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Abstract 
IoT devices are often hailed as the future of technology, where everything is connected. 

Our project adds to the growing list of IoT devices: a speaker and equalizer controlled from the 
internet. A website allows the user to use playback controls, select songs, and modify the 
equalization of the  audio to their personal preference. Commands are sent to a Raspberry Pi 
which communicates with an FPGA via SPI. The FPGA filters the audio before sending it back 
to the Pi as an equalizer in the form of a filter bank with 7 FIR bandpass filters. The Pi then 
outputs PWM audio to a 4th order butterworth filter and then to an amplifier and set of speakers. 
However, in the actual implementation of the design, the filter bank did not work outside of 
simulation. Thus, the design was done using a single FIR filter rather than a full filter bank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
In an ever interconnected world, IoT devices look to enable devices previously 

independent to be able to be communicate and be controlled via the web. In particular for audio 
applications, IoT control could be hugely beneficial to remotely control speakers at an event or 
venue. This project describes the development of a web-enabled speaker and equalizer such that 
users can select songs via a web server and stream them through an equalizer where they are 
modified and finally output by speakers. A user could control the playback and equalization in 
real time and make sure the audio sounds as desired. The system is split up into three main 
partitions: Raspberry Pi, FPGA and external hardware. The Raspberry Pi hosts the web server 
where users can control the system. The FPGA hosts the hardware equalizer that is controlled by 
the settings on the web server. Finally, the external hardware consists of an 8x8 LED array to 
display current equalizer gains, a pair of speakers and a stereo amplifier to raise the level of the 
audio signals from the Pi to an audible level. Figure 1 shown below displays a top level view of 
the system architecture and communication between subsystems. 
 

 
Figure 1: Top-level system diagram. 
 
  



Schematics 

 
Figure 2: Breadboard schematic. 

Shown above in figure 2 is our final Breadboarded Project. Of note, the LED array is not 
shown here since it was not completed. Running between the Pi and the FPGA board are 5 signal 
lines; the four SPI lines (channel enable, serial clock, MISO, and MOSI) and a reset line. Out of 
the Pi, pin 18 was the PWM output. To convert from PWM into an analog signal, the PWM 
wave was sent through a 4th order low pass filter in the form of two Butterworth filters with 
Sallen-Key topology with a cutoff frequency of 15kHz. The operational amplifier used was 
single-sided since the PWM wave was also single-sided. The output of these filters was wired to 
the left and right input of the stereo amplifier, with GND being wired to the negative inputs. 
Finally, the two speakers were wired to the outputs of the amplifier. 
 
Raspberry Pi Design 

There are two main aspects of the code implemented on the Raspberry Pi; the main loop 
which handles SPI and PWM communication, and the numerous CGI scripts that control the 
main loop through shared memory. 

The Pi communicates with the FPGA and sends out audio through its SPI and PWM 
peripherals. All peripherals are accessed by writing to corresponding registers in the Pi’s 
memory. These are mapped to using mmap. Much of this project’s work was based off of 
EasyPIO.h (reference) which already initializes and sets up may of the Pi’s peripherals, including 
GPIOs, timers and of course PWM and SPI. However, there were some slight modifications 
made to the script. The following sections detail those changes and how each peripheral is used. 



1. GPIO: 
EasyPIO has functions that write to the registers that change the pin modes and also read 

and write from the pins.  
 

2. SPI: 
The SPI peripheral is set up by setting the pin modes of pins 8, 9, 10, and 11 to ALT0. 

The SPI initialization allows the caller to set the SPI frequency and settings, which can be set to 
default operation by writing the settings bytes to 0. Sending and receiving is done through the 
SPI’s FIFO register, After a value is written to the FIFO buffer, it is sent, and upon completion, 
the done bit of the Command and Status register is set to 1.  
 

3. PWM: 
To write to the PWM, pin 18 is set to mode ALT5. EasyPIO.h initializes the PWM 

peripheral with the maximum frequency of 25MHz. While it was originally planned to write 
directly to pins 40 and 45, which are connected directly to the audio jack, the Pi apparently does 
not grant access to them and in fact only pin 18 is allowed PWM functionality. To write to 
PWM, the PWM’s DAT register is written to to determine the duty cycle of the PWM wave. 
 

4. Timer: 
The Pi has 4 internal timers running off of a 1 MHz clock. EasyPIO.h utilizes these by 

implementing delay functions on microsecond scales. To send the PWM samples out at the 
correct audio sampling frequency, these microsecond delays are used to wait for the length of the 
period of the frequency. This delay being microseconds is not completely accurate, resulting in 
slightly sped up or slowed down depending on what the delay is. Of note, it also take a non-zero 
amount of time to run the rest of the loop body, so the timer had to be experimentally tweaked to 
get the audio speed as close as possible to the actual rate.  

These delay functions set one of the four system timers to be a microsecond offset from 
the current timer. Then, once the current timer reaches this value, it will set a corresponding flag 
in the system timer’s command and status register. A while loop would wait for this condition to 
be reached, freezing the system until it is. Of the four timers, timers 2 and 0 are often used for 
other processes and are often inconsistent in performance when used for delays. Timers 3 and 1, 
on the other hand, perform consistently but are prone to failing resulting in the entire program 
being stuck in an endless loop. The team’s best guess for why this is is that the system timer that 
fails is somehow set to a different value which the current timer never reaches. To counteract 
this, the delay function was modified to utilize all four system timers, and exit the while loop if 
any one of the four timers set a flag. In this way, the only way for the system to fail would be if 
all four timers failed at the same time. After empirical observation this was deemed to happen 
infrequently, as the code would have to play several songs in succession before finally failing, an 
extreme edge case. 



Website and CGI Scripts 
The website is at the center of the design, comprising of html action buttons that each 

trigger their own CGI executable scripts. A screenshot of the website is shown below, with 
descriptions of each button’s function following. Each button redirects back to the project’s 
webpage. 

Figure 3: Screenshot of website. 
 

1. Play Button: 
The play button’s script is where the main loop is written. The core functionality of the 

main loop is to take an audio sample, send it over SPI, receive a filtered sample, and send it 
through PWM. The main loop’s settings, such as whether to play music or not or what song to 
play, all depend on bytes in shared memory. Shared memory is a C programming construct that 
allows different C scripts to communicate with each other by setting aside a block of memory 
that the scripts can all read and write to. In addition to redirecting back to the webpage, all scripts 
connect to the shared memory block using shmget. The outline of the shared memory is as 
follows in table 1 below: 

 
 
 
 

 



Byte number Use 

0 Unused 

1 Status - MSB[Filter_On/-Off-, X, X, X, song_changed, locked/-open-, 
going/-stopped-, playing/-paused-]LSB 

2 Song Number 

3-9 Gains 0 to 6 

Table 1: Shared memory mapping. 
 

The first byte is the status byte, where each bit represents a different status setting. Upon 
pressing the play button, the two least significant bits are set to [going playing]. The code then 
checks the locked/-open- status bit to determine whether to begin the main loop. The 
locked/-open- bit ensures that only one instance of the main loop is running at any time, as the 
play button can still be pressed even if a main loop is already running. If no loop is running, the 
default setting is open, but as soon as a loop begins (play button pressed), the bit is changed to 
locked, and will not open until the stop or reset button is pressed.  

Upon each loop iteration, the main code will check the status byte and respond 
accordingly. If the Filter_On bit is high, the loop will send received filtered audio to PWM. 
Otherwise it will send the unfiltered samples. If the song_changed bit is high, the loop will 
update the string holding the title of the song and re-read the wav file from memory to update the 
audio sample array. When changing the song, the code will also briefly set the reset pin to high 
to reset the FPGA. The next 4 bits are unused.  The going/-stopped- bit and the playing/-paused- 
are distinct from one another since a paused song retains its previous sample location and the 
main loop still runs, but if the song is stopped, the previous sample location will not be held and 
the loop will exit. In the main loop, if a song is paused, the loop will continue to run (status still 
locked and going), but will not send SPI or PWM. The song number byte is where the current 
song number is stored and determines what song is playing. Lastly, the next 7 bytes are used to 
store the gain settings.  
 

2. Pause, Stop and Reset Buttons: 
The pause, stop and reset buttons affect the status byte of the previously described shared 

memory segment. The pause button changes the playing/-paused- bit to 0 (paused) if the going 
bit is high. The stop button changes the 3 least significant status bits to 000 [open stopped 
paused]. Lastly, the reset button changes the status byte and the song byte to all zeros and sets all 
the gain bits to sevens. The reset button also briefly writes the reset pin to high to reset the 
FPGA. 
 



3. Song Change Buttons: 
When one of the song buttons is pressed, it will not only flip the song_changed bit to 

high, but also change the value stored on this byte corresponding to the song number pressed. 
Currently, only 12 songs are available to play, but since there is a full byte of information, there 
could be up to 256 songs without the need for another byte of memory. These songs are stored as 
wav files in the same folder as the CGI scripts so the executables are able to read them. 
 

4. Filter Toggle Button: 
The filter on button changes the filter_on bit of the status byte. Specifically it does so by 

performing an XOR operation to toggle the bit from 1 to 0 or 0 to 1. 
 

5. Gain Buttons: 
If a plus button is pressed, the gain stored there will be incremented, whereas it will be 

decremented if a minus button is pressed. The values are capped to be between 0 and 15, with a 
default value of 7. 
 
FPGA Design 

The FPGA houses the equalizer in the form of a bank of bandpass FIR filters with 
settable gains. The hardware consists of several submodules all which serve the purpose of 
streaming and filtering audio through the system. The system takes in audio samples via an SPI 
module which handles communication between the FPGA and the Raspberry Pi. 16 bit words are 
sent and received simultaneously as audio is streamed and filtered. In addition to the 16 bit audio 
sample, a 16 bit sample containing the equalizer gains follows. These two alternating samples are 
sorted by a finite state machine that sends samples into the FIFO buffer to be accessed by the 
FIR filters, and the gains to the FIR filters themselves to be used in the calculation. The FIFO 
buffer is a circular buffer that stores a certain window of samples. This buffer is used to carry out 
the convolution in the FIR filters. The FIR filter bank consists of a “master” FIR filter, and 6 
slaves. The master filter is the only one that request samples from the FIFO buffer and then 
passes on those samples to all of the slave filters. This is done such that there only needs to be a 
single request to the memory at a time. The FIR filter topology itself is a fully pipelined 
multiply-accumulate architecture. The filter uses a single multiplier running a convolution in a 
loop between the audio samples and the filter coefficients. The filter coefficients themselves are 
pre-loaded into memory utilizing a memory initialization file that loads the designed filter into 
read only memory. The modules are described in more detail in the further sections: 

 
1. SPI: 

The FPGA’s SPI module implements a simple SPI slave that listens for 16-bit words. The 
module will take MOSI, CS, and SCLK as inputs connected from external pins. It will combine 
the received bits into 16 bit words and output them as q. It also takes internal input d to be sent 



out as MISO. Another important logic element is the signal that keeps track of when a full word 
has been completely received. This “done” signal goes on to the parsing FSM which routes gains 
and samples to appropriate subsystems. 

 
2. Parsing FSM: 

 The parsing FSM groups counts every other “done” signal from the SPI module and 
sends the equalizer gains onto the FIR filter bank to wait until it gets used, and the audio samples 
onto the FIFO buffer to fill up the convolution window. 
 

3. FIFO Buffer: 
 The FIFO buffer stores and updates a certain window of input audio samples such that 

the FIR filters can request samples from the window in order to carry out a convolution. As new 
samples come in, the values themselves do not move and a pointer instead moves, making all 
reading and writing relative to the position of said pointer. The FIFO buffer takes in an address 
requested by the master FIR filter from the bank and will output the requested value.  
 

4. Coefficient Memory:  
The coefficient memory is a read only memory that is initialized at synthesis with the 

values of all the coefficients required to design the different FIR filters. There will be as many 
memories as there are filters given that the coefficients themselves are what define the filters, 
otherwise they are just convolution modules. These values will be determined ahead of time by 
designing the filters in MATLAB and converted to the appropriate bit depth. 
 

5. FIR Filter Bank: 
The FIR filter bank implements 7 FIR filters in parallel that will each carry out a 

convolution between a buffer of audio samples and the coefficients stored in memory. The 
resulting signals will be multiplied by the equalizer gains and then added together to create an 
aggregate filtered signal to be sent back to the Pi via SPI. A master filter will send address 
requests to the fifo modules and send the samples to the rest in order to avoid issues with 
communicating with a single memory. However, every filter will communicate with its own 
coefficient memory since these requests are independent of one another. The received 
coefficients and samples will be used in a pipelined multiply-accumulate topology to implement 
the convolution and output the final value to the SPI communication module. 

 
6. LED Array Logic: 

 The LED array logic module would use 16 pins from FPGA to display the equalizer 
gains as lit bars on the array. In order to display multiple bars simultaneously on the array, 
time-multiplexing of the pins pulling the LEDs high and low would have to be implemented. 



However, the LED array was not in the final version of the project and thus was not written in 
code. 
 
Results 

While a fully integrated deliverable was achieved in the end, our final project did not 
achieve all deliverables outlined in our project proposal. On the Raspberry Pi side, almost all 
systems are robustly implemented. The output audio quality is very good considering it is PWM 
audio, with only a small hiss of noise. The shared memory seamlessly lets different buttons 
interact with the main loop that plays audio. However, running the main loop for an extended 
amount of time makes the Pi’s microcontroller chip to heat up. Furthermore, the timer peripheral 
that controls the sample output rate is not absolutely reliable, nor exactly accurate, as there is a 
possibility of timer failure, and the speed is a best estimation of the correct sample rate. 
However, the possibility of failure has been observed to be infrequent and the audio sounds close 
enough to the accurate despite the limitations of the timer peripheral.  

On the FPGA side, a fully functional FIR filter module was successfully integrated with 
FIFO and SPI modules. This worked in both simulation and reality. However, in extending the 
full setup to include a full filter bank with 7 filters each with their own gains, we obtained a 
working simulation, but the code did not work in reality. The team suspects this was due to 
timing complications extending from an asynchronous design. Complications that a single FIR 
filter did not have issues with, but when expanded caused the full FIR filter bank to fail. A 
timing diagram showing the full FIR bank working in simulation is attached in the appendix. 
Finally, the 8x8 LED array was not able to be implemented due to time constraints. In total, 
instead of a web enabled speaker with a 7-bin EQ, our final delivered project was a web-enabled 
speaker with a toggle-able high pass filter. All Raspberry Pi functionality was achieved as 
desired and most FPGA functionality was as well. However, while simulation showed the system 
to function, reality did not prove to be as amenable. 
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Parts List 
 

Part Source Vendor Part # Price 

MCP6002 Op Amp stockroom   

Stereo Amplifier 
MAX98306 

Adafruit 987 $8.95 

(2x) 3” Speakers Adafruit 1314 $3.90 

8x8 LED Array Adafruit 455 $3.95 
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Appendix 
 
Top Module: 
 

 
SPI Module: 

 
 
 
 
 
 
 
 



FSM: 

FIFO Buffer: 

 
 
 
 
 
 
 
 



Filter Bank: 

 
FIR Filter 

 
Filter Bank Simulation Steady State Results: 

 
Expected 55 = 0x37 = (0x0ff0 (input) * 0x80 (window size) * 0x7 (number of filters)) >> 16 
Given filter tested was a unity gain, and equalizer values were all set to unity. 


