, input, 30, 0); 
    zmq_recv(requester, buffer, 3, 0); 
    printf("<p> Rec Msg: %s\n\n", buffer); 
 
    zmq_close(requester); 
    zmq_ctx_destroy(context); 
    printf("<META HTTP-EQUIV=\"Refresh\" CONTENT=\"0;url=/robotcontrol.html\">"); 
    free(input); 
    return 0; 
} 
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20 



/* 
 * File Name: writeToUSB.hpp 
 * Author: Yi Yang and Wenkai Qin 
 * Date: Dec. 8. 2016 
 * Intro: This file is the USB driver module of the Robot Waypoint Planner 
 *        project. It uses a termios struct to set up the serial setting to 
 *        1 start bit, 1 stop bit, no parity, 8-bit packet size, and 9600HZ 
 *        baud rate. 
 *        Then, it provides a writeByte function for the external program to 
 *        write a byte into the specific port. 
 */ 
 
// This piece of code is inspired by the answer on stack overflow 
// www.stackoverflow.com/questions/6947413 
 
#include <stdio.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <termios.h> 
#include <errno.h> 
#include <stdlib.h> 
#include <string.h> 
#include "EasyPIO.h" 
 
int set_interface_attribs(int fd, int speed) { 
    struct termios tty; 
    tcgetattr(fd, &tty); 
 
    cfsetospeed(&tty, (speed_t) speed); 
    cfsetispeed(&tty, (speed_t) speed); 
 
    tty.c_cflag |= (CLOCAL | CREAD); 
    tty.c_cflag &= ~CSIZE; 
    tty.c_cflag |= CS8; 
    tty.c_cflag &= ~PARENB; 
    tty.c_cflag &= ~CSTOPB; 
    tty.c_cflag &= ~CRTSCTS; 
 
    tty.c_cc[VMIN] = 1; 
    tty.c_cc[VTIME] = 1; 
 
    tcsetattr(fd, TCSANOW, &tty); 
    return 0; 
} 
 
int setupUSB() { 
    char *portname = "/dev/ttyUSB0"; 
    int fd; 
 
    fd = open(portname, O_RDWR | O_NOCTTY | O_SYNC); 
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    if (fd < 0) { 
        printf("Error opening %s: %s\n", portname, strerror(errno)); 
        return -1; 
    } 
    set_interface_attribs(fd, B9600); 
    pioInit(); 
    return fd; 
} 
 
void tearDownUSB(int fd) { 
    close(fd); 
    return; 
} 
 
void writeByte(const char *b, int fd) { 
 
    write(fd, b, 1); 
    tcdrain(fd); 
    return; 
} 
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FPGA Code: 
 
// Wenkai Qin, Jack Yang 
// E155 Fall 2016 
 
// final_project.sv 
// Top-level module. 
 
// creset and reset for testing with ModelSim. 
module final_project(input  logic clk, /*creset, reset,*/ 

input  logic rx, 
output logic [7:0] data, 
output logic lpwm, rpwm) ; 

logic bck, sck; 
assign creset = 1'b0; 
assign reset = 1'b0; 
clk_gen clkgenerator(clk, creset, bck, sck); 
uart_rx receiver(sck, reset, rx, data); 

 
motor_driver ldriver(sck, reset, data[5:4], lpwm); 
motor_driver rdriver(sck, reset, data[3:2], rpwm); 
 

endmodule  
 
 
// Wenkai Qin, Jack Yang 
// E155 Fall 2016 
 
// clk_gen.sv 
// Uses a clock input of 40 MHz to generate output clocks bck at 9.6 kHz and  
// sck at 153.6 kHz. 
 
module clk_gen(input  logic clk, 

input  logic reset, 
output logic bck, 

               output logic sck); 
 

 
logic [17:0] counter; 
logic [17:0] increment = 18'b111111; 
always_ff@(posedge clk)  

if(reset) counter <= 18'b0; 
else counter <= counter + increment; 

assign bck = counter[17]; 
assign sck = counter[13]; 
 

//  For testing with ModelSim.  
// assign bck = counter[4]; 
// assign sck = counter[0]; 
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endmodule 
 
 
// Wenkai Qin, Jack Yang 
// E155 Fall 2016 
 
// uart_rx.sv 
// Implements a UART receiver. 1 start bit, 1 stop bit. Takes in async data, outputs 
// data on an 8-bit register. 
 
module uart_rx(input  logic clk, 

 input  logic reset, 
 input  logic rx, 
 output logic [7:0] data); 

 
logic read_en, count_en, out_en; 
logic [7:0] tdata; 
logic [7:0] count; 
logic [3:0] bit_c;          // Counting from 0 - 8, one extra bit for overflow 

 
// State transition 
// S0 : IDLE state, wait for RX to be low 
// S1 : START state, RX sends the starting bit 
// S2 : DATA state, receive and store the data 
// S3 : END state, receive the end bit from rx 
typedef enum logic [1:0] {S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11} 

statetype;  
statetype state, nextstate; 
 
always_ff @(posedge clk) begin 

if(reset) begin 
state <= S0; 
count <= 8'b0; 
tdata <= 8'b0; 
data <= 8'b0; 

 
end else begin 

state <= nextstate; 
 
if(read_en) 

tdata <= {rx, tdata[7:1]}; 
    // tdata[bit_c] <= rx; 
if(count_en) 

count <= count + 8'b1; 
else 

count <= 8'b0; 
 

if(out_en) 
data <= tdata; 
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end 
end 

 
// Combination logic for state transition 
always_comb 

case(state)  
// If rx is low, go to next state 
S0: if(!rx) nextstate = S1; 

else nextstate = S0; 
 

S1: if(count==7) nextstate = S2; 
else  nextstate = S1; 

 
S2: if(read_en && bit_c >= 7) nextstate = S3; 
    else   nextstate = S2; 
 
S3: if(read_en && bit_c >= 8) nextstate = S0; 

 else
nextstate = S3; 
 

  
default: nextstate = S0; 

 
endcase 

 
assign read_en   = (((count-7) % 16 == 0) && count > 15); 
assign count_en  = (state != S0); 
assign out_en    = (state == S3); 
assign bit_c   = (count-8) / 16; 
 

endmodule 
 
 
// Wenkai Qin, Jack Yang 
// E155 Fall 2016 
 
// decodes 2 bits of instruction to generate an appropriate PWM wave. 
 
 
module motor_driver(input  logic clk, reset, 

input  logic [1:0] instr, 
output logic pwm); 

 
// Wire for enabling update of the instruction 
logic update_en; 
// 12 bits needed to reach 3072 for count and target. 
logic [11:0] count, target_n; 
// 2-bit instruction register. 
logic [1:0] instr_d; 
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instr_dec id0(instr_d, target_n); 
 

// Define states: 
// S0: Pulse high. Cannot update instruction. 
// S1: Pulse low. Updating instruction. 
typedef enum logic {S0 = 1'b0, S1 = 1'b1} statetype;  
statetype state, nextstate; 

 
always_ff@(posedge clk) begin 

if(reset) begin 
count <= 12'b0; 
state <= S0; 
instr_d <= 2'b11; 

end else begin 
if(count >= 3071) 

count <= 12'b0; 
else 

count <= count + 12'b1; 
 

state <= nextstate; 
 
if(update_en) 

instr_d <= instr; 
end 

end 
 

always_comb 
case(state) 

// If we reached the target, transition. 
S0: if(count >= target_n - 1) nextstate = S1; 

else nextstate = S0; 
 
S1: if(count >= 3071) nextstate = S0; 

else   nextstate = S1; 
 

default: nextstate = S0; 
endcase 
 

assign update_en = (state == S1); 
assign pwm = (state == S0); 

endmodule 
 
module instr_dec(input  logic [1:0] instr, 

 output logic [11:0] target_n); 
always_comb 

case(instr) 
// Appropriate count targets for forward, stop, back. 
// Back: PW = 1.0 ms, 154 cycles 
// Stop: PW = 1.5 ms, 230 cycles 
// Forward: PW = 2.0 ms, 307 cycles 
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/*2'b10: target_n = 11'b10011010; 
2'b11: target_n = 11'b11100110; 
2'b01: target_n = 11'b100110011;*/ 

 
// Back: PW = 0.75 ms, 115 cycles 
// Stop: PW = 1.5 ms, 230 cycles 
// Forward: PW = 1.55 ms, 238 cycles 

 
2'b10: target_n = 11'b1110011; 
2'b11: target_n = 11'b11100110; 
2'b01: target_n = 11'b11101110; 

 
/*2'b10: target_n = 15; 
2'b10: target_n = 10; 
2'b10: target_n = 20;*/ 
// Default stop. 
default: target_n = 11'b11100110; 
// default: target_n = 15; 

endcase 
endmodule 
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