Heart Rate-Controlled Music Player

Final Project Report
December 9, 2016
E155

Senghor Joseph and Christine Goins

Abstract

This project implemented a heart rate-controlled music player to slow down or speed up music
depending on the difference between the user’s measured heart rate and their target heart rate.
This can be used to influence a runner’s pace to keep their heart rate in a safe or desired range.
An FPGA uses the output of a pulse oximeter to determine the user’s heart rate, which is sent to
a Raspberry Pi, which uses the difference between the actual and target heart rates to control the
speed of a song. The system measures the user’s heart rate with sufficient accuracy and the Pi
successfully receives the heart rate and changes the song speed when heart rate is significantly
above or below the target heart rate.

Introduction

When running or doing other exercise, runners often try to get their heart rate into a
certain range to achieve different goals such as warming up, fat-burning, or increasing
endurance. Additionally, those recovering from heart surgery may need to keep their heart rate in
a certain range during exercise to stay safe. Many runners already listen to music during their
run, so music can be used to encourage runners to speed up or slow down their pace in order to
affect their heart beat.

This project prototypes a music player whose speed is controlled by the difference
between a user-input target heart rate and the user’s actual measured heart rate. The user inputs
their target heart rate, the heart rate they would like to reach during their activity, through DIP
switches on the breadboard. The user clips the pulse sensor onto their ear and the FPGA
calculates the user’s heart rate from output of the sensor, which is put through an
analog-to-digital converter to be readable by the FPGA. This calculated heart rate is always
displayed on the LEDs on the pMudd Mark IV board. When the user begins the music player by
clicking a button on the Raspberry Pi-hosted website, the Pi begins requesting and receiving the
heart rate from the FPGA using SPI. The Pi compares this heart rate to the target heart rate, and
computes a speed factor based on the difference between the two heart rates. This speed factor
controls the speed of the music played from the Pi using an audio power amplifier and a speaker.
Figure 1 shows a block diagram of the system.

Switches:
Input Target
Heart Rate

|

Raspberry
AD FPGA: Pi: Website:
Determine Play music » Display Heart
heart rate with variable Rate
speed

Pulse
Sensor

A 4
h 4
Y

Converter

Figure 1. Block diagram of system

New Hardware

The project uses a pulse oximeter that, when pressed firmly against an earlobe or finger,
measures differences in light absorption in a user’s skin. It uses this to output a voltage
corresponding to the amount of oxygenated hemoglobin in the blood, which increases with each

heartbeat and decreases as the body uses it up. The sensor is simple to use, with only three wires:
power (3.3 or 5V), ground, and output. When using the sensor the designer should note that the
output varies highly depending on the user. For some users the output is so large that it is
clipped, yielding a flat line at the top of the signal rather than a peak. For other users the output is
so small that noise is almost as large as the desired heartbeat signal. These differences are due to
differences in skin tone and where blood vessels lie in an individual’s earlobe.

Schematics
The schematic of the entire system is shown below in Figure 2.

s
A~ 7
c'l 3V

Ul G |
: 7 8
=~ PWR
S#HeEMO A
0T A D GND 1
5V - el] MCP3002 el
L 5V OUT p—o L
GIND
| (4 =] 4 |53
SEN-11574 U4
GND
U3
, 98 S———
pi_clk bgg—{ SCLK SWI[0] =
pi_niso bmo—l} MISO SWI[1] =
piL_mosi p————— MOSI SW[2] =
- SW[3]
S 23 SWH] =
SW5] e
SWI6] =
SW[7] =
Raspberry Pi r:
I ;
Us W v
9 R2
Rl ‘ 1.2k 1 . | | n SW[7:0] =
Lg% 6 1k SWI70] |28
Ben < 5 Spealer DIp
10uF LM386 =t
LR3 GND
10 T
GIND
GND =0
10uf
GND

Figure 2. Circuit schematic

The PPG (photoplethysmogram), referenced in the schematic as the SEN-11574, has an
output that correlates very well with the amount of light oxygen in the blood absorbs or reflects.
This generates an analog signal similar to a heartbeat waveform.

The analog-to-digital converter (ADC), called the MCP3002 in the schematic, then takes
that analog signal and converts it into a digital signal that the receiving FPGA can process and
transfers this information with a serial protocol called SPI.

The FPGA takes the digital signal from the ADC over SPI and peak detects the signal in
order to calculate the heart rate. It then stores this heart rate and waits until the Raspberry Pi
requests it.

The Raspberry Pi requests a recent heart rate from the FPGA and compares this value to a
target heart rate the user has defined. Depending on whether the requested heart rate is higher or
lower than the target, the playback speed of the music the Pi is outputting into an audio amplifier
will decrease or increase.

The LM386 is an audio amplifier that increases the gain of its input signal by 50 (as it has
been set up in the circuit) and outputs the signal into an 8 ohm speaker.

FPGA Design

The FPGA calculates the user’s heart rate. It takes in the output of the pulse sensor, uses
thresholding to detect each pulse, computes the heart rate, and sends it to the Raspberry Pi using
SPI. The flow of data is shown in Figure 3.

h[g 0] ad [7:0]
:0] adc_v ulse Hieaf
»{ ADCSpiMaster > findPeak - heartRateFinder o

Figure 3. FPGA System Diagram

ADC

v

PiSpiSlave

» Raspberry Pi

Because the output of the pulse sensor is an analog signal, it cannot be directly input to
the FPGA. The sensor output if first put through a 10-bit analog-to-digital converter (ADC)
(MCP3002), which the FPGA reads using the module SPIMasterADC. The 10-bit output of the
ADC is sent serially to the FPGA using the timing diagram in the MCP3002’s datasheet. The
FPGA controls the clock speed of the ADC, sets CS low to begin data transfer, and sends the
ADC the required bits to receive data in the desired format. It also uses a shift register to shift in
the data it receives from the ADC.

Once all 10 bits from the ADC (adc_v) have been received by the FPGA, the
thresholding module findPeak stores adc_v and checks whether it is greater than the threshold of
600 which corresponds to a voltage of 2.93 V. Because the desired output of this module is a
single pulse when the signal crosses the threshold, a pulse is only generated if the previous input
to findPeak was not greater than the threshold.

HeartRateFinder receives the pulses generated by findPeak and uses the time between
them to determine the heart rate. The heart rate is equal to (# clk cycles per second * 60
sec/min)/(# clk cycles between pulses) = 2,400,000,000/(# clk cycles between pulses). A counter
counts the number of clock cycles between pulses and restarts the count when an acceptable
pulse is received. Because this module uses the previous heart rate to determine whether the next
heart rate is plausible, it does not accept the first calculated heart rate. Instead it compares the
average of the first three heart rates with the fourth, and only accepts the fourth heart rate if it is
within £25% of the average. Heart rates less than 30 BPM or greater than 250 BPM are not
allowed because physically these heart rates are very unlikely. Additionally a heart rate that is
more than double or less than half of the previous heart rate is not allowed because this extreme
acceleration or deceleration is very unlikely. The FSM for this process is included in Appendix
B.

The calculated heart rate from heartRateFinder is displayed in binary on the LEDs of the
uMudd Mark IV board, and is also sent to the Raspberry Pi using SPI when the Pi requests it.

Raspberry Pi Design

The Raspberry Pi receives the user’s heart rate from the FPGA and the target heart rate
from the switches, then plays a song at a speed dependent on the difference between the two
heart rates by outputting a square wave for various frequencies and durations.

When the program is run, the Pi begins a loop in which each iteration plays one note of
the song Fur Elise. In each iteration the Pi requests and reads a heart rate from the FPGA using
SPI, while also keeping track of past heart rates and calculating an average. Every tenth iteration,
the program reads a heart rate from the FPGA, then compares the average of the past 10 heart
rates to the target heart rate. The difference between the two is used to calculate the speed factor,
which is used to speed up or slow down the music. If the user’s heart rate is above the target,
then the music slows down, and if it is below, it speeds up. The amount by which it speeds up or
slows down is dependent on the number of BPM that the actual and target heart rate differ by.
The program continues until all notes of the song have been played.

To request and receive heart rates from the FPGA, the program first sets the clock
frequency to 122 kHz, the phase and polarity to 0, and the TA bit to 1 to enable SPI. Each time
the programs asks for a new heart rate, it uses SPIsendReceive to send eight Os to the FPGA.
Because SPI is a built-in peripheral of the Pi, there is no need to explicitly generate a clock for
the data transfer.

The target heart rate is input in binary using eight switches. The program sets the pins
connected to the switches to inputs and performs the proper logic in order to use the target heart
rate to calculate the speed factor.

The program uses an array of notes, where each note specifies a frequency and duration,
to play the song. A square wave is generated by using timers to alternately write 1 and O to the

outpin for a length of half the note’s period. Another timer is used to continue this process for the
given duration. The duration is determined by dividing the note’s typical duration by the
calculated speed factor.

The Pi also hosts a website using an Apache2 web server. The website prints the user’s
averaged heart rate using an iframe, which is an inline frame used to embed another HTML page
within the current page, allowing the heart rate to update without leaving the web page.

Results

The majority of the time the system successfully calculates the user’s heart rate, but
occasionally the heart rate vastly increases by almost double, likely due to a false peak being
detected. However with the averaging in the Raspberry Pi code, the heart rate that determines the
speed of the music accurately reflected the actual heart rate. The team implemented the Pan
Tompkins algorithm for pulse detection, and while its outputs in ModelSim matched those
calculated in MATLAB, when tested in hardware, thresholding with a constant value performed
better than the algorithm. However to make this system perform more successfully on different
users, for whom which the pulse sensor output can vary greatly in both magnitude and shape, an
algorithm such as Pan Tompkins would be more successful than constant thresholding.

The team planned to have the user input the target heart rate through the website, but
could not successfully implement this without making the program restart when a new target
heart rate was entered, so instead used physical switches connected to input pins of the P1i, so that
the user could enter the input in binary.

The website successfully printed the user’s average measured heart rate and the input
target heart rate.

The music had jumps between and during notes, which could be improved by generating
sine waves using a D/A converter or using the built-in audio output of the Pi. This would require
a different method of changing the speed of the music.

References

[1] Pulse Sensor http://pulsesensor.com/

[2] Hardware Implementation of Pan & Tompkins QRS Detection Algorithm:
http://mule.cslab.ece.ntua.gr/docs/c8.pdf

Parts List

Part Source Vendor Part # Price

Pulse Sensor Amped SparkFun SEN-11574 $24.95

LM386 Low Voltage E155 cabinet LM386 N/A
Audio Power
Amplifier
Speaker Desktop Computer None N/A
DIP Switch E155 cabinet N/A N/A

Appendix A : SystemVerilog Code
SIS0 7777777777770 7777777777777 7777777777 7777777777777777777777777777777
/
/* E155 Final Project: Heart Rate-Controlled Music Player

Senghor Joseph and Christine Goins

sjoseph@hmc.edu cgoins@hmc.edu

This project calculates a heart rate based on a 10-bit output from an ADC
connected

to a pulse oximeter and sends heart rate to a Raspberry Pi using SPIMasterADC
*/
[T 7770770777777 777777 77777777 777777777777777777777777777777777777777
/
module heartRateCalc (input logic pi clk, clk, reset,
input logic pi mosi, adc_miso,
output logic pi miso, adc _mosi, adc_clk, adc_cs,
output logic [7:0] led,
output logic pulse);

logic ext clk, newData;
logic [12:0] clkcount;
logic [9:0] adc v;
logic [7:0] hr;
logic [7:0] pi_data; // never used
// 6.4 kHz clk generator
always ff@ (posedge clk)
if (reset)
begin
clkcount <= 0;
ext clk <= 0;
end
else if (clkcount == 13'd3125)
begin
ext_clk <= ~ ext_clk;
clkcount <= 0;
end
else
begin
clkcount <= clkcount + 1'bl;
end

spiSlavePi pi spi(pi clk, pi mosi, hr, pi miso, pi data);

spiMasterADC adc_ spi (ext clk, reset, adc miso, adc mosi, adc cs, newData,
adc_clk, adc v);

findPeak findPeak (clk, reset, newData, adc_v, pulse);

heartRateFinder getHR (clk, reset, pulse, hr);

// display heart rate in binary on board LEDs
assign led = hr;

endmodule

IS0 7777777777777 7777777777777 7777777777777 77777777 777777777777777777
/
/* findPeak
E155 Final Project: Heart Rate-Controlled Music Player
Senghor Joseph and Christine Goins
sjoseph@hmc.edu cgoins@hmc.edu
This module compares the outpt of the ADC with a constant threshold to obtain
a pulse on the rising edge the output exceeds the threshold
*/
[T 7707777777777 7770777777777 777777777 7777777 7777777777777 7777777777777777777
/
module findPeak (input logic clk, reset, newData,
input logic [9:0] x in,
output logic pulse);

logic [9:0] x0, threshold;
logic oldy out, y out;
assign threshold = 10'd600;

// store new value everytime there is a new ADC output
flopenr x0f (clk, reset, newData, x in, x0);

// does ADC output exceed threshold?
assign y out = (x0 > threshold);

flopr #(1) yflop(clk, reset, y out, oldy out);

// to make pulse only go high on posedge of y out
always ff@ (posedge clk, posedge reset)
if (reset) pulse <=0;
else if(y out & ~oldy out) pulse <= 1;
else pulse <=0;

endmodule

N NN,
/
/* heartRateFinder
E155 Final Project: Heart Rate-Controlled Music Player
Senghor Joseph and Christine Goins
sjoseph@hmc.edu cgoins@hmc.edu
This module takes the pulses from findPeak and determines which are acceptable
to calculate the heart rate

*/
L1007 0000000070770
/
module heartRateFinder (input logic clk, reset, pulse,
output logic [7:0] HR);

logic counterReset, countReset, HRen, HRlen, HR2en, HR3en, close;
logic [27:0] pulseCount;
logic [7:0] interHR, HR1l, HR2, HR3, avg;

// counts # of clks between pulses
counter #(28) pulseCounter (clk, counterReset, pulseCount);
assign counterReset = reset | countReset;

// calculates what the HR would be at the current count
assign interHR = (32'd2400000000) /pulseCount;

// new HR is stored when flop is enabled by HRen
flopenr #(8) interHRflop(clk, reset, HRen, interHR, HR);

// store first 3 acceptable heart rates

flopenr #(8) HR1flop(clk, reset, HRlen, interHR, HRI1);
flopenr #(8) HR2flop(clk, reset, HR2en, interHR, HR2);
flopenr #(8) HR3flop(clk, reset, HR3en, interHR, HR3);

// FSM to determine heart rate

typedef enum logic [4:0] {sO, sl, s2, s3, s4, s5, s6, s7, s8, s9, sl0, sll,
sl2, s13, sl4, sl5, sl6} statetype;

statetype state, nextstate;

always ff@ (posedge clk, posedge reset)
if (reset) state <= s0;
else state <= nextstate;

always_comb
case (state)

sO: if(pulse) nextstate = sl; // begin waiting
else nextstate = s0;

sl: nextstate = s2; // reset count

s2: 1if (pulse & outsideRange) nextstate = s0; // reset FSM
else if (pulse) nextstate = s3;
else nextstate = s2; // wait for pulse

s3: nextstate = s4; // HRlenable

s4: nextstate = s5; // reset count

s5: if (pulse & outsideRange) nextstate = s0; // reset FSM

else if (pulse) nextstate = s6;

else nextstate = s5; // wait for pulse
s6: nextstate = s7; // HR2enable
s7: nextstate = s8; // reset count

s8: if (pulse & outsideRange) nextstate = s0; // reset FSM

else if (pulse) nextstate = s9;
else nextstate = s8; // wait for pulse
s9: nextstate = s10; // HR3enable
s10: nextstate = sll; // reset count
sll: 1if(pulse & outsideRange) nextstate = s0; // reset FSM

else if (pulse & close) nextstate = sl12; // if HR is close
to average of previous 3 HRs

else nextstate = sll; // wait for pulse
sl2: nextstate = s13; // HR enable
s13: nextstate = sl4; // reset count

sl4: if(pulse & (interHR > HR<<1 | interHR > 8'd250)) nextstate =
s15; // if HR is too big

else if (pulse & (interHR < HR>>1'dl | interHR < 5'd30))

nextstate = sl4; // if HR is too small, keep waiting and counting
else if (pulse) nextstate = sl1l2;
else if (pulseCount == 28'd268435455) nextstate = s0; //

if counter overflows, start over
else nextstate = sl4;
sl5: if (pulse) nextstate = sl6;
else nextstate = sl15;

sl6: nextstate = s5; // reset count and maintain previous HR
endcase

// state-dependent output logic

assign countReset = (state==sl) | (state==s4) | (state==s7) | (state==s10) |
(state==s13) | (state==sl106);

assign outsideRange = (interHR < 5'd30 | interHR > 8'd250); // if HR is too big
or small

assign HRen = (state==sl2);

assign HRlen = (state==s3);

assign HR2en = (state==s6);

assign HR3en = (state==s9);

assign avg = ((HR1 + HR2 + HR3)/3); // average of first 3 heart rates

assign close = ((avg - (avg>>2)) < interHR) & (interHR < (avg + (avg>>2))); //

true if interHR is within +/-25% of avg

endmodule

LILLTTT 0077770007777 777770777777 77777777 77777777777777777
/

/* spiMasterADC

E155 Final Project: Heart Rate-Controlled Music Player

Senghor Joseph and Christine Goins

sjoseph@hmc.edu cgoins@hmc.edu

This module generates a clock, CS, and the proper output to receive the ADC's
10-bit

output using a shift register. The clock runs at 3.2kHz for a sampling rate of
200Hz
*/

LITTTTT T 7770777777077 7777707777700 777 77777 7777777777777
/
module spiMasterADC (input logic ext clk, reset, miso,

output logic mosi, CS, miso_en, adc_clk,

output logic [9:0] misoData) ;

// use counter to generate correct outputs and enables
logic [4:0] count;

counter #(5) spiCount (ext clk, reset, count);

// shift register to get misoData
always ff@ (posedge clk, posedge reset)
if (reset) misoData <= 10'b0;
else if (den) misoData <= {misoData[9:1], miso};

assign CS = (count==5'd30) | (count==5'd31l); // CS goes low at beginning of
data transfer

assign adc clk = ((count%2)==1); // generate 3.2kHz clk (adc_clk is 1 when clk
count is odd)

assign mosi = (count==5'd0) | (count==5'dl) | (count==5'd6) | (count==5'd7); //
fPGA sends 8'b00110100

assign den = (count>5'dl0) & (count<5'd30) & ((count%2)==1); // enabling shift
register (enable on odd counts between 10 and 30)

assign miso_en = (count==5'd0); // when all 10 bits have been receieved
endmodule

N N NNy,
/
/* spiSlavePi
E155 Final Project: Heart Rate-Controlled Music Player
Senghor Joseph and Christine Goins
sjoseph@hmc.edu cgoins@hmc.edu
This module takes in the Raspberry's Pi's clk and output so that it can send
the heart
rate to the Pi at the correct time
*/
SIS0 7777777777777 77777777777 77777777777 77777777777777777
/
module spiSlavePi (input logic sck, // from master
input logic mosi, // from master
input logic [7:0] d, // data to send
output logic miso, // to master
output logic [7:0] q); // data received

logic [2:0] count;
logic gdelayed;

// counter to track when full byte is transmitted

always ff@ (negedge sck)
count = count + 3'bl;

// shift register that starts with d and shifts mosi in
// at each clk so that g ends up with 8 bits from master
always ff@ (posedge sck)

g <= (count == 0) ? {d[6:0], mosi} : {g[6:0], mosi};

// miso aligned w/ falling edge of sck
always ff@ (negedge sck)

gdelayed = ql[7];
assign miso = (count == 0) 2 d[7] : gdelayed;

endmodule

// parametrized Enabled DFF

module flopenr # (parameter WIDTH = 10)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always ff@ (posedge clk, posedge reset)
if (reset) g<=0;
else 1f (en) g<=d;

endmodule

// parametrized DFF

module flopr # (parameter WIDTH = 10)
(input logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always ff@ (posedge clk, posedge reset)
if (reset) g<=0;
else q <= d;

endmodule

// parametrized counter
module counter # (parameter WIDTH = 6)
(input logic clk,
input logic reset,
output logic [WIDTH-1:0] qg);

always ff@ (posedge clk, posedge reset)
if (reset) g<=0;

else g <= g + 1;

endmodule

Appendix B: heartRateFinder State Transition Diagram

ﬁp_u\se & cLutside

else if pulse \\\

\
.
\\
E \
$
| '\
N)
|
//
N\
\
e
1
f
/
/

\4 / \1 e 7 4 v i \ .
/ \ / re851e \ r"/sz \\ r/ \ f ,eset\ /
waltmg ‘ count .| | waliting | ‘ HR en . count . ' waltlng
,\J* g_,_f___?_ _/ \ / /
) __;?ulse & ou“tsrda.,__xr_hm_- - //’ \
FaL T A, = N A W A

- AN 4 SS*

/1
\
_,/'\

‘.' S I" reset If ‘ " \ reset w
.\ waliting j count \ HR3en | wamng count \ HR2en
§ — —
o3/
L]
‘—:",‘ pﬂse pulse too long pulse |
al T ey \'
= R
i —C Yy~ N
2 / 813 /818
{ 512 f reset 514 (reset

wanmg count

' | count waiting \ 4
o/ A\ \ AN \/ N

= - B)
= T \ J
else if pulse pulse too short

pulse count overflows

outside = 30 < interHR < 250
close = interHR is within +25% of average of first 3 heart rates
interHR = 2,400,000,000/pulseCount

9S|nd }I 93|a

S,

Appendix C: C Code

// E155 Final Project: Heart Rate-Controlled Music

// Senghor Joseph and Christine Goins

// sjoseph@hmc.edu cgoins@hmc.edu

// ampisw.c reads a target heart rate from pins connected to switches

// and requests and reads the calculated heart rate from the FPGA

// and calculates a speed factor from the difference to change the speed of the song
// Fur Elise using square waves of varying frequencies and durations

#include "start.h"

// Pitch in Hz, duration in ms
const int notes[][2];

void playMusic(int pitch, int duration);
float speedFactor(int target, int avg_hr);

// playMusic generates squares waves with the given frequencies and durations to play notes
void playMusic(int pitch, int duration){
// plays a note given pitch and duration

unsigned int wavemicros; // 1/2 the period of the note

if(pitch!=0) {
wavemicros = 1000000/pitch/2; // converts to us and 1/2 period
}

unsigned int durationmicros = duration*1000; // convert from ms to us

// while loop for length of note (duration) (timer 1)
sys_timer[4]=sys_timer[1] + durationmicros; // C1 = CLO + durationmicros
sys_timer[@] &= 0be010; // M1=0
while(!(sys_timer[0] &= 0b0010)) { // while flag M1 is low
// making wave with desired frequency (timer 2)
if(pitch == @) { // pitch=0 indicates a rest
digitalWrite(23,0);
} else {
delayMicroseconds(wavemicros);
digitalWrite(23,1);
delayMicroseconds(wavemicros);
digitalWrite(23,0);
}

// speedFactor uses the difference between the target and average heart rates to calculate
// a speedFactor sf used to change the speed of the music
float speedFactor(int target, int avg_hr) {

float st;

if((avg_hr >= target-10) & (avg_hr < target+10)) { // within +/-10 range
sf = 1;

} else if((avg_hr >= target-20) & (avg_hr < target-10)) { //10-20 below
sf = 1.25;

} else if((avg_hr >= target-30) & (avg_hr < target-20)) { //20-30 below
sf = 1.5;

} else if((avg_hr >= target-40) & (avg_hr < target-30)) { //30-40 below
st = 1.75;

} else if((avg_hr < target+20) & (avg_hr >= target+10)) { //10-20 above
st = 0.8;

} else if((avg_hr < target+30) & (avg_hr >= target+20)) { //20-30 above
sf = 0.67;

} else if((avg_hr < target+40) & (avg_hr >= target+30)) { //30-40 above
sf = 0.57;

} else if(avg_hr < target-40) { // more than 40 below
sf = 2;

} else if(avg_hr >= target+40) {
st = 0.5;

} else {
st = 0.42;

return sf;

void main(void){

// HTML header
printf("%s%c%c\n",
"Content-Type:text/html;charset=iso-8859-1",13,10);

int fclk;

float sf = 1;

int heartrate;

int count = 9;

int avg_hr;

int add_hr = 0;

int i = 0;

int target;

int bit7, bit6, bit5, bit4, bit3, bit2, bitl, bite;

pioInit();

pinMode (23, OUTPUT);
pinMode (21, INPUT);
pinMode (18, INPUT);
pinMode (17, INPUT);
pinMode (16, INPUT);
pinMode (12, INPUT);

pinMode(6, INPUT);
pinMode(5, INPUT);
pinMode(4, INPUT);

// set up SPI
fclk = 122000; // set
spiInit(fclk, @0); //

pi_clk for FPGA
set phase and pol to ©

// reads measured and target heart rates and uses speedFactor to calculate the speed by
// which to change the music and playMusic to play each note of the song
while(notes[i][1]!=0){ // duration of © indicates end of song

if(count==9){ // recalculates speed factor every 10 notes

heartrate = (int)

SPIsendReceive(0b00000000) ;

add_hr += heartrate;

avg_hr = add_hr/10; // calculate average heart rate of last 10
sf = speedFactor(target, avg_hr);

playMusic(notes[i][@], notes[i][1]/sf);

count = 9;
add_hr = 0;

// read target heart rate

bit7 = digitalRead(21);

bit6 = digitalRead(18);

bit5 = digitalRead(17);

bit4 = digitalRead(16);

bit3 = digitalRead(12);

bit2 = digitalRead(6);

bitl = digitalRead(5);

bite = digitalRead(4);

target = (int) (bit7<<7) | (bit6<<6) | (bit5<<5) | (bitd4<<4) | (bit3<<3) | (bit2<<2) |

(bitl<<1) | bite;
i++;

printf("<p>Target Heart Rate: %d\n\n\nCurrent Heart Rate: %d</p>",target, heartrate);

} else {

heartrate = (int) SPIsendReceive(0b00000000) ;
playMusic(notesi[i][@], notes[i][1]/sf);
add_hr += heartrate;

count ++;
i++;

Appendix D: HTML Code
<html>
<head></head>
<body>
<img
src="http://www.clipartkid.com/images/208/music-notes-heart-beat-clipart-panda-free-clipart-im
ages-erFXrz-clipart.jpg">
<header>
<hl>Heart Rate & Music</hl>
<h2>Christine Goins and Senghor Joseph</h2>

<h3>Enter your desired [Target Heart Rate] on the DIP switches </h3>
<h3>View your current heart rate on the LED array below</h3>

<iframe src="cgi-bin/ampisw" width="300px" height="200px"></iframe>
</header>

</body>
</html>

